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Stochastic models of tumour development and
related mesoscopic equations

D. Finkelshtein1, M. Friesen2, H. Hatzikirou3,

Yu. Kondratiev4, T. Krüger5, O. Kutoviy6

Abstract. We consider different mathematical models inspired by the
problems of medicine, in particular, the tumour growth and the related
topics. We demonstrate how to starting from an individual-based (mi-
croscopic) description, which characterizes cells’ behaviour, derive the so-
called kinetic (mesoscopic) equations, which describe the approximate sys-
tem density. Properties of the solutions to the mesoscopic equations (in
particular, their long-time behaviour) reflect statistical characteristics of
the whole system and demonstrate the corresponding dependence on the
system parameters.

1 Introduction

1.1 Mathematical description

Within the microscopic description of cells, the framework of interacting par-
ticle systems in continuum and their possibility of deriving rigorously a kinetic
description, also called mesoscopic description, in terms of non-local and in gen-
eral non-linear equations plays a crucial role. Here we start from some (simple)
stochastic microscopic (heuristic) description of a cell model and derive from
that rigorously the kinetic equations for the density of this system. Such ap-
proach can be interpreted similarly to the mean field limit in Physics, where
one scales the dynamics in a proper way and obtains from that in the limit a
deterministic equation for the density of the system. We assume in general,
that each cell is determined uniquely by its position and no other properties
will be tracked. Note that it is also possible to introduce marks within such de-
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scriptions and extend the microscopic stochastic dynamics to a situation, where
more complicated effects may be covered. For instance one can introduce age-
dependence of cells, i.e. each cell has an individual age, which influences the
microscopic interactions. Here we always assume that the number of cell-types
is small compared to the number of cells within each type. Therefore such
stochastic treatment is adequate.

The main difference to other cell biological models is, that we start with a
stochastic description, which incorporates individual cell behaviour stochasti-
cally. The choice of the individual stochastic behaviour incorporates cell intern
effects and can be used to model a wide class of cells. Ignoring the inter-
nal structure necessary leads to randomness, but also leads to new methods
describing such large interacting systems.

Heuristically the evolution of a system is described via its elementary
Markov events like birth, death and jumps of cells. In this framework the
evolution is assumed to be Markovian, which is a reasonable approximation
of reality. Note, that this approach could also be extended to non-Markovian
structures in order to include dependencies on cell intern processes like aging
or may lead to some sort of cell-memory. Nevertheless assuming Markovian
behaviour already leads to many non-trivial examples and effects, which have
to be studied more intensively.

The microscopic description and its analysis can answer questions about
asymptotic clustering of the system, invariant states and ergodicity of the sys-
tem. The precise formulation of clustering will be explained more extended in
the next part of the article. Usually it is not possible to measure the microscopic
quantities to full extend, so in order to have a practically useful description it is
necessary to describe the system also via mesoscopic or even macroscopic quan-
tities. Thus it is reasonable to seek for an effective description with practically
measurable quantities. Similar to Thermodynamic limits, one tries to rescale
the system and obtain another description, here for the density of the system.
As a consequence the new description will not contain all information about
the microscopic behaviour, for instance it does not contain information about
asymptotic clustering, which will be explained lateron, and individual trajecto-
ries of the Markov process. Such Mesoscopic, i.e. kinetic description, describes
instead of microscopic quantities the density of the system via a closed system
of equations. Typical for such systems of equations is their non-linear structure
and the appearance of convolutions of the density with the potentials involved
in the interactions of cells. The analysis of such equations is a topic of applied
mathematics and is studied intensively since the last 30 years, c.f. [10, 12, 20].

This kinetic description can give information about the long-time be-
haviour, invariant and stationary states, asymptotic speed of growth, front
wave propagation and several other effects. Its analysis should be realized sep-
arately for each model. Let us outline the general approach and motivate the
scaling used to derive the kinetic description. In general one suppresses the in-
teractions of cells via a factor ε > 0. In the same way the density of the system
is increased. Such attempt will suppress all correlations between the cells within
the system and therefore a kinetic description will not contain this information.
In the last step we will seek for a limiting description of this system and will
arrive in a reduced description of the microscopic model. This reduced descrip-
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tion will have not Markovian structure but is still a linear stochastic description
involving infinitely many correlation functions. To get a closed equation for the
density of the system, remember that all correlations between the cells are sup-
pressed. Thus it is not surprisingly that starting from poissonan statistics, the
evolution of the system will preserve this statistics. This property is know as
the Chaos preservation principle.

In the following we will first outline a more detailed description of both
approaches, introduce all necessary quantities and afterwards state the results
for several biological important models of tumour growth, cell division, mortal-
ity etc. The last section contains all mathematical details, which are necessary
for the analysis of such models.

The aim of this section is to motivate and explain this approach to scien-
tists working in biological or medical research fields. The precise mathematical
description will be given and proved afterwards separately.

1.2 One-component models

Let us first outline the necessary structures in the simpler case, where we
consider only one type of cells. Since the cells are distinguished only by their
positions, we will denote their positions by x1, . . . , xn, · · · ∈ Rd or more simple
as a collection of positions γ = {x1, . . . , xn, . . . } ⊂ Rd. In reality it is clear, that
each organism has only a finite but very large number of cells. For such finite
microscopic systems the existence of a Markov process is known. Moreover
in [2], [3] asymptotic properties and conditions for explosions respectively non-
explosion can be stated. Nevertheless it is still not understood how to derive
rigorously, i.e. in the sense of convergence of the corresponding densities, the
mesoscopic description. In contrast to infinite systems, i.e. γ ⊂ Rd contains
infinitely many points, behave from the analytical point of view quite different.
Here for many models it is already known that the density of the rescaled
system will converge to the solution of the kinetic description. In this work
we will mainly focus on infinite systems having in mind, that in the kinetic
description the initial density should in addition be chosen to be integrable,
and hence represents a system consisting only of finitely many cells.

Similar to limits from thermodynamics, some effects like asymptotic clus-
tering or pattern formation can be captured simpler in the limit of infinite par-
ticles. Simulations suggest and for some dynamical systems it can be shown,
that finite systems with a large number of cells behave in their interior like in-
finite systems. Finite systems can describe the growth of the system, whereas
infinite systems capture the properties of the interior behaviour of cell patterns
and their properties. Since we deal with a very large number of cells (≈ 1010)
it is justified to allow the cell number to be even infinity, so we will use a
description which includes both finite and infinite systems.

In this case we have to assume, that locally the number of cells is still
finite, i.e. for every bounded volume Λ ⊂ Rd the number of cells within Λ is fi-
nite: |γ∩Λ| <∞. This assumption implies, that the local density of the system
(also other observables) are locally finite and thus can be measured/observed
on each finite volume. Altogether our phase space (configuration space) is

Γ = {γ ⊂ Rd : |γ ∩ Λ| <∞, ∀Λ ⊂ Rd bounded}.
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Clearly the space of finite configurations

Γ0 = {η ⊂ Rd : |η| <∞}

is a subspace of Γ, i.e. Γ0 ⊂ Γ. Heuristically, starting from some configuration
γ ∈ Γ we would like to describe a Markov process Xγ

t ∈ Γ starting at γ, which
incorporates all microscopic phenomena we would like to describe. For finite
configurations such problem is well understood, c.f. [11] and references therein.
The (Markov) dynamics is described via elementary events as birth, death and
jumps of cells. A cell located at x ∈ Rd can die, i.e. the configuration changes
as γ → γ\x, a cell can jump from x to y ∈ Rd, i.e. γ → γ\x ∪ y and finally
a new cell at location y ∈ Rd may appear, i.e. γ → γ ∪ y. All such events
have certain intensities, which will depend on the positions x, y and on the
configuration of cells γ. The probability of the new location y ∈ Rd is usually
described via a probability distribution.

Mathematically a Markov process Xγ
t starting from a configuration of

cells γ ∈ Γ can be described completely in terms of the corresponding Markov
generator L, c.f [18], which acts on functions F called observables. Therefore
in order to describe the model it is enough to write down the expression for
this Markov operator. For our models all terms contained in the operator have
a simple interpretation, e.g. the general form of such generator is simply

(LF )(γ) =
∑
x∈γ

d(x, γ\x)(F (γ\x)− F (γ)) +

∫
Rd

b(y, γ)(F (γ ∪ y)− F (γ))dy

+
∑
x∈γ

∫
Rd

c(x, y, γ\x)(F (γ\x ∪ y)− F (γ))dy. (1)

Here 0 ≤ d(x, γ\x) is the intensity of death of a cell x ∈ Rd depending on all
other cells γ\x, 0 ≤ b(y, γ) is the intensity, that a cell is born at position y ∈ Rd
and 0 ≤ c(x, y, γ\x) is the intensity that a cell jumps from position x to the
new position y ∈ Rd. Let us stress, that since we will deal with infinite systems
the study of the operator L is extremely hard and was carried out only for a
few models, e.g. [16]. In the framework of cell biology typically new cells can
only be born due to proliferation and hence we can specify the intensity b(x, γ)
to be of the form

b(x, γ) =
∑
y∈γ

b0(x, y, γ\x).

This means that each cell at y ∈ γ may split and therefore create a new cell at
location x ∈ Rd. The intensity of such events is given by b0(x, y, γ\x). Put in
other words, if γ ∈ Γ0 then heuristically

P(Xγ
t+h = Xγ

t ∪ {x}|X
γ
t ) = b(x, γ)h+ o(h)

as h → 0. Similar statements hold for d(x, γ\x) and c(x, y, γ\x). In the case
of |γ| =∞ such description can be interpreted only heuristically, since in each
interval [t, t + h], h > 0 infinitely many microscopic events will take place.
Hence the notion of first time of a change of a system state if not meaningful,
whereas in finite systems an explicit construction of the Markov process deeply
uses this fact.
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Within this framework we will study distributions P(Xγ
t )−1 =: µt called

states of the system, instead of the process itself. From cell-biological point
of view it is not necessary and realistic to know all positions of cells, but one
can observe and model statistics respectively their distribution µt, which is
probability measure on Γ. One simple example is the poissonian statistics.
There the probability of finding n-cells within the volume Λ ⊂ Rd is given by

Pn(Λ) =
1

n!

Å∫
Λ

ρ(x)dx

ãn
exp

Å
−
∫
Λ

ρ(x)dx

ã
,

where 0 ≤ ρ is locally integrable and describes the cell-density. Let us denote
the Poisson measure on Γ by πρ and the collection of all probability measures
on Γ by P. The Poisson measure plays the role of a chaotic, i.e. free state,
where all cells are not correlated. Starting from a state µ ∈P, the description
of the microscopic evolution will consist of describing the evolution of states
t 7−→ µt ∈P. Compared to the description via a process Xµ

t the evolution of
statistics µt is connected via the equality∫

Γ

F (γ)µt(dγ) =

∫
Ω

F (Xµ
t )dP, F : Γ −→ R

where Ω is the probability space and P the probability measure for the process
Xµ
t starting with initial distribution µP. The study of the evolution µt can be

done via studying its moments, which are functions of arbitrary large number
of variables. The definition of this functions, if they exist, is given as follows,
c.f. [13]∫

Γ

∑
{x1,...,xn}⊂γ

f (n)(x1, . . . , xn)dµ(γ)

=
1

n!

∫
(Rd)n

f (n)(x1, . . . , xn)k(n)(x1, . . . , xn)dx1 . . . dxn (2)

for symmetric functions f (n), which are measurable and have compact support.
The left-hand side is the mean of the observable f (n), i.e. we sum over all
possible n-point configurations {x1, . . . , xn} ⊂ γ and afterwards integrate over
all possible configurations γ. We assume that this mean can be represented

via a density k(n) and the factor
1

n!
is a combinatorial factor describing the

number of all possible choices to order the positions x1, . . . , xn. Let us denote
the collection of all correlation functions by (k(n))∞n=0 = k, where 0 ≤ k = k(η)
is a function of finite configurations η ⊂ Rd (|η| <∞).

Example 1.

• In the case n = 0 one has

1 = µ(Γ) =

∫
Γ

dµ(γ) = k(0)
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• For n = 1 take a Borel set A ⊂ Rd and

f (1)(x) =

®
1, x ∈ A
0, x 6∈ A

.

Then we obtain∫
Γ

|A ∩ γ|dµ(γ) =

∫
Γ

∑
x∈γ

f (1)(x)dµ(γ) =

∫
A

k(1)(x)dx

and the left-hand side is the expected number of particles within the
volume A, whereas the right-hand side is a measure in A. Therefore k(1)

is the particle density of the system.

• The same procedure with

f (2)(x, y) =

®
1, x, y ∈ A
0, otherwise

leads to

1

2

∫
Γ

|γ ∩A|2dµ(γ)− 1

2

∫
Γ

|γ ∩A|dµ(γ)

=

∫
Γ

Ç
|γ ∩A|

2

å
dµ(γ) =

1

2

∫
A

∫
A

k(2)(x, y)dxdy

and we see that ∫
A

∫
A

k(2)(x, y)dxdy

is the Variance of the cell number operator with kernel 0 ≤ k(2)(x, y).
Similarly k(n) describe higher order moments of the system.

• The correlation functions for the Poisson measure πρ are

k(n)(x1, . . . , xn) = ρ(x1) · · · ρ(xn).

The evolution of states t 7−→ µt is determined as the solution to the
Fokker-Planck equation for measures

∂

∂t

∫
Γ

F (γ)dµt(γ) =

∫
Γ

(LF )(γ)dµt(γ) (3)

with initial distribution µt|t=0 = µ0. Let us assume that for each state µt the
correlation function of arbitrary order n ∈ N exists, then the evolution µt can

be described by the collection of all such correlation functions kt = (k
(n)
t )∞n=0.

Similar to equation (3), this collection will satisfy the Fokker–Planck hierarchy

∂kt
∂t

= L∆kt (4)
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or written in components

∂k
(n)
t

∂t
(x1, . . . , xn) = (L∆kt)

(n)(x1, . . . , xn), n ∈ N0,

where the operator L∆ acts on the whole vector kt = (k
(n)
t )∞n=0, i.e. on each

correlation function and can be seen as an infinite matrix. Therefore above
equation is a vector equation with the matrix operator L∆. We have therefore
transformed the equation for the evolution of states µt to an equation for its

moments (k
(n)
t )∞n=0. As a consequence the system of equations for (k

(n)
t )∞n=0

will be coupled, hence it is not possible to obtain directly a closed equation

for k
(n)
t , where only k

(n)
t enters. Attempts to derive from such system a closed

equation are known as moment closure techniques. In our approach scaling of
the system yields a closed equation for the density of the system. Let us show

for a special choice of L how to derive this equation for k
(1)
t . The general case,

will be postponed to the second part of the article.
As a simple example let us look at a free branching process, where each

cell has a random exponentially distributed lifetime with parameter m > 0
and can proliferate with intensity λ > 0, i.e the time to create a new cell is
also exponentially distributed with parameter λ > 0. The position of the new
cell born from x ∈ γ will be distributed due to the probability distribution
a(x− y)dy, where y ∈ Rd is the position of the new cell. The heuristic Markov
generator will have the form

(LF )(γ) = m
∑
x∈γ

(F (γ\x)− F (γ))

+ λ
∑
x∈γ

∫
Rd

a(x− y)(F (γ ∪ y)− F (γ))dy. (5)

Let us take in (3) the special choice F (γ) =
∑
x∈γ

ϕ(x) with a measurable,

bounded function ϕ with compact support. For this choice the left-hand side
of (3) will become, c.f. example 2,

∂

∂t

∫
Γ

∑
x∈γ

ϕ(x)dµt(γ) =
∂

∂t

∫
Rd

ϕ(x)k
(1)
t (x)dx.

A short combinatorial computation shows the equality

(LF )(γ) = −m
∑
x∈γ

ϕ(x) + λ
∑
x∈γ

∫
Rd

a(x− y)ϕ(y)dy

and thus∫
Γ

(LF )(γ)dµt(γ) = −m
∫
Γ

∑
x∈γ

ϕ(x)dµt(γ) + λ

∫
Γ

∑
x∈γ

(a ∗ ϕ)(x)dµt(γ)

= −m
∫
Rd

ϕ(x)k
(1)
t (x)dx+ λ

∫
Rd

(a ∗ ϕ)(x)k(1)(x)dx.
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For the second integral we use Fubini and a(x− y) = a(y − x) to get∫
Rd

(a ∗ ϕ)(x)k(1)(x)dx =

∫
Rd

∫
Rd

a(x− y)ϕ(y)k(1)(x)dydx

=

∫
Rd

Å∫
Rd

a(y − x)k(1)(x)dx

ã
ϕ(y)dy.

Altogether this gives∫
Rd

ϕ(x)
∂k

(1)
t

∂t
(x)dx =

∫
Rd

ϕ(x)
Ä
−mk(1)

t (x) + λ(a ∗ k(1)
t )(x)

ä
dx

for each function ϕ and thus

∂k
(1)
t

∂t
(x) = −mk(1)

t + λ(a ∗ kt)(x).

Note, that this is a closed equation, in general it not the case, e.g. the equation

for k
(2)
t

∂k
(2)
t

∂t
(x, y) = −2mk

(2)
t (x, y) + λ

∫
Rd

a(x− z)k(2)
t (x, z)dz

+ λ

∫
Rd

a(y − z)k(2)
t (z, y)dz + a(x− y)

Ä
k

(1)
t (x) + k

(1)
t (y)

ä
does depend on the functions of order 1 and 2.

Let us now turn to scaling and outline the general approach. The first step
is to scale the intensities of the interaction of the system, usually one dumps
the potentials by a factor ε > 0, e.g. for (5) this means a→ εa. In general let
us assume we scaled the intensities in a proper way, i.e. have expressions dε, bε
and cε within expression (1). The exact scaling will be carried out for each
model separately. To get a limit, we have also accelerate birth by putting a

factor
1

ε
in front of it, so in the case of (5) this will mean that L is not changed,

which is a direct consequence of the independence of the stochastic evolution
of each cell. Finally the resulting generator has the form

(LεF )(γ) =
∑
x∈γ

dε(x, γ\x)(F (γ\x)− F (γ)) +
1

ε

∫
Rd

bε(y, γ)(F (γ ∪ y)− F (γ))dy

+
∑
x∈γ

∫
Rd

cε(x, y, γ\x)(F (γ\x ∪ y)− F (γ))dy.

The second step is to increase the density of the system, i.e. we consider initial

conditions k
(n)
0,ε , which satisfy

εnk
(n)
0,ε → r

(n)
0 , ε→ 0
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with a symmetric function r
(n)
0 and n ∈ N0. Clearly, this implies that the initial

condition k
(n)
0,ε has a singularity at ε > 0, which can be interpreted as a growth

of the initial densities in ε > 0. The functions r
(n)
0 are a subject of choice for

concrete models. The important case is

r
(n)
0 (x1, . . . , xn) = ρ0(x1) · · · ρ0(xn), (6)

which represents the poissonian statistics. Denote by L∆
ε the operator corre-

sponding to Lε and by kt,ε the collection of correlation functions, defined as
the solutions of the equation

∂kt,ε
∂t

= L∆
ε kt,ε, kt,ε|t=0 = k0,ε. (7)

In the final step we will seek for a limiting correlation function, describing the
scaled system, i.e. we want

εnk
(n)
t,ε → rt, ε→ 0 (8)

for each n ∈ N0. Again the collection rt = (r
(n)
t )∞n=0 will satisfy some system

of equations similar to (4), i.e.

