Stochastic models of tumour development and related mesoscopic equations

D. Finkelshtein, M. Friesen, H. Hatzikirou, Yu. Kondratiev, T. Kruüger, O. Kutoviy


We consider different mathematical models inspired by the problems of medicine, in particular, the tumour growth and the related topics. We demonstrate how to starting from an individual-based (microscopic) description, which characterizes cells’ behaviour, derive the socalled kinetic (mesoscopic) equations, which describe the approximate system density. Properties of the solutions to the mesoscopic equations (in particular, their long-time behaviour) reflect statistical characteristics of the whole system and demonstrate the corresponding dependence on the system parameters.

Повний текст:

PDF (English)


S. Albeverio, Yu. Kondratiev, and M. R¨ockner. Analysis and geometry on configuration spaces. J. Funct. Anal., 154(2):444–500, 1998.

V. Bezborodov. Markov birth-and-death dynamics of populations. arXiv:1502.06783 [math.PR], 2015.

V. Bezborodov. Spatial birth-and-death markov dynamics of finite particle systems. arXiv:1507.05804 [math.PR], 2015.

C. Berns, Yu. Kondratiev, and O. Kutoviy. Markov Jump Dynamics with Additive Intensities in Continuum: State Evolution and Mesoscopic Scaling. J. Stat. Phys., 161(4):876–901, 2015.

D. Finkelshtein, Yu. Kondratiev, and O. Kutoviy. Individual based model with competition in spatial ecology. SIAM J. Math. Anal., 41(1):297–317, 2009.

D. Finkelshtein, Yu. Kondratiev, and O. Kutoviy. Vlasov scaling for stochastic dynamics of continuous systems. J. Stat. Phys., 141(1):158–178, 2010.

D. Finkelshtein, Yu. Kondratiev, and O. Kutoviy. Semigroup ap- proach to birth-and-death stochastic dynamics in continuum. J. Funct. Anal., 262(3):1274–1308, 2012.

D. Finkelshtein, Yu. Kondratiev, and O. Kutoviy. Establishment and fecundity in spatial ecological models: statistical approach and kinetic equations. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16(2):1350014, 24, 2013.

D. Finkelshtein, Yu. Kondratiev, and M.-J. Oliveira. Markov evolu- tions and hierarchical equations in the continuum. II: Multicompo- nent systems. Rep. Math. Phys., 71(1):123–148, 2013.

J. Garnier. Accelerating solutions in integro-differential equations. SIAM J. Math. Anal., 43(4):1955–1974, 2011.

N. L. Garcia and T. G. Kurtz. Spatial birth and death processes as solutions of stochastic equations. ALEA Lat. Am. J. Probab. Math. Stat., 1:281–303, 2006.

Yu Jin and X.-Q. Zhao. Spatial dynamics of a periodic population model with dispersal. Nonlinearity, 22(5):1167–1189, 2009.

Yu. Kondratiev and T. Kuna. Harmonic analysis on configuration space. I. General theory. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5(2):201–233, 2002.

Yu. Kondratiev and O. Kutoviy. On the metrical properties of the configuration space. Math. Nachr., 279(7):774–783, 2006.

Yu. Kondratiev, O. Kutoviy, and S. Pirogov. Correlation functions and invariant measures in continuous contact model. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 11(2):231–258, 2008.

Yu. Kondratiev and A. Skorokhod. On contact processes in continuum. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9(2):187– 198, 2006.

B. Simon and M. Reed. Methods of Modern Mathematical Physics, volume 4. 1978.

S. N. Ethier and T. G. Kurtz. Markov Processes: Characterization and Convergence. 2005.

H. R. Thieme and J. Voigt. Stochastic semigroups: their construction by perturbation and approximation. In Positivity IV—theory and applications, pages 135–146. Tech. Univ. Dresden, Dresden, 2006.

H. Yagisita. Existence and nonexistence of traveling waves for a nonlocal monostable equation. Publ. Res. Inst. Math. Sci., 45(4):925– 953, 2009.

Y. Kondratiev and Yu. Kozitsky The microscopic dynamics of a spatial ecological model. arXiv:1507.07517 [math.DS], 2015.

Пристатейна бібліографія ГОСТ


  • Поки немає зовнішніх посилань.