∂rt
∂t

= L∆
V rt, rt|t=0 = r0.

This limiting description is known as the Vlasov hierarchy containing less in-
formation as the original model, but is simpler to analyse. Starting from initial
function r0 as he correlation function of the Poisson measure πρ0 , c.f. (6), one
finds that the solution rt will be of the form

r
(n)
t (x1, . . . , xn) = ρt(x1) · · · ρt(xn)

and so rt is again the correlation function of a Poisson measure with the new
density ρt. This density is determined by the mesoscopic equation, which we
will also call kinetic description,

∂ρt
∂t

(x) = v(ρt)(x), ρt|t=0 = ρ0 (9)

and this property is known as the Chaos preservation principle. All previous
steps can be computed for many models explicitly, which will be realized later
for each model. The function ρt is the approximate density of this system,

i.e. plays the same role as k
(1)
t , whereas it is determined in general by a non-

linear and non-local equation. For the special case (5) the equation for ρt is

the same as for k
(1)
t , which again is the consequence of the independence of

each cell. Given a microscopic model through its (formal) Markov generator
L, we will say that (9) is the kinetic description of the microscopic model.
This description is produced by taking the formal limit within (7). Without
further investigation it is not known, whether also the corresponding solutions
converge, i.e. (8) holds. We will say that the kinetic description (9) corresponds
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to the microscopic model if (8) holds. In particular this implies that for given
initial condition ρ0 and ρt the solution to (9) one has

lim
ε→0

εk
(1)
t,ε = ρt.

The precise notion of the convergence might depend on the particular model
and shall be checked for each model separately. In many cases one knows that
ρt will be bounded and hence the limit is uniformly in all spatial variables.

1.3 Clusterization and pattern formation

From an intuitive point of view many scientists understand under the terminus
of clusterization that with increased probability we will observe cells aggregat-
ing in some bounded regions. For mathematical analysis such understanding
has to be reformulated in terms of mathematical objects. In applications bi-
ologists often observe the density of the system, and find regions with peaks
and at the same time regions with rather small density. Such phenomena is
also often called clusterization. In this work we will call such phenomena pat-
tern formation. One example for pattern formation would be the density, for
simplicity one-dimensional,

ρ(x) =

®
a, x ∈ [2k, 2k + 1)

b, x ∈ [2k + 1, 2(k + 1))
,

where 0 < a < b and k ∈ Z. Such density is periodic, and if b is compared to
a much larger we will observe macroscopically in the regions [2k + 1, 2(k + 1))
an aggregation of cells or molecules. One could think about the density for the
description of periodic crystal structures, whereas we do not relate such density
to any specific model, since we have not it derived from any microscopic model.

The notion of clusters will be used in this work to relate to higher cor-
relations of an interacting cell system, whereas pattern formation is connected
only to the first correlation function, i.e. the density of the system. Having in
mind that the sequence of correlation functions k(n) describe the densities of
the moments of a state of the system, i.e. a probability measure on Γ, we would
like to fix in the next step a reference measure, which shall be regarded as com-
pletely uncorrelated. In Physics it is know that for a completely uncorrelated
system the correlation functions will have product structure, i.e.

k(n)(x1, . . . , xn) = ρ(x1) · · · ρ(xn), x1, . . . , xn ∈ Rd

for each n ∈ N. Here 0 ≤ ρ is the density. Therefore we regard the Poisson
measure πρ as the reference measure to measure correlations and clusterization
of the system. One important special case is the choice ρ(x) = z, where z > 0
is constant. In such case the system is distributed uniformly in all Rd and due
to the product structure all cells are independent. Such cases were already
analysed in physics for the free gas. We will call a systems non-clustering, if
its correlation functions satisfy

k(n)(x1, . . . , xn) ≤ ρ(x1) · · · ρ(xn)C, x1, . . . , xn ∈ Rd (10)
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for all n ∈ N0 and some constant C > 0. In the case, where

k(n)(x1, . . . , xn) ≤ ρ(x1) · · · ρ(xn)n!δ, x1, . . . , xn ∈ Rd (11)

for all n ∈ N0 and some δ > 0, we will say that the system admits clusterization.
Note that, this does not mean that the system will be really clustering. In
general one should also have a bound from below. We will say the system is
clustering, if the following bounds hold for all n ∈ N0, x1, . . . , xn ∈ Rd

ρ0(x1) · · · ρ0(xn)(n!)δ0C0 ≤ k(n)(x1, . . . , xn) ≤ ρ1(x1) · · · ρ1(xn)(n!)δ1C1,

where ρ0, ρ1 are non-negative locally integrable functions, C0, C1, δ0, δ1 > 0 are
constants. The evolution of a system will be clustering if for each fixed time

t > 0, the correlation functions k
(n)
t admits above estimations.

Let us now turn to the interpretation of this conditions. In the case of
(10), we observe that the moments of the system are bounded from above by
the moments of the Poisson measure. For instance the probability density of
finding n cells at positions x1, . . . , xn is given by k(n)(x1, . . . , xn). In the case of
(11) this density is fast growing with respect to n and hence it is more likely to
find configurations which consist of a higher number of cells. Therefore we see
that in contrast to pattern formation, here we incorporate also the microscopic
description of the system via its configurations. In the next section we will see,
that a free branching process will always be clustering. In order to prevent
clusterization it is therefore necessary to introduce microscopic interactions,
which will regulate the system. Two examples are given by either increasing
the death of cells, in such a way that in dense regions cells will have an increased
intensity to kill each other, or dumping down the intensity for the branching
of cells, which means that in dense regions cells will have only a small chance
to proliferate.

2 Results

2.1 One-component models

Free branching process

The first model we start with is a toy model in the sense that mathematically
all corresponding equations can be solved explicitly. This model consists of the
two elementary events birth and death of a cell. First of all each cell have an
exponentially distributed lifetime with parameter m > 0, so the time each cell
will survive is given by an exponentially distributed random variable and the

mean lifetime is
1

m
. After the death of a cell located at position x ∈ Rd the

configuration of all cells changes γ → γ\x. Written in terms of the heuristic
Markov generator this part has the form

(LdF )(γ) =
∑
x∈γ

m(F (γ\x)− F (γ)).

Moreover, each cell located at position x ∈ γ can divide into two new cells
located at the positions y1, y2. Thus the configuration changes in the following
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way γ → γ\x ∪ y1 ∪ y2. The probability of finding cells in the volume element
dy1dy2, is given by

a(x− y1, x− y2)dy1dy2,

and the intensity of the event of cell-division is given by λ > 0. We assume
that 0 ≤ a is a probability density, hence is normalized to 1 and assume that
this kernel is symmetric in both arguments, so

a(x,−y) = a(x, y), a(−x, y) = a(x, y), x, y ∈ Rd.

In terms of the heuristic Markov generator this leads to

(LbF )(γ) = λ
∑
x∈γ

∫
Rd

∫
Rd

a(x− y1, x− y2)(F (γ\x ∪ y1 ∪ y2)− F (γ))dy1dy2.

Incorporating both effects independently of each other in one process, the over-
all Markov generator will have the form L = Ld + Lb. Clearly this description
shows, that each cell is independent of all other cells. Thus this description
really reflects the effects of free proliferation of cells within some region. If the
kernel a is a product of two probability distributions, i.e. a(x, y) = b(x)c(y),
then the positions y1 and y2 will be distributed independent of each other. In
some applications the positions y1, y2 are not independent of each other, i.e.
choosing position y1 influences the position of y2. In the special case, where the
position y2 would be determined completely by the position y1 one would take
e.g. a(x, y) = b(x)δ(x+ y) with a non-negative integrable function b, which is
normalized to 1. Therefore the position y2 is given by y2 = x+(x−y1) = 2x−y1,
meaning that cells prefer to proliferate in opposite directions, such that the dis-
tance |y1 − y2| is maximal.

Here we will investigate the general case and analyse some properties of
the system. The first observation shows, that if the birth kernel a is such that
new cells may appear arbitrary close to the mother cell located at position x,
then the dynamics will admit asymptotic clustering.

Theorem 2.1. Assume that a is continuous such that a(0) > 0, then starting
from poissonian statistics, i.e. correlation functions k(η) = C |η|, the evolu-
tion of correlation functions kt will satisfy for each η such that all points are
sufficiently close to each other

k
(n)
t (x1, . . . , xn) ≥ βne−(m−λ)ntn!

for some constant β > 0 depending on λ, a and C. Moreover there exists
C(t) > 0 non-decreasing such that

k
(n)
t (x1, . . . , xn) ≤ C(t)nn!

for all n ∈ N0 and x1, . . . , xn ∈ Rd.

Above estimate implies due to the presence of the factor n!, that inde-
pendent of β,m and λ with high probability many cells can be observed in a
small region, which reflects the effect of clustering. The second estimate shows,
that factorial growth of correlation functions kt is the worst case we can ob-
serve. This estimate remains true without any conditions on the birth kernel
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a. The next Theorem formulates the result concerning the kinetic description
of this model.

Theorem 2.2. For each initial distribution of cells ρ0(x) ≥ 0, which is essen-
tially bounded, there exist a unique solution ρt(x) ≥ 0 to the kinetic equation

∂ρt
∂t

(x) = −(m+ λ)ρt(x) + λ

∫
Rd

b(x− y)ρt(y)dy (12)

with initial condition ρt|t=0 = ρ0. Such solution is also essentially bounded
and corresponds to the rescaled system, i.e. the Vlasov hierarchy. The function
0 ≤ b is given by

b(x) =

∫
Rd

a(x, y)dy +

∫
Rd

a(y, x)dy.

The absence of non-linearities is due to the absence of interactions of cells.
For m > λ all cells will die, whereas for m < λ the number of cells will grow
exponentially. In the critical case m = λ the total number of cells is conserved
and the equation describes a random walk in continuous time. The general
solution to (12) is given by

ρt(x) = ρ0(x)e−(m+λ)t + e−(m+λ)t
∞∑
n=1

(λt)n

n!
(b∗n ∗ ρ0)(x).

The same Mesoscopic equation and the same results about asymptotic cluster-
ing of the system can be achieved, if we simplify the birth by setting

a(x, y) = δ(x)b(y),

which means that each cell will create a new cell located at position y ∈ Rd
without disappearing from the system. Mathematically such situation is due
to less computational work simpler to analyse. Results concerning invariant
states, existence of a Markov process etc. can be found in [15]. In the following
we will always restrict ourselves to this case, called Contact model. Its heuristic
Markov generator has the form

(LCMF )(γ) = m
∑
x∈γ

(F (γ\x)− F (γ))

+ λ
∑
x∈γ

∫
Rd

a(x− y)(F (γ ∪ y)− F (γ))dy. (13)

Spatial logistic model

As already discussed in the Contact model all cells are independent of each
other. For a wide class of biologically relevant models such behaviour is not
adequate, so one has to introduce additional microscopic mechanisms, which
regularize the overall dynamics in such a way that all correlation functions
become sub-poissonian. This can be achieved if one includes either additional
density dependent mortality or one introduces density dependent birth in such
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a way, that in regions of high density cells will have a small probability to
proliferate. Here we will state some results about the model with additional
density dependent mortality.

Let us start with with the usual Contact model, so LCM given in (13)
and introduce additional death. Each cell x ∈ γ may cause death of another
cell y ∈ γ\x with rate λ−a−(x − y). The overall rate of death caused by the
cell x is simply λ−

∑
y∈γ−\x

a−(x− y) and describes some sort of competition of

cells for resources within the body. Therefore the complete heuristic Markov
generator will have the form

(LF )(γ) = (LCMF )(γ) + λ−
∑
x∈γ

∑
y∈γ\x

a−(x− y)(F (γ\x)− F (γ)). (14)

This model was analysed in several articles, c.f. [5, 7]. It is known, c.f. [21] that
if m > 0 is arbitrary small and there is θ > 0 such that a− − θa is a stable
potential, then there exists an evolution of states, such that its correlation

functions satisfy k
(n)
t ≤ Cn for some constant C > 0. Moreover, it can be

shown, that in the regime of high mortality the only invariant state is the one
representing the empty configuration. Namely if

λa ≤ λ−a−

then the unique invariant distribution is µinv = δ{∅}, i.e. k
(n)
inv = 0 for n ≥ 1 and

k
(0)
inv = 1. Here we will only summarize the result for the kinetic description, [6]

Theorem 2.3. Assume a, a− ≥ 0 are symmetric, integrable and normalized to
1. Then for each initial measurable density ρ0(x) ≤ C for a.a. x ∈ Rd there
exists a unique solution ρt to the kinetic equation

∂ρt
∂t

(x) = −mρt(x)− λ−ρt(x)(a− ∗ ρt)(x) + λ(a ∗ ρt)(x) (15)

with ρt|t=0 = ρ0. Moreover the function kt(η) = eλ(ρt; η) is a solution to the
Vlasov hierarchy

∂rt
∂t

(η) = L∆
V rt(η), rt|t=0 = r0

with r0(η) = eλ(ρ0; η). This solution ρt will again be bounded by the same
constant C, i.e. ρt(x) ≤ C for a.a. x ∈ Rd. Moreover equation (15) is the
kinetic description, and if λ−a− − λa is stable, then also (8) holds.

Clearly there are two stationary solutions to (15) given by 0 and
λ−m
λ−

.

Such solutions are biologically relevant if they are positive, so m ≤ λ. Let
us now assume, that a− is strongly localized. Then we can approximate the
convolution by a multiplication, which leads to a− ∗ ρt ≈ ρt. In this case the
kinetic equation simplifies to

∂ρt
∂t

(x) = −mρt(x)− λ−ρt(x)2 + λ(a ∗ ρt)(x).

This equation was analysed in several articles in the one-dimensional case. A
function ρt(x) is called a traveling wave solution with monotone profile and
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speed c, if ρt(x) = ψ(x − ct) for some monotone function φ ∈ C1(R). E.g.
in [20] it was shown that if a is exponentially integrable, i.e. there exist α > 0
such that ∫

R

e−αya(y)dy <∞

then there exists c∗ > 0 such that for each c ≥ c∗ there exist a traveling wave
solution with monotone profile and speed c. A For each c < c∗ there exist no
periodic traveling wave solution of speed c. The constant c∗ is called spreading
speed. For the time-inhomogeneous case λ = λ(t) in [12] a similar result was
shown and a formula for c∗ has been derived. In contrast if a do not satisfy the
exponential integrability condition, then the speed of propagation will be not
constant, c.f. [10]. Therefore modelling complex cell systems one has also to
distinguish between different classes of kernels a−, a. For example taking for a
a gaussian distribution, one gets a constant spreading speed, whereas taking a
as the Cauchy distribution one gets an accelerated spreading speed.

Branching with fecundity

Instead of density dependent mortality here we will summarize the case of
density dependent birth. So each cell have again an exponentially distributed
lifetime with parameter m > 0 and each cell at position x ∈ γ can create a new
cell with intensity e−E(x,γ\x). The relative energy E(x, γ\x) is given by

E(x, γ\x) =
∑
y∈γ\x

ϕ(x− y) ≥ 0.

The potential ϕ ≥ 0 is assumed to be symmetric and integrable. In dense
regions around a cell x the energy will be large and thus the exponential
e−E(x,γ\x) will dump the intensity of creating a new cell at some position.
Such kind of self-regulation can be interpreted as a lack of energy, material or
resources for the cell at position x. If now x creates a new cell, then again the
probability of finding the new cell within the region dy is given by a(x− y)dy.
The generator is given for functions F : Γ −→ R by

(LF )(γ) = m
∑
x∈γ

(F (γ\x)− F (γ))

+ λ
∑
x∈γ

e−E(x,γ\x)

∫
Rd

a(x− y)(F (γ ∪ y)− F (γ))dy. (16)

Such model was discussed in [8] and it was shown, that under some conditions
on the potentials a and ϕ such self-regulation will prevent asymptotic clustering
of the system. More precisely, if there is a constant θ > 0 such that for a.a.
x ∈ Rd the conditions

a(x) ≤ θϕ(x)e−ϕ(x)

λ

Å
1 +

θ

eC

ã
<
m

2
exp

Å
−C

∫
Rd

(1− e−ϕ(x))dx

ã



20 D. Finkelshtein, M. Friesen, H. Hatzikirou, Yu. Kondratiev, T. Krüger, O. Kutoviy

hold, then there is 0 < C ′ < C such that for k0(η) ≤ C ′|η| there exist a unique
classical solution kt to (4) such that kt(η) ≤ C |η|. Here the dispersion kernel a
should be dominated by the interaction kernel suppressing the intensity of birth
and in the second condition one assumes that the constant mortality is high
enough. Pattern formations might still appear, such effects are of mesoscopic
nature and thus should by studied within the kinetic description. So let us
state the general result for the mesoscopic limit.

Theorem 2.4. Assume that

a(x) ≤ θϕ(x)e−ϕ(x)

2eC〈ϕ〉λ

Å
1 +

θ

eC

ã
< m

λ

Å
1 +

θ〈ϕ〉
e

ã
< m,

where 〈ϕ〉 =
∫
Rd
ϕ(x)dx denotes the mean of the potential ϕ. Then there is

α0 ∈ (0, 1) such that for all α ∈ (α0, 1) and each initial condition 0 ≤ ρ0 ≤ αC
there exists a unique solution 0 ≤ ρt ≤ αC to the kinetic equation

∂ρt
∂t

(x) = −mρt(x) + λ
(
a ∗ ρte−ϕ∗ρt

)
(x) (17)

and the function rt = eλ(ρt) solves the Vlasov-hierarchy.

The property ρt ≤ αC means, that the density of the system will be
bounded and so no explosions of the cell population may appear. The main
difference to the Contact model is the presence of the additional term e−ϕ∗ρt

which suppresses the growth of the density. The first condition states that the
interaction should dominate the proliferation The other two conditions require
high mortality and are sufficient to prevent the growth of the density of the
system. Without these two conditions we expect that the density will grow
exponentially, but still will not admit clusterization.

Contact model with motion

Last we would like to draw the attention to another self-regulation mechanism.
The usual Contact model described by the heuristic Markov generator LCM ,
as mentioned before, consists of asymptotic clusters. To avoid this effect, let us
assume that each cell have the additional possibility to move within the system.
Similar to previous model let us assume that there are two main contributions
to the intensity of the motion. On the one hand-side a cell at position x ∈ γ
will try to move outside a dense area of cells and on the other hand-side the
destination point will be chosen in such way, that it is less dense. All in one
cells will try to jump from dense areas to less dense areas. Such heuristic
description can be summarized in the following Markov generator

(LF )(γ) = (LCMF )(γ)

+
∑
x∈γ

eEφ(x,γ\x)

∫
Rd

e−Eψ(y,γ)c(x− y)(F (γ\x ∪ y)− F (γ))dy. (18)
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As before, the energies have the form Eφ(x, γ\x) =
∑

y∈γ\x
φ(x−y) and Eψ(y, γ) =∑

z∈γ
ψ(y − z), where the potentials φ, ψ ≥ 0 are symmetric and integrable.

The probability of finding the new cell within dy is approximately

1

N
e−Eψ(y,γ)c(x− y)dy

with a normalization constant N = N(γ) and a probability distribution 0 ≤
c(x) = c(−x). To this time such model was never analysed in this generality
and therefore it is not clear how the microscopic behaviour will look like. Nev-
ertheless, simulations suggest that such mechanism can lead to less asymptotic
clustering of the evolution, but due to the motion of the system, started from a
compactly supported density, will spread out faster then in the Contact model.
We also expect that the local density ρt within the kinetic description will be
growing at most sub-exponential. Within this work we derive the kinetic de-
scription for this model. Questions concerned about front wave propagation
and bounds on the density should be studied in detail afterwards.

Theorem 2.5. The kinetic description corresponding to the microscopic de-
scription of the Contact model in the presence of density dependent jumps is
given by a density ρt ≥ 0, which solves the Mesoscopic equation

∂ρt
∂t

(x) = −mρt(x) + λ(a ∗ ρt)(x)

+
(
c ∗
(
ρte

φ∗ρt
))

(x)e−(ψ∗ρt)(x) − e(φ∗ρt)(x)(c ∗ e−ψ∗ρt)(x)ρt(x).

Already here, we can observe how complicated the mesoscopic description
might become. Of course one could simplify the situation by only investigating
the case, where only one of the potentials φ, ψ is non-vanishing. So let us
assume ψ = 0. Then the equation becomes

∂ρt
∂t

(x) = −mρt(x) + λ(a+ ∗ ρt)(x) +
(
c ∗
(
ρte

φ∗ρt
))

(x)− 〈c〉e(φ∗ρt)(x)ρt(x).

The first two terms describe the free proliferation, whereas the last two terms
describe the impact of motion on ρt. The total number of particles is not

affected by this two terms, i.e.
∂

∂t
〈ρt〉 = (λ − m)〈ρt〉. The local number of

cells,
∫
Λ

ρt(x)dx, within some volume Λ ⊂ Rd might have a drastically different

behaviour.

2.2 Two-type models

In contrast to previous models here we will present some results about multi-
type models. In reality cells have different tasks and hence should be described
by different microscopic interactions. In contrast to previous modelling here
we will consider two type of configurations γ+ = {x1, . . . , xn, . . . } and γ− =
{y1, . . . , yn, . . . }. Both should be locally finite and distinct, so γ+ ∩ γ− = ∅.
The collection of all such configurations will be denoted by Γ2. Not only the
elementary events birth, death and jumping of cells can be treated, we now
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have the possibility of switching cell-type, i.e. a +-cell becomes a −-cell and
vice versa. More important, the densities for all events might also depend on
the cells of other type, so that e.g. +-cells are being affected by −-cells etc.
Within this framework the kinetic description will be a coupled system of two
equations, which describe the rescaled density ρ+ for +-cells and the rescaled
density ρ− for −-cells.

Let us now outline how to extend previous considerations to this case.
A state of the system is a probability distribution, i.e. measure µ ∈ P(Γ2),
on the two-component phase space Γ. For the given µ, the corresponding
correlation functions k(n,m)(x1, . . . , xn; y1, . . . , ym), if they exist, are defined
via the equation∫

Γ2

∑
{x1,...,xn}⊂γ+

∑
{y1,...,ym}⊂γ−

f (n,m)(x1, . . . , xn; y1, . . . ym)dµ(γ+, γ−)

=
1

n!m!

∫
(Rd)n

∫
(Rd)m

f (n,m)(x1, . . . , xn; y1, . . . , ym)

× k(n,m)(x1, . . . , xn; y1, . . . , ym)dnxdmy

for all symmetric functions f (n,m) which are integrable with compact support.
Again k(n,m) describe the moments of the state µ of the system and in the
special case n = 1 = m the function k(1,1) is the density of the system, whereas
k(n,0) and k(0,m) correspond to the boundary distributions.

As before the correlation functional kt will satisfy the equation

∂kt
∂t

(η+, η−) = (L∆kt)(η
+, η−), (19)

which has to be studied for a rigorous mathematical analysis.
Similar to the one-component case, the kinetic scaling starts with dumping

the potentials by multipliying them by a factor ε > 0. Therefore we get a scaled
version of the equation (19), i.e. L∆

ε instead of L∆. Let us assume for the initial

conditions k
(n,m)
0,ε

εn+mk
(n,m)
0,ε → r

(n,m)
0 , ε→ 0

with a symmetric function r
(n,m)
0 and n,m ∈ N0. The important case is to take

r
(n,m)
0 (x1, . . . , xn; y1, . . . , ym) = ρ+

0 (x1) · · · ρ+
0 (xn)ρ−0 (y1) · · · ρ−0 (ym). (20)

Denote by k
(n,m)
t,ε the solutions to equation (19) with L∆

ε instead of L∆ and
assume that this solutions preserve the order of singularity, namely

εn+mk
(n,m)
t,ε → rt, ε→ 0 (21)

for each n,m ∈ N0. This is equivalent to investigate the Cauchy problem for
the operators L∆

ε,ren = RεL
∆
ε Rε−1 , where

(Rεk)(η+, η−) = ε|η
+|+|η−|k(η+, η−)
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and seek for a limit L∆
ε,ren → L∆

V . Using the initial condition r0 as given in
(20), the solution to

∂rt
∂t

= L∆
V rt, rt|t=0 = r0

will again have the form

r
(n,m)
t (x1, . . . , xn; y1, . . . , ym) = ρ+

t (x1) · · · ρ+
t (xn)ρ−t (y1) · · · ρ−t (ym)

and ρ+
t , ρ

−
t is determined by the kinetic equations

∂ρ+
t

∂t
= v+(ρ+

t , ρ
−
t ),

∂ρ−t
∂t

= v−(ρ+
t , ρ

−
t ).

(22)

Then similarly to the one-component case the solutions ρ+
t and ρ−t to (22) will

be called kinetic description of the microscopic model. If in addition (21) holds,
then we will say that the kinetic description corresponds to the microscopic
model. In such case one has

lim
ε→0

k
(1,1)
t,ε (x, y) = ρ+

t (x)ρ−t (y),

where ρ+
t , ρ

−
t are the solutions to (22) with initial condition ρ+

0 and ρ−0 . Let
us explain the details and state the results for several important models in the
last part of this section. Since these models were not investigated mathemat-
ically, we will give only some simple preliminary results and state the kinetic
description. Its analysis and properties of the description should be analyzed
for each model separately.

Necrosis model

Looking at a cell system, with free branching and constant mortality m > 0,
i.e the Contact model, one possible extension to more realistic situations is
to modify the death of cells. After the death of a cell, it triggers several
biological mechanisms which effect surrounding cells. If the number of deaths
will exceed some critical value, then the surrounding cells will have an increased
intensity of death. Such effects will cause cascades of dying cells infecting
neighbouring cells. To model this effect we will introduce to types of cells.
The +-cells will be the usual cells with constant mortality and free proliferation,
i.e. the generator is similar to the generator LCM from the Contact model.
The −-cells will represent the dead cells, which exceeded the critical value and
therefore will cause death of +-cells. These dead cells will disappear due to
some exponentially distributed time with parameter m1 > 0. The affect of −-
cells on +-cells will be described similar to the spatial logistic model, c.f. (14).
To summarize this explanation we will write down the form of the heuristic
Markov generator, i.e.

(LF )(γ+, γ−) = (AF )(γ+, γ−) + (BF )(γ+, γ−) + (V F )(γ+, γ−). (23)
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The first operator A is similar to the Contact model for the normal cells and
has the form

(AF )(γ+, γ−) = m0

∑
x∈γ+

(F (γ+\x, γ− ∪ x)− F (γ+, γ−))

+ λ+
∑
x∈γ+

∫
Rd

a+(x− y)(F (γ+ ∪ y, γ−)− F (γ+, γ−))dy.

The operator B describes the evolution of − cells, which can only disappear
from our system, so it is simply

(BF )(γ+, γ−) = m1

∑
x∈γ−

(F (γ+, γ−\x)− F (γ+, γ−)).

The last part describes the interaction of both types and is assumed to be of
the form

(V F )(γ+, γ−) = λ−
∑
x∈γ+

Å∑
y∈γ−

ϕ(x− y)

ã
(F (γ+\x, γ− ∪ x)− F (γ+, γ−)).

The potentials a+, ϕ ≥ 0 are assumed to be symmetric, integrable, normalized
to 1, and the constants m0,m1, λ

+, λ− are strictly positive. Ignoring the effects
caused by changing the types + to − and vice versa, the overall evolution should
be similar to the dynamics of the spatial logistic model with constant mortality
m0 + m1, dispersion λ+a+ and competition kernel a− = ϕ. Effects caused by
changing the type may cause waves of dying cells and by this regulate the
local density, which will prevent the explosion of the local number of cells. A
rigorous mathematical analysis and simulations are the first steps for a better
understanding of this system.

Finally let us give the kinetic description of this model.

Theorem 2.6. Let ρ0 ≥ 0 be essentially bounded and ρt a non-negative solution
to the system of mesoscopic equations

∂ρ+
t

∂t
(x) = −(m0 + λ−(ϕ ∗ ρ−t )(x))ρ+

t (x) + λ+(a+ ∗ ρ+
t )(x) (24)

∂ρ−t
∂t

(x) = −m1ρ
−
t (x) + λ−ρ+

t (x)(ϕ ∗ ρ−t )(x) +m0ρ
+
t (x). (25)

Then rt(η
+, η−) = eλ(ρ+

t ; η+)eλ(ρ−t ; η−) is the solution with initial condition
r0(η+, η−) = eλ(ρ+

0 ; η+)eλ(ρ−0 ; η−) corresponding to the scaled Vlasov hierar-
chy.

Go-and-grow models

Here we will assume that tumour cells have two possible states. On the one
side the cells can be in a proliferating state, which we call −-state. This state
is responsible for the growth of the tumour. In the second state, called +-state,
a cell will be moving and so contribute to additional spreading of the tumour,
where the length of the distance should be large compared with the spreading
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size of the proliferation. We have the freedom to take several different types of
interactions and intensities for proliferation, movement, and changing the type
of state. Let us first summarize briefly all common effects and afterwards give
an extended description for each choice of intensities.

In principal all proliferating cells have their own development and will
spread within the system due to either the Contact model or the Contact
model with fecundity. Moreover, they will have the possibility to change their
type to moving cells by random. Such switching can be either spontaneously
or triggered by surrounding cells in dense areas. This moving cell will start to
randomly hop inside the tumour, essentially with high probability this jumps
will be far compared to the distance of proliferation. After a certain time
this moving cell will reach a substantially less dense region and will start to
proliferate again. Such microscopic dynamics may cause the creation of new
tumour patters where the distance to the old pattern is large compared to
proliferation length.

A medical difficulty is to observe such moving cells, therefore a treatment
of a tumour is essentially restricted to the treatment of proliferating cells. One
goal is to determine the front wave propagation, derive reasonable extremal
statistics, and consequently predict the size and possible locations of a signifi-
cantly wider amount of tumour cells. We expect that this kind of insights will
lead to a better understanding of the microscopic structure of the tumours and
hence to new therapeutical treatments of tumour and cancer.

In the following we will give 4 examples with concrete types of intensities
and derive their kinetic description. The moving cells will always evolve as a
free jumping process, meaning each moving cell will independent of all other
cells randomly hop within the system. In addition each moving cell will have a
density independent death of parameter d ≥ 0. The heuristic Markov generator
for the moving cells is simply

(LhopF )(γ+, γ−) = d
∑
x∈γ+

(F (γ+\x, γ−)− F (γ+, γ−)

+
∑
x∈γ+

∫
Rd

c(x− y)(F (γ+\x ∪ y, γ−)− F (γ+, γ−))dy.

Each model will either have different rates at which the cells will change their
state or the type of proliferation is varying.

First model

Let us assume that the proliferating cells will be described by the Contact
model, c.f. (13) and that within dense areas the proliferating cells have an in-
creased intensity to change their state to moving cells. For simplicity we assume
first, that cells within the moving state will stay an exponential distributed time
with parameter q > 0 in this state and afterwards start to proliferate again.
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Changing the state is the described by the heuristic Markov generator

(V F )(γ+, γ−) = q
∑
x∈γ+

(F (γ+\x, γ− ∪ y)− F (γ+, γ−))

+
∑
x∈γ−

Å
p+

∑
y∈γ−\x

ϕ(x− y)

ã
(F (γ+ ∪ x, γ−\x)− F (γ+, γ−)).

Here p, q > 0 are the intensities to change the type independent of all other
cells and 0 ≤ ϕ ∈ L1(Rd) ∩ L∞(Rd) is a symmetric potential. The overall
dynamics is a superposition of all three type of dynamics and has the form
L = LCM + Lhop + V .

The kinetic description for this model is given by:

∂ρ+
t

∂t
(x) = −(〈c〉+ d+ q)ρ+

t (x) + (c ∗ ρ+
t )(x) + pρ−t (x) + ρ−t (x)(ϕ ∗ ρ−t )(x)

∂ρ−t
∂t

(x) = −(m+ p)ρ−t (x)− ρ−t (x)(ϕ ∗ ρ−t )(x) + λ(a ∗ ρ−t )(x) + qρ+
t (x).

Despite the presence of motion, this example is similar to previous one. Here
the spreading speed should be due to the motion increased, whereas in the
previous model the spreading speed is constant for exponentially integrable
dispersion kernels. The local cell number may be dumped by the motion, but
the overall particle number will still grow asymptotically as e(λ−m−d)tρ0, with
ρ0 the initial distribution of cells.

Second model

Let us include density dependent changes from moving to proliferating cells,
so the moving cell will have a small probability to change its type if it is still
in a dense area of proliferating cells. Such changes could be achieved by the
following change of the operator V

(V F )(γ+, γ−) = q
∑
x∈γ+

exp

Å
−
∑
y∈γ−

ψ(x− y)

ã
(F (γ+\x, γ− ∪ y)− F (γ+, γ−))

+
∑
x∈γ−

Å
p+

∑
y∈γ−\x

ϕ(x− y)

ã
(F (γ+ ∪ x, γ−\x)− F (γ+, γ−)).

Here p, q, ϕ are the same as before and 0 ≤ ψ ∈ L1(Rd)∩L∞(Rd) is a symmetric,
non-negative potential. This model will lead to the following pair of equations
describing the local densities ρ+

t , ρ
−
t

∂ρ+
t

∂t
(x) =− (〈c〉+ d+ qe−(ψ∗ρ−t )(x))ρ+

t (x) + (c ∗ ρ+
t )(x)

+ pρ−t (x) + ρ−t (x)(ϕ ∗ ρ−t )(x)

∂ρ−t
∂t

(x) =− (m+ p)ρ−t (x)− ρ−t (x)(ϕ ∗ ρ−t )(x) + λ(a ∗ ρ−t )(x)

+ qρ+
t (x)e−(ψ∗ρ−t )(x).
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Here the cells will stay a not exponentially distributed lifetime in the moving
state. With high probability they will move until they reach an area with
less proliferating cells and start to proliferate again. Thus we expect, that the
motion outside of a pattern is higher and therefore the speed of growth of the
boundary of the tumour is increased compared to previous model.

Third model

Let us assume constant intensities p, q > 0 for changing from proliferation to
motion and vice versa, i.e. ϕ = ψ = 0 from the previous model, so

(V F )(γ+, γ−) = q
∑
x∈γ+

(F (γ+\x, γ− ∪ x)− F (γ+, γ−)) (26)

+ p
∑
x∈γ−

(F (γ+ ∪ x, γ−\x)− F (γ+, γ−)).

Instead, we introduce additional density dependent death of proliferating cells,
so they are self-regulating themselves, c.f. spatial logistic model. The generator
for the − cells is given in such case by

(L−F )(γ) =
∑
x∈γ−

m(F (γ+, γ−\x)− F (γ))

+
∑
x∈γ−

∑
y∈γ−\x

a−(x− y)(F (γ+, γ−\x)− F (γ))

+
∑
x∈γ+

∫
Rd

a+(x− y)(F (γ+, γ− ∪ y)− F (γ))dy

and the overall generator by L = L− +Lhop + V . A proliferating cell will have
an increased rate for death and will start moving according to an exponentially
distributed time with parameter p > 0. This cell will continue to move for an
another exponentially distributed time with parameter q > 0 and afterwards
start to proliferate again. Such behaviour will cause a diffusion like movement
of the cells where the speed of growth of the patterns should be less then in
the previous models. Instead, here the local regulation mechanism will bound
the local density in time. Altogether this will lead to the following kinetic
description for the local densities ρ+

t , ρ
−
t

∂ρ+
t

∂t
(x) = −(〈c〉+ q + d)ρ+

t (x) + (c ∗ ρ+
t )(x) + pρ−t (x)

∂ρ−t
∂t

(x) = −(m+ p)ρ−t (x)− ρ−t (x)(a− ∗ ρ−t )(x) + λ(a ∗ ρ−t )(x) + qρ+
t (x).

Fourth model

Instead of looking at density dependent mortality for self-regulation of the
proliferating cells, we could also take density dependent birth, i.e. branching
with fecundity, c.f. [8]. Here the generator is given by L = L− + Lhop + V ,
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where L− is given in (16) and V in (26). Using the same notations we will get
the kinetic description

∂ρ+
t

∂t
(x) = −(〈c〉+ q + d)ρ+

t (x) + (c ∗ ρ+
t )(x) + pρ−t (x) (27)

∂ρ−t
∂t

(x) = −(m+ p)ρ−t (x) + λ
Ä
a ∗ ρ−t e−ϕ∗ρ

−
t

ä
(x) + qρ+

t (x). (28)

3 General Markov evolutions on configuration
spaces

In this section we are going to summarize all necessary definitions and results,
so that we can prove the given statements of previous section. First we briefly
outline our approach for one-component systems and afterwards point out the
steps for a natural extension to two-component systems. The last part deals
with the mesoscopic scaling, here all machinery needed to derive the kinetic
description for a wide class of models is introduced.

3.1 One-component models

The phase space of the evolutions is described by locally finite configurations
γ ∈ Γ, i.e.

Γ = {γ ⊂ Rd : |γ ∩K| <∞ ∀K ⊂ Rd bounded}.

The topology on Γ is defined as the smallest, such that all maps

Γ 3 γ 7−→ 〈f, γ〉 =
∑
x∈γ

f(x), f ∈ Cc(Rd)

are continuous and Γ equipped with this topology has the structure of a polish
space, c.f. [14], [1]. Here Cc(Rd) is the space of all continuous functions f on
Rd with compact support. Denote by B(Γ) the corresponding Borel σ−algebra
and remember that the space of all probability measurses on Γ, i.e. states of
the system, is denoted by P. The Poisson measure πρ ∈P on Γ is defined via
the Laplace transform, c.f. [1]

π̂(f) = exp

Å∫
Rd

(ef(x) − 1)ρ(x)dx

ã
, f ∈ Cc(Rd),

where 0 ≤ ρ ∈ L1
loc(Rd). It is also possible to construct πρ directly using the

projective structure of Γ. Since we are not going to use this construction, we
will refer to [1]. The space of finite configurations η ∈ Γ0 is

Γ0 = {η ⊂ Rd : |η| <∞} =
⊔
n∈N

Γ
(n)
0 (29)

with Γ
(n)
0 = {η ⊂ Rd : |η| = n}. Also this space can be equipped with a natural

topology and the Borel σ−algebra is denoted by B(Γ0), c.f. [13]. Denote the
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bijective symmetrization map by

symn : fl(Rd)n → Γ
(n)
0 , (x1, . . . , xn) 7−→ {x1, . . . , xn}

with (x1, . . . , xn) ∈ fl(Rd)n if and only if xj 6= xj for all j 6= k. The Lebesgue-
poisson measure on Γ0 is defined by

λ = δ{∅} +
∞∑
n=1

dx(n)

n!
,

where dx(n) is the image measure of the Lebesgue measure dx⊗n on (Rd)n
under the symmetrization map symn. Functions on Γ0, will be written by
G, k : Γ0 → R, whereas functions on Γ are denoted by F : Γ → R. From
(29) we conclude that each function k respectively G : Γ0 −→ R has a de-
composition to a sequence of symmetric functions k = (k(n))∞n=0 respectively
G = (G(n))∞n=0. There is a combinatorial operator similar to Fourier transform
translating functions G : Γ0 −→ R to functions F : Γ −→ R. This Transforma-
tion is called K-transform, see [13], and is defined by

(KG)(γ) =
∑
ηbγ

G(η). (30)

Here the symbol b means, that the summation is taken only about all finite
configurations η ⊂ γ. The inverse map K−1 has the form

(K−1G)(η) =
∑
ξ⊂η

(−1)|η\ξ|G(ξ).

Expression (30) is well-defined for instance for bounded functions G having
bounded support, i.e. there is Λ ⊂ Rd compact, N ∈ N and C > 0 such that
|G(η)| ≤ C, and for all η ∈ Γ0 with |η| > N or η 6⊂ Λ one has G(η) = 0. In
such case KG is a cylindrical function on Γ, for details see [13].

Next introduce a convolution for measurable functions G,H : Γ0 −→ R
via

(G ? H)(η) =
∑
ξ⊂η

∑
ζ⊂ξ

G(ξ)H(η\ξ ∪ ζ). (31)

This convolution will satisfy a similar property to the Fourier transform of
functions, namely

(KG)(KH) = K(G ? H), (32)

provided G,H ∈ L1(Γ0, dλ). This transformation allows us to associate to each
probability measure µ ∈P(Γ) with finite local moments, i.e.∫

Γ

|γ ∩ Λ|nµ(dγ) <∞

for all compacts Λ ⊂ Rd, a locally finite measure ρµ on Γ0 via an extension of
the relation

ρµ(A) =

∫
Γ

(K1A)(γ)µ(dγ), A ∈ B(Γ0).
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Let us assume, that ρµ is absolutely continuous with respect to the Lebesgue-

Poisson measure λ. then the Radon-Nikodym derivative kµ =
dρµ
dλ

is the

correlation function defined in (2) (corresponding to the measure µ). Con-
versely given a function k : Γ0 −→ R the following inverse statement for the
construction of a measure µ ∈P from k holds. The proof can be found in [13].

Theorem 3.1. Assume that k is positive definite in the sense that∫
Γ0

G(η)k(η)dλ(η) ≥ 0 (33)

for all G bounded with bounded support, such that KG ≥ 0. Then there exists
a probability measure µ on Γ with correlation function k.

The Lebesgue-Poisson exponential eλ(f ; η) :=
∏
x∈η

f(x) satisfy the combi-

natorial formula Keλ(f) = eλ(f + 1), i.e.∑
ξ⊂η

eλ(ρ; ξ) = eλ(ρ+ 1; η).

The following equality will be useful for several computations∫
Γ0

eλ(ρ; η)dλ(η) = exp

Å∫
Rd

ρ(x)dx

ã
.

Let us take f ∈ Cc(Rd) and compute on the one-hand-side∫
Γ

e〈f,γ〉dπρ(γ) = exp

Å∫
Rd

(ef(x) − 1)ρ(x)dx

ã
=

∫
Γ0

eλ(ef − 1)eλ(ρ)dλ

=

∫
Γ0

Keλ(ef )eλ(ρ)dλ

thus ∫
Γ

e〈f,γ〉dπρ(γ) =

∫
Γ0

Keλ(ef )eλ(ρ)dλ,

which shows that the correlation measure for πρ is given by eλ(ρ)dλ. Finally
we will explain the approach to describe statistical dynamics on this spaces,
i.e. the approach to analyse the evolution t 7−→ µt. So let us start with a
heuristic Markov generator L, e.g. (1) or (13). In the general framework of
Markov processes one would study the evolution of observables, i.e. solutions
to the equation

∂Ft
∂t

= LFt, Ft|t=0 = F0.

Its solution can give the possibility to construct under certain conditions a
Markov process (Xγ

t )t≥0 such that

Ft(γ) = Eγ(F0(Xt)).
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Alternatively we can try to investigate the equation for measures µt, c.f. (3).
But since we are dealing with infinite configurations, both approaches are very
difficult and it was possible to realize them only in a few examples, c.f. [16].
Instead one tries to rewrite the equation using the K−transform to an equation
for functions on Γ0 and investigate this equation. This approach should be
interpreted as a change of variables, so we define the operator L̂ = K−1LK,
which acts now on functions G : Γ0 −→ R and try to solve the Cauchy problem

∂Gt
∂t

= L̂Gt, Gt|t=0 = G0.

In this article we will investigate this equation in one of the following Banach
spaces

Bα = L1(Γ0, e
α|·|dλ)

with α ∈ R and the norm given by

‖G‖α =

∫
Γ0

|G(η)|eα|η|dλ(η) =
∞∑
n=0

eαn

n!

∫
(Rd)n

|G(n)(x1, . . . , xn)|dx1 . . . dxn.

An evolution t 7−→ Gt ∈ Bα determines a dual evolution t 7−→ kDt by∫
Γ0

Gt(η)k0(η)dλ(η) =

∫
Γ0

G0(η)kDt (η)dλ(η)

and since Gt ∈ Bα this dual evolution will obey the Ruelle bound

|kDt (η)| ≤ Ceα|η|, η ∈ Γ0

and hence be sub-poissonian. As already mentioned such an evolution describes
a system, which is not asymptotically clustering, but still could include some
pattern formation. It is also possible to study the equation for kt directly,
therefore using duality it is possible to compute the expression for L∆ directly
via ∫

Γ0

(L̂G)(η)k(η)dλ(η) =

∫
Γ0

G(η)(L∆k)(η)dλ(η)

for each function G bounded with bounded support and k locally integrable.
One special case was computed already for the first and second correlation
functions. Finally one would seek for a solution to

∂kt
∂t

= L∆kt, kt|t=0 = k0

and construct if possible the evolution of states t 7−→ µt. This sketch has to be
realized for each model separately, like all operators L, L̂, L∆ have to be defined
on a proper set of functions, which is large enough to determine the evolution
of states. Note that even if we have solved the equation (4) it is not clear,
whether the evolution t 7−→ kt really determines an evolution of states t 7−→ µt
and therefore is of biological interest. Such task has to be carefully proved and
was realized for several important models, c.f. [15]. The main problem is that
the evolution has to be positive definite, c.f. (33).
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3.2 Two-component models

Let us now outline the major differences of two-component models. Afterwards
it will be clear how to extend all considerations to models with any number of
components n ∈ N. First of all let us denote by + respectively − the types of
cells and by γ+ and γ− their (locally finite) configurations. Since no cells of
different type can be located at the same position we will assume γ+ ∩ γ− = ∅,
therefore

Γ2 = {(γ+, γ−) : γ+, γ− ∈ Γ, γ+ ∩ γ− = ∅}.

Similarly the space of finite configurations Γ2
0 and the topologies on these spaces

are defined. Since for each ξ ∈ Γ0 the set

{η ∈ Γ0 : η ∩ ξ 6= ∅}

is a set of measure zero with respect to λ we can define the Lebesgue Poisson
measure λ2 on Γ2

0 as the product measure λ ⊗ λ and calculate as in the one-
component case. Similarly the Poisson measure will be the product measure
of two copies of π. The K-transform is a composition of two K-transforms for
each type of cells, i.e.

(KG)(γ+, γ−) =
∑

η+bγ+

∑
η−bγ−

G(η+, η−)

and K−1 is just

(K−1F )(η+, η−) =
∑

ξ+⊂η+

∑
ξ−⊂η−

(−1)|η
+\ξ+|(−1)|η

−\ξ−|F (ξ+, ξ−).

The Lebesgue-Poisson exponential will be the product of the Lebesgue-Poisson
exponentials for each type of cells and the correlation functions become a dou-
ble indexed vector, i.e. k(n,m)(x1, . . . , xn; y1, . . . ym). The heuristic Markov
generator L now acts on functions F : Γ2 −→ R and L∆ on collections of
correlation functions k = (k(n,m))∞n,m=0.

3.3 Mesoscopic scaling

As before the approach to derive the kinetic description, respectively the meso-
scopic equation, can be described within three steps. In the first step one
rescales the potentials, and thus the generator L. The outcome is a new sys-
tem with smaller interactions, with generator denoted by Lε. In the second

step we will choose some admissible class of initial states k0,ε = (k
(n)
0,ε )∞n=0 such

that
ε|η|k0,ε(η)→ r0(η), ε→ 0

for each η ∈ Γ0. Finally let kt,ε be the solution of

∂kt,ε
∂t

(η) = L∆
ε kt,ε(η), (34)

where L∆
ε is the adjoint operator to L̂ε = K−1LεK. We will seek for a limit

ε|η|kt,ε(η)→ rt(η), ε→ 0
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for each η ∈ Γ0 and t. Such limit implies that

εnk
(n)
t,ε (x1, . . . , xn)→ ρt(x1) · · · ρt(xn), ε→ 0 (35)

if r
(n)
0 (x1, . . . , xn) = ρ0(x1) · · · ρn(xn) for all n ∈ N. This is equivalent to solve

the equations
∂krent,ε

∂t
= L∆

ε,renk
ren
t,ε , krent,ε = Rεk0,ε

and seek for the limits

lim
ε→0

krent,ε = rt, (36)

where rt solves the equation

∂rt
∂t

= L∆
V rt, rt|t=0 = r0. (37)

Here

L∆
ε,ren = RεL

∆
ε R
−1
ε → L∆

V (38)

and (Rεk)(η) = ε|η|k(η). Summarizing this approach, we first rescale the sys-
tem and arrive at an expression for the operator L∆

ε,ren. Form this one computes

the expression for L∆
V . Finally putting r0 = eλ(ρ0) in equation (37) one deduces

the kinetic description

∂ρt
∂t

= v(ρt), ρt|t=0 = ρ0. (39)

The analysis of (36) is quite hard and needs several technical tool and such
problem should be solved for each model separately. Nevertheless it is im-
portant, since it relates the mesoscopic evolution as the limiting evolution
of the microscopic evolution. This means for instance, that starting with
r0(x1, . . . , xn) = ρ0(x1) · · · ρ0(xn), and denoting by ρt the solution to (39),
we get for all n ∈ N (35). The precise notion of convergence should be cho-
sen adequately to the model. In this work we will focus on (38) and compute
equations (37) and (39) for several models. However, convergence of equations
(38) does not imply convergence of solutions, i.e. (36), thus it is important to
determine conditions which imply krent,ε → rt. If such convergence happens to
be false in some case, then we know that this kinetic description, also if it is
well analysed, will not describe the original model and hence has no biological
significance.

4 One-component systems

Within this section we will prove the results stated in the previous section and
derive for many possible individual based interactions their related operators on
quasi-observables, correlation functions and the kinetic description. The main
technical tools introduced in the last section will be applied for each model
directly.
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We will work in scales of Banach spaces defined for α ∈ R by Bα =
L1(Γ0, e

α|·|dλ), i.e. equivalence classes of measurable functions G : Γ0 −→ R
satisfying

‖G‖α =

∫
Γ0

|G(η)|eα|η|dλ(η)

=
∞∑
n=0

eαn

n!

∫
(Rd)n

|G(n)(x1, . . . , xn)|dx1 . . . dxn <∞. (40)

The dual space is given by B∗α = L∞(Γ0, e
−α|·|dλ), so measurable functions

k : Γ0 −→ R such that

‖k‖α = ess sup
η∈Γ0

|k(η)|e−α|η| <∞. (41)

The duality pairing is simply

〈G, k〉 =

∫
Γ0

G(η)k(η)dλ(η) (42)

and satisfies |〈G, k〉| ≤ ‖G‖α‖k‖α. Let L̂ ∈ L(Bα,Bα′) for each α′ < α and L∆

the dual operator with respect to (42). Then

‖L̂‖αα′ = ‖L∆‖α′α (43)

where the norms are determined by (40) and (41). Consequently for several

aspects it is enough to analyse only the operator L̂. It is possible to assign to
each L̂ a measurable function Mα : Γ0 −→ R+ such that

‖L̂G‖α =

∫
Γ0

|L̂G(η)|eα|η|dλ(η) ≤
∫
Γ0

|G(η)|Mα(η)eα|η|dλ(η) = ‖MαG‖α.

The operator (L̂,D(Mα)) is well-defined on

D(Mα) = {G ∈ Bα : Mα ·G ∈ Bα} (44)

and if Mα(η) ≤ Pα(|η|)eδ|η| with some polynomial Pα and δ > 0, then the
estimate

|η|ke−δ|η| ≤
Å
k

eδ

ãk
(45)

implies L̂ ∈ L(Bα,Bα′) for all α − α′ > δ. From (43) the same estimate is
valid for L∆. Practically we have only to determine the expression for Mα and
analyse its growth. Concerning the construction of microscopic dynamics via
semigroups on the scale of Banach spaces Bα one would compute the function
Dα : Γ0 −→ R+ given by∫

Γ0

(L̂G)(η)eα|η|dλ(η) =

∫
Γ0

G(η)Dα(η)eα|η|dλ(η).
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By (42) it means (L∆eλ(eα))(η) = Dα(η), and analyse its properties. In many
cases both functions Mα and Dα have a simple relation, but Mα is not unique.
Similarly define D∆(Mα) ⊂ B∗α as the set of all k ∈ B∗α such that Mαk ∈ B∗α.
Then L∆ is well-defined on D∆(Mα).

Within the mesoscopic scaling we will consider the rescaled operators
L̂ε,ren and L∆

ε,ren. Denote by Nα the function determined by∫
Γ0

|L̂ε,renG(η)|eα|η|dλ(η) ≤
∫
Γ0

Nα(η)|G(η)|eα|η|dλ(η).

Note, that in general such function does not need to exist, it will be necessary to
show that for all reasonable models under some general assumptions we can find
the functionNα. As before the operators (L̂ε,ren, D(Nα)) and (L∆

ε,ren, D∆(Nα))

are well-defined. The limiting operator L̂V given by L̂ε,ren → L̂V as ε → 0
determines another function NV

α via∫
Γ0

|L̂VG(η)|eα|η|dλ(η) ≤
∫
Γ0

NV
α (η)|G(η)|eα|η|dλ(η).

So we define (L̂V , D(NV
α )) and (L∆

V , D∆(NV
α )).

Theorem 4.1. For all subsequent interactions, the following holds.

1. For any G ∈ D(Nα) ∩D(NV
α ) the convergence

L̂ε,renG→ L̂VG, ε→ 0

holds. If in addition there is a polynomial P and δ > 0 such that
Nα(η), NV

α (η) ≤ P (|η|)eδ|η|, then L̂, L̂ε,ren and L̂V act as bounded lin-
ear operators in L(Bα,Bα′) for any α− α′ > δ and

‖L̂ε,ren − L̂V ‖αα′ → 0, ε→ 0.

2. For any k ∈ D∆(Nα) ∩D∆(NV
α ) the convergence

L∆
ε,renk → L∆

V k, ε→ 0

holds. And if in addition there is a polynomial P and δ > 0 such that
Nα(η), NV

α (η) ≤ P (|η|)eδ|η|, then L∆, L∆
ε,ren and L∆

V act as bounded linear
operators in L(B∗α′ ,B∗α) for any α− α′ > δ and

‖L∆
ε,ren − L∆

V ‖α′α→ 0, ε→ 0.

3. If ρt is a solution to the corresponding kinetic description determined by
L∆
V , c.f. (39), then eλ(ρt) is a solution to the Cauchy problem associated

to L∆
V , i.e. solves the Cauchy problem (37).

In the following denote by E(x, γ\x) =
∑

y∈γ\x
φ(x−y) the relative energy of

the cell x with respect to the rest of the configuration γ\x. Here 0 ≤ φ ∈ L1(Rd)
is assumed to be symmetric. For infinite configurations such sum will be infinite
in general, but e.g. for the Poisson measure it is possible to define E(x, γ\x)
for almost all γ ∈ Γ, such that this sum is convergent.

We will use also the following well-known result.
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Lemma 4.2. Let H : Rd×Γ0 −→ R and G : Γ0×Γ0×Γ0 −→ R be measurable,
then the following formulas hold, provided one side of the corresponding equality
exists ∫

Γ0

∑
x∈η

H(x, η)dλ(η) =

∫
Γ0

∫
Rd

H(x, η ∪ x)dxdλ(η)

and ∫
Γ0

∑
ξ⊂η

H(ξ, η\ξ, η)dλ(η) =

∫
Γ0

∫
Γ0

H(ξ, η, η ∪ ξ)dλ(ξ)dλ(η).

4.1 Death dynamics

Let us investigate here the dynamics of the microscopic event death.

Example 2 (constant mortality). The Markov generator has here the form

(LF )(γ) =
∑
x∈γ

m(x)(F (γ\x)− F (γ)),

where 0 ≤ m ∈ L∞loc(Rd). Each cell located in position x ∈ Rd has an exponen-
tial distributed liftetime with parameter m(x). In the case when m(x) = 0, the

cell will not die due to this mechanism. The operator L̂ on quasi-observables
has the form

(L̂G)(η) = −
∑
x∈η

m(x)G(η)

and likewise L∆ is given by the same expression. Moreover we see that it is
possible to take Mα(η) = Nα(η) = NV

α (η) =
∑
x∈η

m(x). Since here no scaling

is necessary we obtain L̂V = L̂ and L∆
V = LV . Consequently the kinetic

description is simply
∂ρt
∂t

(x) = −m(x)ρt(x).

Example 3 (quadratic mortality). The Markov generator is given by

(LF )(γ) =
∑
x∈γ

E(x, γ\x)(F (γ\x)− F (γ)).

Here each cell located at position x ∈ Rd may die, where the intensity of death
is given by the intensity

∑
y∈γ\x

φ(x − y), i.e. the death of the cell is caused

by interaction with another cell located at position y ∈ γ\x. The case where
y = x is already included in the constant mortality m = m(x). The operator
for quasi-observables is now given by

(L̂G)(η) = −
∑
x∈η

E(x, η\x)G(η)−
∑
x∈η

E(x, η\x)G(η\x)
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and the operator on correlation functions by

(L∆k)(η) = −
∑
x∈η

E(x, η\x)k(η)−
∑
x∈η

∫
Rd

φ(x− y)k(η ∪ y)dy.

Similarly we can choose Mα(η) = Nα(η) =
∑
x∈η

E(x, η\x) + 〈a〉eα|η|. Within

the scaling and after renormalization we arrive at new operators, where only
the multiplicative part will be multiplied by ε > 0. Hence after limit transition
ε→ 0 we obtain the operators for the Vlasov hierarchy given by

(L̂VG)(η) = −
∑
x∈η

∑
y∈η\x

a−(x− y)G(η\x)

and likewise

(L∆
V k)(η) = −

∑
x∈η

∫
Rd

a−(x− y)k(η ∪ y)dy

so that NV
α (η) = eα〈a−〉|η|. Finally the kinetic description is given by

∂ρt
∂t

(x) = −ρt(x)(a− ∗ ρt)(x).

Example 4. Let us look at the stronger death intensity described by the
Markov generator

(LF )(γ) =
∑
x∈γ

eE(x,γ\x)(F (γ\x)− F (γ)),

Here each particle located at position x ∈ Rd may die, whereas the intensity
of such microscopic event is given by eE(x,γ\x), in the case of E(x, γ\x) = ∞
one can think of immediate death. The corresponding operator on quasi-
observables is given by

(L̂G)(η) = −
∑
ξ⊂η

G(ξ)
∑
x∈ξ

eE(x,ξ\x)eλ(eφ(x−·) − 1; η\ξ)

and on correlation functions by

(L∆k)(η) = −
∑
x∈η

eE(x,η\x)

∫
Γ0

eλ(eφ(x−·) − 1; ξ)k(η ∪ ξ)dλ(ξ).

We can choose the function Mα(η) = β1(α)
∑
x∈η

eE(x,η\x), where

β1(α) = exp

Å
eα
∫
Rd

(eφ(x) − 1)dx

ã
.

For the mesoscopic scaling let us rescale the potential as φ → εφ and after
renormalization we arrive at

(L̂ε,renG)(η) = −
∑
ξ⊂η

G(ξ)
∑
x∈ξ

eεE(x,ξ\x)eλ

Ç
eεφ(x−·) − 1

ε
; η\ξ
å
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and

(L∆
ε,renk)(η) = −

∑
x∈η

eεE(x,η\x)

∫
Γ0

eλ

Ç
eεφ(x−·) − 1

ε
; ξ

å
k(η ∪ ξ)dλ(ξ).

After limit transition ε→ 0 we arrive at

(L̂VG)(η) = −
∑
ξ⊂η

G(ξ)
∑
x∈ξ

eλ(φ(x− ·); η\ξ)

and

(L∆
V k)(η) = −

∑
x∈η

∫
Γ0

eλ(φ(x− ·); ξ)k(η ∪ ξ)dλ(ξ).

Here we can take Nα(η) = β(α)
∑
x∈η

eE(x,η\x), where we have to assume that

β(α) = sup
ε∈(0,1]

exp

Å
eα

ε

∫
Rd

|eεφ(x) − 1|dx
ã
<∞.

Finally, NV
α (η) = exp(eα〈φ〉)|η| and for the kinetic description

∂ρt
∂t

(x) = −ρt(x)e(φ∗ρt)(x).

4.2 Birth dynamics

Here we will describe the microscopic event responsible for the appearance of
new cells.

Example 5 (Sourgailis birth). The most simple form of birth, is where in each
region Λ ⊂ Rd the intensity that a new cell appear in Λ is given by

∫
Λ

z(x)dx,

where 0 ≤ z ∈ L1
loc(Rd) is the intensity. Each such event is independent of the

other and describes thus free growth of the system. In this case the Markov
generator is given by

(LF )(γ) =

∫
Rd

z(x)(F (γ ∪ x)− F (γ))dx

and on quasi-observables by

(L̂G)(η) =

∫
Rd

z(x)G(η ∪ x)dx.

For correlation functions the adjoint operator is given by

(L∆k)(η) =
∑
x∈η

z(x)k(η\x).

Take Mα(η) = Nα(η) = NV
α (η) = e−α

∑
x∈η

z(x). Since scaling will not affect

this operators, we immediately arrive at the kinetic description given by

∂ρt
∂t

(x) = z(x).
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Example 6 (Gibbs-type birth). Let us assume that L is of the form

(LF )(γ) = z

∫
Rd

e−E(x,γ)(F (γ ∪ x)− F (γ))dx,

where z > 0. The creation of cells in some volume Λ ⊂ Rd is given by the
intensity

∫
Λ

ze−E(x,γ)dx ≤ z|Λ|, where |Λ| denotes the Lebesgue volume of Λ.

The operator for quasi-observables is given by

(L̂G)(η) = z
∑
ξ⊂η

∫
Rd

eλ(e−φ(x−·) − 1; η\ξ)e−E(x,ξ)G(ξ ∪ x)dx

and for correlation functions by

(L∆k)(η) = z
∑
x∈η

e−E(x,η\x)

∫
Γ0

eλ(e−φ(x−·) − 1; ξ)k(η\x ∪ ξ)dλ(ξ).

Here we can take Mα(η) = β(α)
∑
x∈η

e−E(x,η\x), where

β(α) = exp

Å
eα
∫
Rd

|1− e−φ(x)|dx
ã

and Nα(η) = exp(eα〈φ〉)
∑
x∈η

e−E(x,η\x). After scaling and renormalization we

will arrive at

(L̂εG)(η) = z
∑
ξ⊂η

∫
Rd

eλ

Ç
e−εφ(x−·) − 1

ε
; η\ξ
å
e−εE(x,ξ)G(ξ ∪ x)dx

which tends in the limit ε→ 0 to

(LVG)(η) = z
∑
ξ⊂η

∫
Rd

eλ (φ(x− ·); η\ξ)G(ξ ∪ x)dx.

In the same way we obtain

(L∆
ε k)(η) = z

∑
x∈η

e−εE(x,η\x)

∫
Γ0

eλ

Ç
e−εφ(x−·) − 1

ε
; ξ

å
k(η\x ∪ ξ)dλ(ξ)

and hence when ε→ 0

(L∆
V k)(η) = z

∑
x∈η

∫
Γ0

eλ(φ(x− ·); ξ)k(η\x ∪ ξ)dλ(ξ).

The function NV
α can be chosen as NV

α (η) = z exp(eα〈φ〉)e−α|η|. Therefore the
kinetic description is given by

∂ρt
∂t

(x) = ze(φ∗ρt)(x).
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Example 7 (free branching). In the simplest way free branching is described
by

(LF )(γ) =
∑
x∈Rd

∫
Rd

a+(x− y)(F (η ∪ y)− F (η))dy,

where 0 ≤ a+ ∈ L1(Rd) is symmetric. Here each cell located at position x ∈ γ
may create a new cell located at position y ∈ Rd. The intensity of such event
is given by 〈a+〉 =

∫
Rd
a+(z)dz and the new particle is distributed according to

the probability measure
1

〈a+〉
a+(x − y)dy. On the level of quasi-observables

this effect is described via

(L̂G)(η) =
∑
x∈η

∫
Rd

a+(x− y)G(η\x ∪ y)dy +
∑
x∈η

∫
Rd

a+(x− y)G(η ∪ y)dy.

Likewise on correlation functions it is given by

(L∆k)(η) =
∑
x∈η

∫
Rd

a+(x− y)k(η\x ∪ y)dy +
∑
x∈η

∑
y∈η\x

a+(x− y)k(η\x).

It is sufficient to take Mα(η) = Nα(η) = e−α
∑
x∈η

∑
y∈η\x

a+(x − y) + 〈a+〉|η|.

Here we can explicitly compute the correlation functions, which will be done
later on. After scaling and renormalization we observe that only the second
summands will be multiplied by ε > 0. Hence in the limit we arrive at

(L̂VG)(η) =
∑
x∈η

∫
Rd

a+(x− y)G(η\x ∪ y)dy

and likewise for correlation functions L∆k is given by the same expression,
namely we can chose NV

α (η) = 〈a+〉|η|. For the kinetic description we obtain

∂ρt
∂t

(x) = (a+ ∗ ρt)(x).

Similarly we can also consider the case, where each cell at x ∈ γ may split into
two new cells at positions y1, y2. The intensity of such transition would be,
for simplicity, again constant 〈a+〉. The probability distribution is given by

1

〈a+〉
a+(x − y1, x − y2)dy1dy2, where 0 ≤ a+ ∈ L1(Rd × Rd) is symmetric in

both variables. The Markov generator is of the form

(LF )(γ) =
∑
x∈γ

∫
Rd

∫
Rd

a+(x− y1, x− y2)(F (γ\x ∪ y1 ∪ y2)− F (γ))dy1dy2.

For quasi-observables this yields

(L̂G)(η) =
∑
x∈η

∫
Rd

∫
Rd

a+(x− y1, x− y2)G(η\x ∪ y1 ∪ y2)dy1dy2

+
∑
x∈η

∫
Rd

b(x− y)(G(η\x ∪ y)−G(η))dy + 〈a+〉|η|G(η),
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where b(x) =
∫
Rd
a(x, y)dy +

∫
Rd
a(y, x)dy. Likewise we can compute the adjoint

operator, which is given by

(L∆k)(η) =
∑
y1∈η

∑
y2∈η\y1

∫
Rd

a+(x− y1, x− y2)k(η ∪ x\y1\y2)dx

+
∑
x∈η

∫
Rd

b(x− y)(k(η\x ∪ y)− k(η))dy + 〈a+〉k(η).

Similarly we can choose

Mα(η) = Nα(η) = e−α
∑
y1∈η

∑
y2∈η\y1

∫
Rd

a(x− y1, x− y2)dx+ 3〈a+〉|η|.

Within the scaling we have to multiply a+ by ε and afterwards rescale the
operators. Effectively it will consist only of multiplying the first term by ε, and
after limit transition we arrive at

(L̂VG)(η) =
∑
x∈η

∫
Rd

b(x− y)(G(η\x ∪ y)−G(η))dy + 〈a+〉|η|G(η)

and

(L∆
V k)(η) =

∑
x∈η

∫
Rd

b(x− y)(k(η\x ∪ y)− k(η))dy + 〈a+〉|η|k(η),

so that NV
α (η) = 3〈a+〉|η|. Therefore the kinetic description is simply given by

∂ρt
∂t

(x) = −〈a+〉ρt(x) + (b ∗ ρt)(x) =
(
(b ∗ ρt)(x)− 〈b+〉ρt(x)

)
+ 〈a+〉ρt(x).

Note that the solution is increasing, e.g. if ρ0 is integrable, then the solution
ρt will be integrable as well and satisfy

∂

∂t
〈ρt〉 = 〈a+〉〈ρt〉,

which yields 〈ρt〉 = e〈a
+〉t〈ρ0〉.

Example 8 (establishment). Let us take a look on the birth dynamics with
establishment. Here each cell located at position x ∈ γ will have a dumped
probability to produce a new cell at position y ∈ Rd, if there are many cells
around y. The Markov generator is given by

(LF )(γ) =
∑
x∈γ

∫
Rd

e−E(y,γ)a+(x− y)(F (γ ∪ y)− F (γ))dy,

where 0 ≤ a+ ∈ L1(Rd) is symmetric. Each cell at position x ∈ γ will create
a new cell at position y, but the intensity of this effect is dumped by the
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relative energy in the exponential. Calculations yield the following form for
the generator on quasi-observables

(L̂G)(η)

=
∑
ξ⊂η

∑
x∈ξ

∫
Rd

G(ξ ∪ y)eλ(e−φ(y−·) − 1; η\ξ)e−E(y,ξ)a+(x− y)dy

+
∑
ξ⊂η

∑
x∈η\ξ

∫
Rd

G(ξ ∪ y)e−E(y,ξ)eλ(e−φ(y−·) − 1; η\ξ\x)a+(x− y)e−φ(x−y)dy.

Likewise we obtain for L∆ on correlation functions

(L∆k)(η)

=
∑
x∈η

∑
y∈η\x

e−E(x,η\x)a+(x− y)

∫
Γ0

eλ(e−φ(x−·) − 1; ξ)k(η ∪ ξ\x)dλ(ξ)

+
∑
x∈η

e−E(x,η\x)

∫
Γ0

∫
Rd

eλ(e−φ(x−·) − 1; ξ)a+(x− y)e−φ(x−y)k(η ∪ ξ\x ∪ y)dydλ(ξ).

Hence Mα is given by

Mα(η) = e−αβ(α)
∑
x∈η

∑
y∈η\x

a+(x− y)e−E(x,η\x)

+ β(α)〈a+e−φ〉
∑
x∈η

e−E(x,η\x)

with β(α) = exp
(
eα
∫
Rd
|1 − e−φ(x)|dx

)
. Rescaling the interactions, i.e. a+ →

εa+, φ→ εφ, putting L→ 1

ε
Lε and rescaling both operators we arrive at

(L̂ε,renG)(η)

= ε
∑
ξ⊂η

∑
x∈ξ

∫
Rd

G(ξ ∪ y)eλ

Ç
e−εφ(y−·) − 1

ε
; η\ξ
å
e−εE(y,ξ)a+(x− y)dy

+
∑
ξ⊂η

∑
x∈η\ξ

∫
Rd

G(ξ ∪ y)e−εE(y,ξ)eλ

Ç
e−εφ(y−·) − 1

ε
; η\ξ\x

å
a+(x− y)e−εφ(x−y)dy.

and

(L∆
ε,renk)(η)

= ε
∑
x∈η

∑
y∈η\x

e−εE(x,η\x)a+(x− y)

∫
Γ0

eλ

Ç
e−εφ(x−·) − 1

ε
; ξ

å
k(η ∪ ξ\x)dλ(ξ)

+
∑
x∈η

e−εE(x,η\x)

∫
Γ0

∫
Rd

eλ

Ç
e−εφ(x−·) − 1

ε
; ξ

å
a+(x− y)e−εφ(x−y)

× k(η ∪ ξ\x ∪ y)dydλ(ξ),
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which shows

Nα(η) = e−α exp(eα〈φ〉)
∑
x∈η

∑
y∈η\x

a+(x− y)

+ exp(eα〈φ〉)〈a+〉|η|.

The limiting operators as ε→ 0 are given by

(L̂VG)(η) =
∑
ξ⊂η

∑
x∈η\ξ

∫
Rd

G(ξ ∪ y)eλ(−φ(y − ·); η\ξ\x)a+(x− y)dy.

and

(L∆
V k)(η) =

∑
x∈η

∫
Γ0

∫
Rd

eλ(−φ(x− ·); ξ)a+(x− y)k(η ∪ ξ\x ∪ y)dydλ(ξ)

and so NV
α (η) = 〈a+〉 exp(eα〈φ〉)|η|. Therefore the kinetic description is given

by
∂ρt
∂t

(x) = (a+ ∗ ρt)(x)e−(φ∗ρt)(x).

Example 9. (fecundity) Let us take a look on the birth dynamics with fecun-
dity. Here each cell at x ∈ γ will produce new cells according to the distri-
bution a+(x − y)dy, whereas the intensity is dumped by a factor e−E(x,γ\x).
The Markov generator is given by

(LF )(γ) =
∑
x∈γ

e−E(x,γ\x)

∫
Rd

a+(x− y)(F (γ ∪ y)− F (γ))dy,

where 0 ≤ a+ ∈ L1(Rd) is symmetric. Calculations yield the following form for
the generator on quasi-observables

(L̂G)(η) =
∑
ξ⊂η

∑
x∈η\ξ

e−E(x,ξ)eλ(e−φ(x−·) − 1; η\ξ\x)

∫
Rd

G(ξ ∪ y)a+(x− y)dy

+
∑
ξ⊂η

∑
x∈ξ

e−E(x,ξ\x)eλ(e−φ(x−·) − 1; η\ξ)
∫
Rd

G(ξ ∪ y)a+(x− y)dy.

Likewise we obtain for L∆ on correlation functions

(L∆k)(η)

=
∑
x∈η

∫
Γ0

∫
Rd

e−E(y,ξ\x)a+(x− y)eλ(e−φ(y−·) − 1; ξ)k(η ∪ ξ\x ∪ y)dydλ(ξ)

+
∑
x∈η

∑
y∈η\x

e−E(x,η\x)eφ(x−y)a+(x− y)

∫
Γ0

eλ(e−φ(x−·) − 1; η)k(η ∪ ξ\y)dλ(ξ)

and hence

Mα(η) = e−αβ(α)
∑
x∈η

∑
y∈η\x

a+(x− y)eφ(x−y)e−E(x,η\x)

+ β(α)〈a+eφ〉|η|.
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Rescaling the interactions, i.e. a+ → εa+, φ → εφ, putting L → 1

ε
Lε and

rescaling both operators we arrive at

(L̂ε,renG)(η)

=
∑
ξ⊂η

∑
x∈η\ξ

e−εE(x,ξ)eλ

Ç
e−εφ(x−·) − 1

ε
; η\ξ\x

å∫
Rd

G(ξ ∪ y)a+(x− y)dy

+ ε
∑
ξ⊂η

∑
x∈ξ

e−εE(x,ξ\x)eλ

Ç
e−εφ(x−·) − 1

ε
; η\ξ
å∫

Rd

G(ξ ∪ y)a+(x− y)dy.

Likewise we obtain for L∆ on correlation functions

(L∆
ε,renk)(η)

=
∑
x∈η

∫
Γ0

∫
Rd

e−εE(y,ξ\x)a+(x− y)eλ

Ç
e−εφ(y−·) − 1

ε
; ξ

å
k(η ∪ ξ\x ∪ y)dydλ(ξ)

+ε
∑
x∈η

∑
y∈η\x

e−εE(x,η\x)eεφ(x−y)a+(x− y)

×
∫
Γ0

eλ

Ç
e−εφ(x−·) − 1

ε
; η

å
k(η ∪ ξ\y)dλ(ξ)

so

Nα(η) = e−α exp(eα〈φ〉)
∑
x∈η

∑
y∈η\x

a+(x− y)eφ(x−y) + 〈a+〉 exp(eα〈φ〉)|η|.

The limiting operators as ε→ 0 are given by

(L̂VG)(η) =
∑
ξ⊂η

∑
x∈η\ξ

eλ(−φ(x− ·); η\ξ\x)

∫
Rd

G(ξ ∪ y)a+(x− y)dy

and

(L∆
V k)(η) =

∑
x∈η

∫
Γ0

∫
Rd

a+(x− y)eλ(−φ(y − ·); ξ)k(η ∪ ξ\x ∪ y)dydλ(ξ)

Therefore the kinetic description is given by

∂ρt
∂t

(x) = (a+ ∗ (e−φ∗ρtρt))(x).

4.3 Moving cells

Here let us describe possible microscopic events, which lead to a motion of cells.
The first model describes the most simple possibility.

Example 10 (free jumps). The Markov generator of a system of free jumping
cells is given by

(LF )(γ) =
∑
x∈γ

∫
Rd

c(x− y)(F (γ\x ∪ y)− F (γ))dy,
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where 0 ≤ c ∈ L1(Rd) is symmetric. Here each cell jumps independently of the

others according to a jump rate 〈c〉 and a probability distribution
1

〈c〉
c(x−y)dy,

where x ∈ γ. The mechanism can be described on quasi-observables via

(L̂G)(η) =
∑
x∈η

∫
Rd

c(x− y)(G(η\x ∪ y)−G(η))dy

and L∆ is given by the same formula. Since after scaling nothing is changed
we obtain immediately for the kinetic description

∂ρt
∂t

(x) = (c ∗ ρt)(x)− ρt(x) =

∫
Rd

c(x− y)(ρt(y)− ρt(x))dx,

which is the equation describing a random walk in continuous time. Then
functions Mα, Nα and NV

α can be chosen as 〈c〉|η|.

Another possibility of describing the free motion of particles is given by
the next example.

Example 11 (free diffusion). Let the Markov generator be given by

(LF )(γ) =
∑
x∈Γ

(∆xF )(γ).

Here each cell undergoes a free diffusion independent of all other cells. Rewrit-
ing this operators to quasi-observables we arrive at

(L̂G)(η) =
∑
x∈η

(∆xG)(η)

and likewise the expression for L∆ is given by the same formula. Since scaling
will not change the operators we arrive at the kinetic description

∂ρt
∂t

(x) = ∆ρt(x).

Example 12 (jumps with additive intensity). The Markov generator for jump-
ing cells, with density dependent intensity is given by

(LF )(γ) =
∑
x∈γ

∑
y∈γ\x

b(x− y)

∫
Rd

c(x− z)(F (γ\x ∪ z)− F (γ))dz,

where 0 ≤ c, b ∈ L1(Rd) are symmetric. Each cell at x ∈ γ will jump with
intensity 〈c〉

∑
y∈γ\x

b(x − y) and the position is determined by the distribution

1

〈c〉
c(x− z)dz. The description via quasi-observables will give

(L̂G)(η) =
∑
x∈η

∑
y∈η\x

b(x− y)

∫
Rd

c(x− z)(G(η\x\y ∪ z)−G(η\y))dz

+
∑
x∈η

∑
y∈η\x

b(x− y)

∫
Rd

c(x− z)(G(η\x ∪ z)−G(η))dz
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and similarly for correlation functions

(L∆k)(η) =
∑
x∈η

∫
Rd

∫
Rd

c(x− y)b(y − z)(k(η\x ∪ y ∪ z)− k(η ∪ z))dydz

+
∑
x∈η

∑
y∈η\x

b(x− y)

∫
Rd

a(x− z)(k(η\x ∪ z)− k(η))dz.

The rigorous derivation of the kinetic description was already done in [4]. Scal-

ing the potential as b→ εb and rescaling, we see that only the last terms in L̂
and L∆ will be multiplied by ε. Hence after limit transition ε→ 0 we arrive at

(L̂VG)(η) =
∑
x∈η

∑
y∈η\x

b(x− y)

∫
Rd

c(x− z)(G(η\x\y ∪ z)−G(η\y))dz

and

(L∆
V k)(η) =

∑
x∈η

∫
Rd

∫
Rd

c(x− y)b(y − z)(k(η\x ∪ y ∪ z)− k(η ∪ z))dydz,

which yields the kinetic description

∂ρt
∂t

(x) = (c ∗ ((b ∗ ρt) · ρt))(x)− (c ∗ (b ∗ ρt))(x)ρt(x).

Example 13 (density dependent jumps). Let 0 ≤ φ, ψ, c ∈ L1(Rd) symmetric
with φ ∈ L∞(Rd), set Eφ(x, γ\x) =

∑
y∈γ\x

φ(x − y) and likewise Eψ(y, γ) =∑
x∈γ

ψ(x− y) ≥ 0. Define the formal Markov generator

(LF )(γ) =
∑
x∈γ

eEφ(x,γ\x)

∫
Rd

e−Eψ(y,γ)c(x− y)(F (γ\x ∪ y)− F (γ))dy.

Here each cell located at x ∈ γ will have a high intensity to jump, if there are
many other cells around and due to e−Eψ(y,γ) it will prefer to jump in regions,
which have a small density of cells. Let us compute the the operator L̂. For
G ∈ Bbs(Γ0), x ∈ γ and y 6∈ γ we obtain

(KG)(γ\x ∪ y)− (KG)(γ)

=
∑

ηbγ\x∪y

G(η)−
∑
ηbγ

G(η)

=
∑
ηbγ\x

G(η) +
∑
ηbγ\x

G(η ∪ y)−
∑
ηbγ\x

G(η)−
∑
ηbγ\x

G(η ∪ x)

=
∑
ηbγ\x

(G(η ∪ y)−G(η ∪ x)).
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Therefore using (31) and (32) we get∑
x∈γ

eEφ(x,γ\x)

∫
Rd

e−Eψ(y,γ\x)e−ψ(x−y)c(x− y)
∑
ηbγ\x

(G(η ∪ y)−G(η ∪ x))

=
∑
x∈γ

∫
Rd

e−ψ(x−y)c(x− y)Keλ(f(x, y))(γ\x)
∑
ηbγ\x

(G(η ∪ y)−G(η ∪ x))dy

=
∑
x∈γ

∑
ηbγ\x

∫
Rd

eλ (f(x, y)) ? (G(· ∪ y)−G(· ∪ x))(η)e−ψ(x−y)c(x− y)dy

=
∑
ηbγ

∑
x∈η

∫
Rd

eλ (f(x, y)) ? (G(· ∪ y)−G(· ∪ x))(η\x)e−ψ(x−y)c(x− y)dy

with f(x, y;w) = eφ(x−w)−ψ(y−w) − 1. Again using the definition (31) we get

(L̂G)(η)

=
∑
x∈η

∫
Rd

eλ (f(x, y)) ? (G(· ∪ y)−G(· ∪ x))(η\x)e−ψ(x−y)c(x− y)dy

=
∑
ξ⊂η

∑
x∈η

eEφ(x,ξ\x)

∫
Rd

e−Eψ(y,ξ)c(x− y)eλ (f(x, y); η\ξ) (G(ξ ∪ y)−G(ξ ∪ x))dy.

This yields the following formula∑
ξ⊂η

∑
x∈ξ

eEφ(x,ξ\x)

∫
Rd

e−Eψ(y,ξ)c(x− y)eλ (f(x, y); η\ξ) (G(ξ\x ∪ y)−G(ξ)) dy.

Let us show that the function Mα can be chosen by

Mα(η) = ee
ακ
∑
x∈η

e−Eψ(x,η\x)

∫
Rd

c(x− y)e−φ(x−y)−ψ(x−y)eEφ(y,η)dy

+ ee
ακ
∑
x∈η

eEφ(x,η\x)

∫
Rd

c(x− y)e−Eψ(y,η)dy,

where κ = e‖φ‖L∞ 〈φ〉. So let G ∈ D(Mα) and note that∫
Rd

f(x, y;w)dw =

∫
Rd

Ä
eφ(x−w)−ψ(y−w) − 1

ä
dw ≤ e‖φ‖L∞ 〈φ〉 = κ.

Now using the formulas from Lemma 4.2 we arrive at

eα
∫
Γ2
0

∫
Rd

∫
Rd

eEφ(x,ξ)e−Eψ(y,ξ∪x)c(x− y)eλ (|f(x, y)|; η)

× |G(ξ ∪ y)|eα|ξ|eα|η|dydxdλ(η, ξ)

≤ eαee
ακ

∫
Γ0

∫
Rd

∫
Rd

eα|ξ|e−Eψ(y,ξ∪x)eEφ(x,ξ)c(x− y)|G(ξ ∪ y)|dxdydλ(ξ)
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= ee
ακ

∫
Γ0

|G(ξ)|
∑
y∈ξ

e−Eψ(y,ξ\y)

∫
Rd

c(x− y)e−ψ(x−y)−φ(x−y)eEφ(x,ξ)eα|ξ|dxdλ(ξ)

and for the second part of L̂ at∫
Γ2
0

dλ2(η, ξ)eα|η|eα|ξ|
∑
x∈η

∫
Rd

dyc(x− y)eEφ(x,ξ\x)e−Eψ(y,ξ)eλ (|f(x, y)|; η) |G(ξ)|

≤ ee
ακ

∫
Γ0

Å∑
x∈ξ

eEφ(x,ξ\x)

∫
Rd

c(x− y)e−Eψ(y,ξ)dy

ã
|G(ξ)|eα|ξ|dλ(ξ).

Since Mα(η) ≤ 2〈c〉eeακ|η|e‖φ‖L∞ |η| we get for α − α′ > ‖φ‖L∞ that L̂ ∈
L(Bα,Bα′) and

‖L̂‖αα′ ≤
2〈c〉eeα

′
κ

e(α− α′ − ‖φ‖L∞)
.

Turning now to correlation functions, the action of the operator L∆ is given by∑
y∈η

∫
Γ0

dλ(ξ)

∫
Rd

dxc(x− y)eEφ(x,η\y)e−Eψ(y,η∪x\y)eλ (f(x, y); ξ) k(η ∪ ξ\y ∪ x)

−
∑
y∈η

∫
Γ0

dλ(ξ)

∫
Rd

dyc(x− y)eEφ(y,η\y)e−Eψ(y,η)eλ (f(x, y); η) k(η ∪ ξ)

and similarly L∆ is a bounded linear operator in L(B∗α′ ,B∗α) for each α− α′ >
‖φ‖L∞ . In order to see this let G ∈ Bbs(Γ0) and k ∈ Bα for some α ≥ 0, then
for the first term we get∫

Γ0

k(η)
∑
ξ⊂η

∑
x∈ξ

∫
Rd

eEφ(x,ξ\x)e−Eψ(y,ξ)c(x− y)eλ (f(x, y); η)G(ξ\x ∪ y)dydλ(η)

=

∫
Γ2
0

k(η ∪ ξ)
∑
x∈ξ

∫
Rd

c(x− y)eEφ(x,ξ\x)e−Eψ(y,ξ)eλ (f(x, y); η)G(ξ\x ∪ y)dydλ(η, ξ)

=

∫
Γ2
0

∫
Rd

∫
Rd

k(η ∪ ξ ∪ x)G(ξ ∪ y)c(x− y)eEφ(x,ξ)e−Eψ(y,ξ∪x\y)eλ (f(x, y); η) dxdydλ(η, ξ)

=

∫
Γ2
0

∑
y∈ξ

∫
Rd

k(η ∪ ξ ∪ x\y)G(ξ)c(x− y)eEφ(x,ξ\y)e−Eψ(y,ξ∪x\y)eλ (f(x, y); η) dxdλ(η, ξ).

For the second term we have∫
Γ0

k(η)
∑
ξ⊂η

∑
x∈ξ

∫
Rd

c(x− y)eEφ(x,ξ\x)e−Eψ(y,ξ)eλ (f(x, y); η\ξ)G(ξ)dydλ(η)

=

∫
Γ2
0

k(η ∪ ξ)
∑
x∈ξ

∫
Rd

c(x− y)eEφ(x,ξ\x)e−Eψ(y,ξ)eλ (f(x, y); η)G(ξ)dydλ(η, ξ).
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Here we have to rescale the potentials φ→ εφ and ψ → εψ. Since we are inter-
ested in the limit ε → 0, we will restrict the range of ε to (0, 1]. The rescaled
operator will have the∑

ξ⊂η

∑
x∈ξ

eεEφ(x,ξ\x)

∫
Rd

e−εEψ(y,ξ)c(x− y)

× eλ
Ä
eεφ(x−·)−εψ(y−·) − 1; η\ξ

ä
(G(ξ\x ∪ y)−G(ξ))dy.

In order to get the normalized expression we have again to consider the com-
position L̂renε = Rε−1L̂εRε, this leads to the following expression for L̂renε∑
ξ⊂η

∑
x∈ξ

eεEφ(x,ξ\x)

∫
Rd

e−εEψ(y,ξ)c(x− y)eλ (fε(x, y); η\ξ) (G(ξ\x ∪ y)−G(ξ))dy

with fε(x, y;w) =
eεφ(x−w)−εψ(y−w) − 1

ε
. For each fixed η ∈ Γ0 this expression

converges to

(L̂VG)(η) =
∑
ξ⊂η

∑
x∈ξ

∫
Rd

c(x− y)eλ (φ(x− ·)− ψ(y − ·); η\ξ) (G(ξ\x ∪ y)−G(ξ))dy.

Lemma 4.3. For L̂renε the corresponding function Nα is given by

Nα(η) = ee
ακ
∑
x∈η

∫
Rd

c(x− y)eEφ(y,η)dy + 〈c〉ee
ακ
∑
x∈η

eEφ(x,η\x)

and NV
α (η) = 2〈c〉 exp(eα(〈φ〉 + 〈ψ〉))|η|. Moreover for each α − α′ > ‖φ‖L∞

the estimate holds:

‖L̂ε,ren‖αα′ ≤
2〈c〉eeα

′
κ

e(α− α′ − ε‖φ‖L∞)
≤ 2〈c〉eeα

′
κ

e(α− α′ − ‖φ‖L∞)
,

‖L̂V ‖αα′ ≤
2〈c〉 exp(eα

′
(〈φ〉+ 〈ψ〉))

e(α− α′)

for all α′ < α.

Proof. For this purpose we have first to estimate fε(x, y) by

|fε(x, y;w)| ≤ e‖φ‖L∞φ(x− w)

for almost all w ∈ Rd and afterwards to use

Nα(η) ≤ 2〈cee
ακ〉|η|e‖φ‖L∞ |η|.

Clearly we have D(Mα) ⊂ D(Nα) ⊂ D(NV
α ).

Theorem 4.4. Let G ∈ D(Nα) such that |η|2e‖φ‖L∞ |η|G ∈ Bα, then

L̂renε G→ L̂VG, ε→ 0

in Bα. In addition the renormalized operator for quasi-observables converges
in the uniform operator topology of L(Bα,Bα′), i.e. the following holds

‖L̂V − L̂renε ‖αα′ → 0, ε→ 0.
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Proof. Fix α′ < α and G ∈ D(Mα′) such that |η|2e‖φ‖L∞ |η|G ∈ Bα′ . Let us

divide L̂V and L̂renε in two parts according to G(ξ\x∪y) and G(ξ) and investi-
gate their differences separately. Starting with the term containing G(ξ\x∪ y)
we obtain for the difference

eα
′
∫
Γ2
0

∫
Rd

∫
Rd

dλ(η, ξ)dxdyeα
′|η|eα

′|ξ|c(x− y)|G(ξ ∪ y)|

×
∣∣∣eεEφ(x,ξ)e−εEψ(y,ξ∪x)eλ (fε(x, y); η)− eλ(φ(x− ·)− ψ(y − ·); η)

∣∣∣
=

∫
Γ2
0

dλ(η, ξ)eα
′|η|eα

′|ξ||G(ξ)|
∑
y∈ξ

∫
Rd

dxc(x− y)

×
∣∣∣eεEφ(x,ξ\y)e−εEψ(y,ξ\y∪x)eλ (fε(x, y); η)− eλ(φ(x− ·)− ψ(y − ·); η)

∣∣∣ .
Using |fε(x, y;w)| ≤ e‖φ‖L∞φ(x− w),

|fε(x, y;w)− (φ(x− w)− ψ(y − w))| ≤ er|φ(x− w)− ψ(y − w)|

where r = ‖φ‖L∞ + ‖ψ‖L∞ and

|eεEφ(x,ξ\y) − 1| ≤ εEφ(x, ξ\y)e‖φ‖L∞ |ξ\y| ≤ ε‖φ‖L∞ |ξ|e‖φ‖L∞ |ξ|

the modulus in the integral can be estimated by∣∣∣eεEφ(x,ξ\y)e−εEψ(y,ξ\y∪x)eλ (fε(x, y); η)− eλ(φ(x− ·)− ψ(y − ·); η)
∣∣∣

≤ |eεEφ(x,ξ\y) − 1|
∣∣∣e−εEψ(y,ξ\y∪x)eλ (fε(x, y); η)

∣∣∣
+ |e−εEψ(y,ξ\y∪x) − 1| |eλ (|fε(x, y)|; η)|
+ |eλ (|fε(x, y)|; η)− eλ(φ(x− ·)− ψ(y − ·); η)|

≤ ε‖φ‖L∞ |ξ|eε‖φ‖L∞ |ξ|eλ
Ä
e‖φ‖L∞φ(x− ·)|; η

ä
+ ε(Eψ(y, ξ\y) + ψ(x− y))eλ

Ä
e‖φ‖L∞φ(x− ·)|; η

ä
+ εer

∑
w∈η
|φ(x− w)− ψ(y − w)|eλ(er|φ(x− ·)− ψ(y − ·)|; η\w).

Invoking this in previous estimations one obtains with some generic constant
C > 0 independent of α′, α, and ε

≤ εCee
α′+rκ

∫
Γ0

eα
′|ξ||G(ξ)|

∑
y∈ξ

∫
Rd

c(x− y)dx|ξ|eε‖φ‖L∞ |ξ|dλ(ξ)

+ εCee
α′+rκ

∫
Γ0

eα
′|ξ||G(ξ)|

∑
y∈ξ

(〈c〉+ 〈cψ〉)Eψ(y, ξ\y)

+ εCeα
′
ee
α′+rκ

∫
Γ0

eα
′|ξ||G(ξ)||ξ|dλ(ξ)

≤ εCee
α′+rκ

∫
Γ0

|G(ξ)|
Ä
|ξ|2eε‖φ‖L∞ |ξ|eα

′
+ 1 + |ξ|+ |ξ|2

ä
eα
′|ξ|dλ(ξ)
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This shows the first part. For the second part take 0 < ε <
α− α′

‖φ‖L∞
, then

Bα ⊂ D(Nα′) and for G ∈ Bα above integral is bounded by

≤ εC
Å

4

e2(α− α′ − ‖φ‖L∞)2
+

4

e2(α− α′)2
+

1

e(α− α′)
+ 1

ã
‖G‖αee

α′+rκ

which shows the assertion for the terms containing G(ξ ∪ y\x). Similarly the
differences including G(ξ) can be estimated.

For correlation functions the rescaled operator has the form

(L∆
ε k)(η)

=
∑
y∈η

∫
Γ0

dλ(ξ)

∫
Rd

dxc(x− y)eεEφ(x,η\y)e−εEψ(y,η∪x\y)

× eλ
Ä
eεφ(x−·)−εψ(y−·) − 1; ξ

ä
k(η ∪ ξ ∪ x\y)

−
∑
y∈η

∫
Γ0

dλ(ξ)

∫
Rd

dxc(x− y)eεEφ(y,η\y)e−εEψ(x,η)

× eλ
Ä
eεφ(y−·)−εψ(x−·) − 1; ξ

ä
k(η ∪ ξ).

Again computing the renormalized operator one gets similarly to the case for
quasi-observables

(L∆,ren
ε k)(η)

=
∑
y∈η

∫
Γ0

dλ(ξ)

∫
Rd

dxc(x− y)eεEφ(x,η\y)e−εEψ(y,η∪x\y)eλ (fε(x, y); ξ) k(η ∪ ξ ∪ x\y)

−
∑
y∈η

∫
Γ0

dλ(ξ)

∫
Rd

dxc(x− y)eεEφ(y,η\y)e−εEψ(x,η)eλ (fε(x, y); ξ) k(η ∪ ξ)

and for each fixed η ∈ Γ0 this operator converges to

(L∆
V k)(η) =

∑
y∈η

∫
Γ0

dλ(ξ)

∫
Rd

dxc(x− y)eλ (φ(x− ·)− ψ(y − ·); ξ) k(η ∪ ξ\y ∪ x)

−
∑
y∈η

∫
Γ0

dλ(ξ)

∫
Rd

dxc(x− y)eλ (φ(y − ·)− ψ(x− ·); ξ) k(η ∪ ξ).

Lemma 4.5. The renormalized operator on correlation functions converges in
the uniform operator topology of L(B∗α′ ,B∗α) to L∆

V , i.e. for all α′ < α

‖L∆
V − L∆,ren

ε ‖α′α → 0, ε→ 0.

Since L∆,ren
ε is dual to L̂renε with respect to (42) the assertion follows from

(45). Finally let us derive the kinetic description for this model. Therefore we
have to compute L∆

V eλ(ρ) for a function 0 ≤ ρ ∈ L∞(Rd). This expression
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is given by

(L∆
V eλ)(η)

=
∑
y∈η

eλ(ρ; η\y)

∫
Γ0

dλ(ξ)

∫
Rd

dxc(x− y)ρ(x)eλ(φ(x− ·)− ψ(y − ·); ξ)eλ(ρ; ξ)

−
∑
y∈η

eλ(ρ; η\y)ρ(y)

∫
Γ0

dλ(ξ)

∫
Rd

dxc(x− y)eλ(φ(y − ·)− ψ(x− ·); ξ)eλ(ρ; ξ)

=
∑
y∈η

eλ(ρ; η\y)

∫
Rd

dxc(x− y)ρ(x) exp

Å∫
Rd

dw (φ(x− w)− ψ(y − w)) ρ(w)

ã
−
∑
y∈η

eλ(ρ; η\y)ρ(y)

∫
Rd

dxc(x− y) exp

Å∫
Rd

dw (φ(y − w)− ψ(x− w)) ρ(w)

ã
=
∑
y∈η

eλ(ρ; η\y)
Ä
e−(ψ∗ρ)(y)(c ∗ ρ · eφ∗ρ)(y)− ρ(y)e(φ∗ρ)(y)(c ∗ e−(ψ∗ρ))(y)

ä
and since

∂

∂t
eλ(ρt; η) =

∑
x∈η

eλ(ρt; η\y)
∂ρt
∂t

(y)

we obtain for the contribution of the jumps to the mesoscopic equation the
terms (

c ∗
(
ρte

φ∗ρt
))

(y)e−(ψ∗ρt)(y) − e(φ∗ρt)(y)(c ∗ e−ψ∗ρt)(y)ρt(y).

4.4 Free branching process

Let us recap shortly the description of the free branching process. Here the
heuristic Markov generator is given by

(LF )(γ) = m
∑
x∈γ

(F (γ\x)− F (γ))

+ λ
∑
x∈γ

∫
Rd

∫
Rd

a(x− y1, x− y2)(F (γ\x ∪ y1 ∪ y2)− F (γ))dy1dy2

with constant mortality m > 0 and intensity of cell-division λ > 0. The poten-
tial 0 ≤ a ∈ L1(Rd × Rd) is assumed to by symmetric in both coordinates and
the total mass is normalized to 1. This model describes a cell population, where
each cell will die with exponential distributed lifetime of parameter m > 0 and
will divide into two cells after another exponential distributed time of param-
eter λ > 0. The position of the new cells is determined by the probability
distribution

a(x− y1, x− y2)dy1dy2,

where x ∈ γ is the position of the mother cell. The generator L is well defined
for all functions F = KG, where G ∈ Bbs(Γ0), i.e. is bounded and has bounded
support, i.e. there exist a compact Λ ⊂ Rd and N ∈ N such that G is bounded
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and for any η ∈ Γ0 with |η| > N or η 6⊂ Λ on has G(η) = 0. Following the gen-

eral approach of section 3, we are first going to calculate the operators L̂ for
quasi-observables G and L∆ for correlation functions k.

Theorem 4.6. For G ∈ Bbs(Γ0) the operator L̂ = L̂V + “B is given by

(L̂VG)(η) = −(m+ λ)|η|G(η) + λ
∑
x∈η

∫
Rd

b(x− y)G(η\x ∪ y)dy (46)

with “B given by

(“BG)(η) = λ
∑
x∈η

∫
Rd

∫
Rd

a(x− y1, x− y2)G(η\x ∪ y1 ∪ y2)dy. (47)

Here 0 ≤ b describes the effective proliferation and is given by

b(x) =

∫
Rd

a(x, y)dy +

∫
Rd

a(y, x)dy.

The function Mα = MV
α +MB

α is given by MV
α (η) = (m+ 3λ)|η| and

MB
α (η) = λe−α

∑
y1∈η

∑
y2∈η\y1

∫
Rd

a(x− y1, x− y2)dx

If in addition the expression

θ = min

{
sup
y∈Rd

∫
Rd

a(x− y, x)dx, sup
y∈Rd

∫
Rd

a(x, x− y)dx

}
(48)

is finite, then L̂ acts as a bounded operator from Bα to Bα′ for each α′ < α.
In this case the estimate

‖L̂‖αα′ ≤ ‖L̂V ‖αα′ + ‖“B‖αα′ ≤ m+ 3λ

e(α− α′)
+

4λθe−α
′

e2(α− α′)2
. (49)

holds.

Proof. Using the K−transform we obtain for x ∈ γ

(KG)(γ\x)− (KG)(γ) = −
∑
ηbγ\x

G(η ∪ x)

and therefore for the first part

m
∑
x∈γ

((KG)(γ\x)− (KG)(γ)) = −m
∑
x∈γ

∑
ηbγ\x

G(η ∪ x)

= −m
∑
ηbγ

∑
x∈η

G(η) = −mK(| · |G)(γ).
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Applying the inverse K−transform we arrive at the expression −m|η|G(η) re-
flecting the natural death of each cell. For the cell-division we first note that
for x ∈ γ and y1, y1 6∈ γ

(KG)(γ\x ∪ y1 ∪ y1)− (KG)(γ)

=
∑
ηbγ\x

(G(η ∪ y1) +G(η ∪ y2) +G(η ∪ y1 ∪ y2)−G(η ∪ x)) .

Therefore the birth-part is given by

∑
x∈η

∫
Rd

∫
Rd

a(x− y1, x− y2)

× (G(η\x ∪ y1) +G(η\x ∪ y2) +G(η\x ∪ y1 ∪ y2)−G(η)) dy1dy2.

In the first two terms of the second part the integration over y1 respectively y2

can be carried out, which gives together with the substitution y1, y2 → y

λ
∑
x∈η

∫
Rd

∫
Rd

a(x− y1, x− y2) (G(η\x ∪ y1) +G(η\x ∪ y2)) dy1dy2

= λ
∑
x∈η

∫
Rd

b(x− y)G(η\x ∪ y)dy.

Altogether we obtain formulas (46) and (47). Let us now compute Mα, so let
G ∈ D(Mα) defined in (44), then∫

Γ0

|L̂G(η)|eα|η|dλ(η) ≤
∫
Γ0

|L̂VG(η)|eα|η|dλ(η) +

∫
Γ0

|“BG(η)|eα|η|dλ(η)

and for the L̂V we get∫
Γ0

|L̂VG(η)|eα|η|dλ(η)

≤
∫
Γ0

(m+ λ)|η||G(η)|eα|η|dλ(η) + λ

∫
Γ0

∑
x∈η

∫
Rd

b(x− y)|G(η\x ∪ y)|eα|η|dydλ(η)

=

∫
Γ0

(m+ λ)|η||G(η)|eα|η|dλ(η) + λeα
∫
Γ0

∫
Rd

∫
Rd

b(x− y)|G(η ∪ y)|eα|η|dydxdλ(η)

=

∫
Γ0

(m+ λ)|η||G(η)|eα|η|dλ(η) + λ

∫
Γ0

∑
y∈η

∫
Rd

b(x− y)|G(η)|eα|η|dxdλ(η)

=

∫
Γ0

(m+ λ)|η||G(η)|eα|η|dλ(η) + 2λ

∫
Γ0

|η||G(η)|eα|η|dλ(η)
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and hence MV
α (η) = (m+ 3λ)|η|. For the second part we get∫

Γ0

|“BG(η)|eα|η|dλ(η)

≤ λ
∫
Γ0

∑
x∈η

∫
Rd

∫
Rd

a(x− y1, x− y2)|G(η\x ∪ y1 ∪ y2)|eα|η|dy1dy2dλ(η)

= e−αλ

∫
Γ0

∑
y1∈η

∑
y2∈η\y1

∫
Rd

a(x− y1, x− y2)|G(η)|eα|η|dxdλ(η).

If (48) holds, then MB
α (η) ≤ λe−αθ|η|2, which shows the estimate for the norm

of ‖L̂‖αα′ .

Let us take a closer look at L̂. This operator is a sum of a particle
number preserving part L̂V and a upper diagonal part “B. Rewrite this number
preserving part L̂V in the form

(L̂VG)(η) = −(m− λ)|η|G(η) + λ
∑
x∈η

∫
Rd

b(x− y) (G(η\x ∪ y)−G(η)) dy.

By previous proof we know, that (L̂V , D(L̂V )) is a well-defined linear operator
satisfying

‖L̂V ‖αα′ ≤
m+ 3λ

e(α− α′)
.

Let G = (G(n))∞n=0 be the decomposition of a measurable function G : Γ0 −→ R
to its components and set for n ∈ N

(DnG
(n))(x1, . . . , xn)

= −(m− λ)nG(n)(x1, . . . , xn)

+ λ
n∑
k=1

∫
Rd

b(xk − y)
Ä
G(n)(x1, . . . , x̂k, y, . . . , xn)−G(n)(x1, . . . , xn)

ä
dy

= −(m− λ)nG(n)(x1, . . . , xn) + (AnG)(n)(x1, . . . , xn),

where x̂k means that integration over the variable xk should be omitted. For
each n ∈ N0 the operator L̂V is diagonal, i.e. it acts only on G(n). The equation

∂G
(n)
t

∂t
= DnG

(n)
t , G

(n)
t |t=0 = G

(n)
0

has a solution G
(n)
t = e−(m−λ)ntH

(n)
t , were H

(n)
t solves

∂H
(n)
t

∂t
= AnH

(n)
t , H

(n)
t |t=0 = G

(n)
0 .

Therefore let us try to understand the meaning of An. This part describes a
Random walk in continuous time of each cell with intensity 2λ and the proba-
bility of a cell located at x ∈ Rd to jump in the region dy is given by

1

2
b(x− y)dy.
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Lemma 4.7. Dn is a bounded linear operator on L1((Rd)n) and L∞((Rd)n)
and the corresponding semigroup is a positive contraction semigroup. Moreover,
if λ ≤ m, then (L̂V , D(L̂V )) has an extension to a of a sub-stochastic semigroup
on Bα for each α.

Proof. The first assertion is a consequence of the Beurling-Deny-Criterion, c.f.
[17]. Assume λ ≤ m and consider

(L̂VG)(η) = −(m+ λ)|η|G(η) +
∑
x∈η

∫
Rd

b(x− y)G(η\x ∪ y)dy,

the second summand is positive and defined on the same domain as the negative
multiplication operator −(m + λ)|η|. Now an application of [19] shows the
assertion, provided ∫

Γ0

(L̂VG)(η)e−α|η|dλ(η) ≤ 0

for 0 ≤ G ∈ D(L̂V ). But this is true, since λ ≤ m.

Note that also for m < λ an evolution t 7−→ Gt can be constructed.
Let G0 = (G

(n)
0 )n∈N be measurable such that each component G

(n)
0 is inte-

grable. Then e−(m−λ)ntetAnG
(n)
0 = etDnG

(n)
0 is well-defined and the vector

Gt = (etDnG
(n)
0 )∞n=0 is the unique component-wise solution to

∂Gt
∂t

= L̂VGt

Gt|t=0 = G0

.

This solution, if G0 ∈ Bα, evolves in the scale of Banach spaces Bα with
α(t) = α+ (m− λ)t, i.e. Gt ∈ Bα(t), which follows from

‖Gt‖α(t) =
∞∑
n=0

e−(m−λ)nteα(t)n

n!

∫
(Rd)n

|etAnG(n)
0 (x1, . . . , xn)|dx1 . . . dxn

≤
∞∑
n=0

eαn

n!

∫
(Rd)n

|G(n)
0 (x1, . . . , xn)|dx1 . . . dxn = ‖G0‖α.

The presence of the perturbation “B implies that the solution cannot satisfy
Gt ∈ Bα(t) for t ≥ 0 and any α(t). Since “B sends functions of n + 1 variables
to functions of n variables it is not helpful to discuss a direct solution formula,
though it is possible. More precise results will be investigated in terms of
correlation functions.

Lemma 4.8. For k : Γ0 −→ R such that |k(η)| ≤ |η|!C |η| for some constant
C > 0 the operator L∆ is given by

L∆ = L∆
V +B∆,
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where L∆
V is given by the same expression as L̂V and B∆ by

(B∆k)(η) = λ
∑
y1∈η

∑
y2∈η\y1

∫
Rd

a(x− y1, x− y2)k(η ∪ x\y1\y2)dx. (50)

Moreover L∆
V ∈ L(B∗α′ ,B∗α) and if (48) holds, then B∆ ∈ L(B∗α′ ,B∗α) with

‖L∆
V ‖α′α = ‖L̂V ‖αα′ and ‖B∆‖α′α = ‖“B‖αα′ .

Proof. For G ∈ Bbs(Γ0) and k as described above, the operator L∆ is uniquely
determined by the pairing∫

Γ0

(L̂G)(η)k(η)dλ(η) =

∫
Γ0

G(η)(L∆k)(η)dλ(η).

The negative multiplication part will therefore not change and for the second
part we get by the formula from Lemma 4.2

λ

∫
Γ0

∑
x∈η

∫
Rd

b(x− y)G(η\x ∪ y)dyk(η)dλ(η)

= λ

∫
Γ0

∫
Rd

∫
Rd

b(x− y)G(η ∪ y)k(η ∪ x)dydxdλ(η)

= λ

∫
Γ0

∑
y∈η

∫
Rd

b(x− y)k(η ∪ x\y)dxG(η)dλ(η).

Finally∫
Γ0

(“BG)(η)k(η)dλ(η)

= λ

∫
Γ0

∑
x∈η

∫
Rd

∫
Rd

a(x− y1, x− y2)G(η\x ∪ y1 ∪ y2)dy1dy2k(η)dλ(η)

= λ

∫
Γ0

∫
Rd

∫
Rd

∫
Rd

a(x− y1, x− y2)G(η ∪ y1 ∪ y2)k(η ∪ x)dxdy1dy2dλ(η)

= λ

∫
Γ0

∑
y1∈η

∑
y2∈η\y1

∫
Rd

a(x− y1, x− y2)k(η ∪ x\y1\y2)dxG(η)dλ(η),

proves the assertion. The second part follows from (43).

Again, the equation for L∆
V can be solved explicitly and since B∆ has now

lower diagonal structure the equation

∂kt
∂t

= L∆kt

has a unique solution given by a recursive formula. More precisely let k0 =

(k
(n)
0 )∞n=0 be non-negative and measurable such that k

(n)
0 ∈ L∞((Rd)n). De-

note by B∆
n the operator given by (50) taking functions from n − 1 variables
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to functions with n variables. The solution to (4) is given by

k
(n+1)
t = e−(m−λ)(n+1)tetAn+1k

(n+1)
0

+

t∫
0

e−(m−λ)(n+1)(t−s)e(t−s)An+1B∆
n+1k

(n)
s ds. (51)

Theorem 4.9. For each k0 ≥ 0 measurable, such that k
(n)
0 ∈ L∞((Rd)n), there

exist a unique solution kt ≥ 0, given recursively by formula (51). If θ is finite,
then for each initial conditions satisfying k0(η) ≤ |η|!C |η| for some constant
C > 0, this solution obeys the bound

kt(η) ≤ |η|!(C + t)|η|(1 + θ)|η|κ(t)|η|e−(m−λ)|η|t

with κ(t) = max{1, λ, λe(m−λ)t}. If, in addition there is δ > 0 such that
a(x, y) ≥ α > 0 for some α > 0 and all |x|, |y| ≤ δ, then for each k0(η) = C |η|

the solution kt cannot be sub-poissonian, i.e. for any η ∈ Γ0 with:

∀x, y ∈ η, x 6= y : |x− y| < δ

the estimate

kt(η) ≥ β|η|e−(m−λ)|η|t|η|! t ≥ 1

holds, where β = min{C, λα, δ, |Bδ|} with δ =


1

λ−m
, λ > m

1, λ ≤ m
and |Bδ| is

the Lebesgue volume of the Ball Bδ of radius δ.

Proof. For the bound from above we will proceed by induction on the number
of cells |η|. The first correlation function is given by

k
(1)
t = e−(m−λ)tetA1k

(1)
0

and hence by positivity of (etA1)t≥0 and etA1C = C

k
(1)
t ≤ e−(m−λ)tC ≤ (C + t)(1 + θ)κ(t)e−(m−λ)t.

For n→ n+ 1 we get with |η| = n+ 1

k
(n+1)
t ≤ e−(m−λ)(n+1)t(n+ 1)!Cn+1 +

t∫
0

e−(m−λ)(n+1)(t−s)e(t−s)An+1B∆
n+1k

(n)
s ds

≤ e−(m−λ)(n+1)t(n+ 1)!Cn+1

+ (n+ 1)!κ(t)n+1(1 + θ)n+1
(
(C + t)n+1 − Cn+1

)
e−(m−λ)(n+1)t

≤ (n+ 1)!(C + t)n+1(1 + θ)n+1κ(t)n+1e−(m−λ)(n+1)t.

Here we used the fact that for s ≤ t we have κ(s) ≤ κ(t). For the second part

let k
(n)
0 = Cn, then etAnk0 = Cn and therefore k

(1)
t = e−(m−λ)tC ≥ βe−(m−λ)t.
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For n→ n+ 1 and t ≥ 1 we obtain

k
(n+1)
t ≥ e−(m−λ)(n+1)tCn+1

+ λ

t∫
0

e−(m−λ)(n+1)(t−s)(n+ 1)nαe−(m−λ)nsβnn!ds|Bδ|

≥ e−(m−λ)(n+1)t

t∫
0

e(m−λ)sdsβn(n+ 1)!αλ

≥ e−(m−λ)(n+1)tβn+1(n+ 1)!

This Theorem shows that if the probability distribution for the new cells,
has no hard core, i.e. a(0) > 0 for continuous distributions, than the system
will consist of clusters. Appearance of such clusters are due to the operator
B∆. The part L∆

V contains information about asymptotic behaviour, speed of
propagation etc., whereas B∆ contains information about correlations of the
system. Assume for simplicity, that in the cell-division the position of the new
cells are independent of each other, then we may write a(x, y) = c(x)c(y) for
some symmetric function 0 ≤ c ∈ L1(Rd) normalized to 1. If for example c is
continuous and non-vanishing, then previous assumptions are satisfied and we
get the bound

βnn!e−(m−λ)nt ≤ k(n)
t

on Rd. Hence the system will be always clustering. The same results were
shown for the case a(x, y) = c(x)δ(y), where each cell creates a new cell and
its location is described by the kernel c. In contrast to this model, the old cell
will not die. Clearly such models should have the same properties. Previous
Theorem justifies the assumption, that it is enough to work with the usual
Contact Model a(x, y) = c(x)δ(y).

Scaling

Following the general scheme of mesoscopic scaling described in previous chap-
ter, we have to scale potentials like a 7−→ εa and accelerate birth by a factor
1

ε
. Clearly, since the birth only consists of the a-part, this will not change

the operator itself, i.e. Lε = L. First we will look at Quasi-observables.
In this case the renormalized operator is given by L̂ε,ren = Rε−1L̂Rε, where

RεG(η) = ε|η|G(η). Applying this to this model, one gets L̂ε,ren = L̂V + ε“B.

Hence we can realize L̂ε,ren on the same domain as L̂.

Lemma 4.10. For each G ∈ D(Nα) one has

L̂ε,renG −→ L̂VG, ε→ 0

in the norm ‖ · ‖α for each α ∈ R. Moreover if (48) holds, the operator L̂ε,ren
converges to L̂V in the operator norm of L(Bα,Bα′) for each α′ < α.

Proof. Let G ∈ D(Mα), then L̂ε,renG − L̂VG = ε“BG ∈ Bα, which shows

the first assertion. For the second part we know “B ∈ L(Bα,Bα′) and thus,
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for G ∈ Bα,

‖L̂ε,renG− L̂VG‖α′ = ε‖“BG‖α ≤ ε‖“B‖αα′‖G‖α.
Similarly we get.

Lemma 4.11. Assume (48) holds, then for each α′ < α the operator L∆
ε,ren

converges in the operatornorm of L(B∗α′ ,B∗α) to the operator L∆
V .

Proof. Let k ∈ B∗α′ , then

‖L∆
ε,renk − L∆

V k‖α = ε‖B∆k‖α ≤ ε‖B∆‖α′α‖k‖α′

implies the assertion.

Hence mesoscopic scaling suppresses the microscopic effects like cell-correlations
etc. The resulting model has less information but is simpler to analyse. As
already shown L̂V or L∆

V will lead to evolutions t 7−→ Gt or t 7−→ kt, which
can preserve the spaces Bα respectively B∗α. Finally we will show the chaos
preservation property and derive the equations for the local densities of the
kinetic description.

Theorem 4.12. Let k0(η) =
∏
x∈η

ρ0(x) with 0 ≤ ρ0 ∈ L∞(Rd). Then the

unique solution to 
∂kt
∂t

= L∆
V kt

kt|t=0 = eλ(ρ0)
(52)

is given by kt(η) =
∏
x∈η

ρt(x), where ρt ≥ 0 is a classical solution to the meso-

scopic equation 
∂ρt
∂t

= −(m+ λ)ρt + b ∗ ρt
ρt|t=0 = ρ0.

Proof. Since for each k0 = (k
(n)
0 )∞n=0 such that all k

(n)
0 are essentially bounded

there exists a unique solution, we have only to check that also kt(η) =
∏
x∈η

ρt(x)

solves (52). Note, that for the given function ρ0 a unique classical solution for
the mesoscopic equation exists on R+. Computing

∂kt
∂t

(η) =
∑
x∈η

∂ρt
∂t

(x)eλ(ρt; η\x)

and

(L∆
V eλ(ρt))(η) =

∑
x∈η

eλ(ρt; η\x)

Ñ
−(m+ λ)ρt(x) +

∫
Rd

b(x− y)ρt(y)dy

é
we conclude that kt given by the formula is a solution.

In this model all cells are independent of each other, which implies that
the equation in the kinetic description will be linear. Non-linearities enter
through interactions of cells. So in more realistic models the typical equation
will consist of convolutions and powers of ρt.
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5 Two-component models

The extension to two-component models is straightforward. The Banach spaces
Bα of functions G : Γ2

0 −→ R becomes Bα = L1(Γ2
0, e

α+|η+|eα
−|η−|dλ) with

α = (α+, α−) equipped with the norm

‖G‖α =

∫
Γ2
0

|G(η+, η−)|eα
+|η+|eα

−|η−|dλ(η+, η−)

and the dual space of correlation functions k ∈ B∗α = L∞(Γ2
0, e
−α+|η+|e−α

−|η−|dλ)
with the norm

‖k‖α = ess sup
(η+,η−)∈Γ2

0

|k(η+, η−)|e−α
+|η+|e−α

−|η−|.

The dual pairing for these spaces is given by

〈G, k〉 =

∫
Γ2
0

G(η+, η−)k(η+, η−)dλ(η+, η−)

and satisfies |〈G, k〉| ≤ ‖G‖α‖k‖α. For pairs α′ = (α′+, α′−) and α = (α+, α−)
we will write α′ < α if α′+ < α+ and α′− < α− holds. In such case for an
operator L̂ ∈ L(Bα,Bα′) for all α′ < α and its dual operator L∆ ∈ L(B∗α′ ,B∗α)

‖L̂‖αα′ = ‖L∆‖α′α

holds. Also there exists a measurable function Mα : Γ2
0 −→ R+ such that∫

Γ2
0

|L̂G(η+, η−)|eα
+|η+|eα

−|η−|dλ(η+, η−)

≤
∫
Γ2
0

Mα(η)|G(η+, η−)|eα
+|η+|eα

−|η−|dλ(η+, η−),

so all previous methods can be applied in this extended two-component setting.
In this section we will derive, similarly as for the one-component case, all

necessary formulas to derive the kinetic description. Such list of interactions
will be not complete, but should cover most of the interesting models in cell
biology. Here we will restrict in many cases to interactions on +-cells. The case
of −-cells in the presence of interactions with +-cells can be derived in the same
way, simply exchanging all + with − and vice versa.

Define the relative energies E(x, γ±) =
∑
y∈γ±

a(x − y) and Eφ, Eψ in the

same way with a replaced by φ respectively ψ. We will assume that 0 ≤
a, φ, ψ ∈ L1(Rd) are symmetric.

Example 14. Let us consider first consider the Markov generator

(LF )(γ) =
∑
x∈γ+

E(x, γ−)(F (γ+\x, γ−)− F (γ)).
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Each cell at position x ∈ γ+ can die due to the interaction
∑
y∈γ−

a(x− y) with

cells from different type. The operator on quasi-observables is given by

(L̂G)(η) = −
∑
x∈η+

∑
y∈η−

a(x− y)G(η)−
∑
x∈η+

∑
y∈η−

a(x− y)G(η+, η−\y).

The functions Mα and Nα are in such case given by

Nα(η) = Mα(η) =
∑
x∈η+

∑
y∈η−

a(x− y) + eα
−
〈a〉|η+|.

After scaling, i.e. a → εa and renormalization, we arrive in the limit to the
operator

(L̂VG)(η) = −
∑
x∈η+

∑
y∈η−

a(x− y)G(η+, η−\y),

which is defined on D(NV
α ) with NV

α (η) = e−α
−〈a〉|η+|. The convergence holds

for each G ∈ D(Nα) in Bα, since only the multiplicative part is multiplied by
ε. On the level of correlation functions L∆ is given by

(L∆k)(η) = −
∑
x∈η+

∑
y∈η−

a(x− y)k(η)−
∑
x∈η+

∫
Rd

a(x− y)k(η+, η− ∪ y)dy

and

(L∆
V k)(η) = −

∑
x∈η+

∫
Rd

a(x− y)k(η+, η− ∪ y)dy.

Therefore the kinetic description is given by

∂ρ+
t

∂t
(x) = −ρ+

t (x)(a ∗ ρ−t )(x),
∂ρ−t
∂t

(x) = 0.

Example 15. Let us consider here the case, where the interaction is not
quadratic in the number of particles, but exponential instead. In such case
the Markov generator is given by

(LF )(γ) =
∑
x∈γ+

eEφ(x,γ−)eEψ(x,γ+\x)(F (γ+\x, γ−)− F (γ)).

The operator on quasi-observables is given by

(L̂G)(η) = −
∑
ξ⊂η

∑
x∈ξ+

eEψ(x,ξ+\x)eEφ(x,ξ−)

× eλ(eψ(x−·) − 1; η+\ξ+)eλ(eφ(x−·) − 1; η−\ξ−)G(ξ)

and on correlation functions by

(L∆k)(η) = −
∑
x∈η+

eEψ(x,η+\x)eEφ(x,η−)

×
∫
Γ2
0

eλ(eψ(x−·) − 1; ξ+)eλ(eφ(x−·) − 1; ξ−)k(η ∪ ξ)dλ2(ξ),
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where

βψ(α+) = exp

Å
eα

+

∫
Rd

(eψ(x) − 1)dx

ã
, βφ(α−) = exp

Å
eα
−
∫
Rd

(eφ(x) − 1)dx

ã
,

and
Mα(η) = βψ(α+)βφ(α−)

∑
x∈η+

eEψ(x,η+\x)eEφ(x,η−).

The rescaled operators L̂ε,renG have for η ∈ Γ2
0 the form

−
∑
ξ⊂η

∑
x∈ξ+

eεEψ(x,ξ+\x)eεEφ(x,ξ−)

× eλ

Ç
eεψ(x−·) − 1

ε
; η+\ξ+

å
eλ

Ç
eεφ(x−·) − 1

ε
; η−\ξ−

å
G(ξ)

and on correlation functions L∆
ε,renk is given by

−
∑
x∈η+

eεEψ(x,η+\x)eεEφ(x,η−)

×
∫
Γ2
0

eλ

Ç
eεψ(x−·) − 1

ε
; ξ+

å
eλ

Ç
eεφ(x−·) − 1

ε
; ξ−
å
k(η ∪ ξ)dλ2(ξ),

so

β∗ψ(α+) = sup
ε∈(0,1]

exp

Å
eα

+

ε

∫
Rd

(eεψ(x) − 1)dx

ã
,

β∗φ(α+) = sup
ε∈(0,1]

exp

Ñ
eα

+

ε

∫
Rd

(eεφ(x) − 1)dx

é
,

and
Nα(η) = β∗ψ(α+)β∗φ(α−)

∑
x∈η+

eEψ(x,η+\x)eEφ(x,η−).

Taking the limit ε→ 0 we obtain

(L̂VG)(η) = −
∑
ξ⊂η

∑
x∈ξ−

eλ(ψ(x− )̇; η+\ξ+)eλ(φ(x− ·); η−\ξ−)G(ξ)

and

(L∆
V k)(η) = −

∑
x∈η+

∫
Γ2
0

eλ(ψ(x− ·); ξ+)eλ(φ(x− ·); ξ−)k(η ∪ ξ)dλ2(ξ),

so NV
α (η) = exp(eα

+〈ψ〉+ eα
−〈φ〉)|η+|. Finally we see that the kinetic descrip-

tion is given by

∂ρ+
t

∂t
(x) = −ρ+

t (x)e(ψ∗ρ+t )(x)e(φ∗ρ−t )(x),
∂ρ−t
∂t

(x) = 0.
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Example 16. Let us look at the model with fecundity including interactions
with both types of cells. The Markov generator is given by

(LF )(γ) =
∑
x∈γ+

e−Eφ(x,γ−)e−Eψ(x,γ+\x)

∫
Rd

a+(x− y)(F (γ+ ∪ y, γ−)−F (γ))dy,

where Eφ, Eψ are given by the same expressions as in the previous example.
In such case the operator on quasi-observables is given by

(L̂G)(η) =
∑
ξ⊂η

∑
x∈ξ+

e−Eφ(x,ξ−)e−Eψ(x,ξ+\x)

×
∫
Rd

a(x− y)eλ(e−φ(x−·) − 1; η−\ξ−)eλ(e−ψ(x−·) − 1; η+\ξ+)

× (G(ξ+\x ∪ y, ξ−) +G(ξ+ ∪ y, ξ−))dy

and on correlation functions by

(L∆k)(η) =
∑
y∈η+

∫
Γ2
0

∫
Rd

a(x− y)k(η ∪ ξ\y ∪ x)e−Eφ(x,η−)e−Eψ(x,η+\y)

× eλ(e−φ(x−·) − 1; ξ−)eλ(e−ψ(x−·) − 1; ξ+)dxdλ2(ξ)

+
∑
x∈η+

∑
y∈η+\x

a(x− y)e−Eφ(y,η−)e−Eψ(y,η+\y)

×
∫
Γ2
0

k(η ∪ ξ\y)eλ(e−φ(x−·) − 1; ξ−)eλ(e−ψ(x−·) − 1; ξ+)dλ2(ξ).

Hence Mα can be chosen as

Mα(η) = βψ(α+)βφ(α−)
∑
y∈η+

∫
Rd

a(x− y)eψ(x−y)e−Eφ(x,η−)e−Eψ(x,η+)dx

+ e−α
+

βψ(α+)βφ(α−)
∑
x∈η+

∑
y∈η+\x

a(x− y)e−Eφ(y,η−)e−Eψ(y,η+\y),

where βψ(α+) = exp
(
eα

+ ∫
Rd

(1 − e−ψ(x))dx
)

and βφ(α−) = exp
(
eα
− ∫

Rd
(1 −

e−φ(x))dx
)

. Rescaling a → εa, φ → εφ, ψ → εψ, putting
1

ε
in front of the

generator and renormalizing, we arrive at

(L̂ε,renG)(η)

=
∑
ξ⊂η

∑
x∈ξ+

e−εEφ(x,ξ−)e−εEψ(x,ξ+\x)

∫
Rd

a(x− y)eλ

Ç
e−εφ(x−·) − 1

ε
; η−\ξ−

å
× eλ

Ç
e−εψ(x−·) − 1

ε
; η+\ξ+

å
(G(ξ+\x ∪ y, ξ−) + εG(ξ+ ∪ y, ξ−))dy
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and on correlation functions at

(L∆
ε,renk)(η)

=
∑
y∈η+

∫
Γ2
0

∫
Rd

a(x− y)k(η ∪ ξ\y ∪ x)e−εEφ(x,η−)e−εEψ(x,η+\y)

× eλ

Ç
e−εφ(x−·) − 1

ε
; ξ−
å
eλ

Ç
e−εψ(x−·) − 1

ε
; ξ+

å
dxdλ2(ξ).

+ ε
∑
x∈η+

∑
y∈η+\x

a(x− y)e−εEφ(y,η−)e−εEψ(y,η+\y)

×
∫
Γ2
0

k(η ∪ ξ\y)eλ

Ç
e−εφ(x−·) − 1

ε
; ξ−
å
eλ

Ç
e−εψ(x−·) − 1

ε
; ξ+

å
dλ2(ξ).

This yields

Nα(η) = exp(eα
+

〈ψ〉+ eα
−
〈φ〉)
Å
〈aeψ〉|η+|+ e−α

+ ∑
x∈η+

∑
y∈η+\x

a(x− y)

ã
.

Taking the limit ε→ 0, we arrive at

(L̂VG)(η) =
∑
ξ⊂η

∑
x∈ξ+

∫
Rd

a(x− y)eλ(−φ(x− ·); η−\ξ−)

× eλ(−ψ(x− ·); η+\ξ+)G(ξ+\x ∪ y, ξ−)dy

and

(L∆
V k)(η) =

∑
y∈η+

∫
Γ2
0

∫
Rd

a(x− y)k(η ∪ ξ\y ∪ x)

× eλ(−φ(x− ·); ξ−)eλ(−ψ(x− ·); ξ+)dxdλ2(ξ)

and hence NV
α (η) = exp(eα

+〈ψ〉+eα
−〈φ〉)〈a〉|η+|. Thus the kinetic description

is given by

∂ρ+
t

∂t
(x) = (a ∗ ρ+

t )(x)e−(ψ∗ρ+t )(x)e−(φ∗ρ−t )(x),
∂ρ−t
∂t

(x) = 0.

Example 17. Another possibility is, where each −-cell creates a new +-cell
independent of all other cells. Such free branching is described by the formal
Markov generator

(LF )(γ) =
∑
x∈γ−

∫
Rd

a(x− y)(F (γ+ ∪ y, γ−)− F (γ))dy.

On quasi-observables it is described via

(L̂G)(η) =
∑
x∈η−

∫
Rd

a(x− y)G(η+ ∪ y, η−\x)dy

+
∑
x∈η−

∫
Rd

a(x− y)G(η+ ∪ y, η−)dy
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and on correlation functions via

(L∆k)(η) =
∑
y∈η+

∫
Rd

a(x− y)k(η+\y, η− ∪ x)dx

+
∑
x∈η−

∑
y∈η+

a(x− y)k(η+\y, η−).

Hence the functions Mα = Nα can be chosen as Mα(η) = e−α
++α−〈a〉|η+| +

e−α
+ ∑
x∈η−

∑
y∈η+

a(x− y). After scaling we arrive at

(L̂VG)(η) =
∑
x∈η−

∫
Rd

a(x− y)G(η+ ∪ y, η−\x)dy

and

(L∆
V k)(η) =

∑
y∈η+

∫
Rd

a(x− y)k(η+\y, η− ∪ x)dx

so that MV
α (η) = e−α

++α−〈a〉|η+|. Finally the kinetic description is given by

∂ρ+
t

∂t
(x) = (a ∗ ρ−t )(x),

∂ρ−t
∂t

(x) = 0.

Example 18. Let us investigate here the case of jumping particles. For sim-
plicity let us only consider the case of additive intensities, i.e.

(LF )(γ) =
∑
x∈γ+

E(x, γ−)

∫
Rd

c(x− y)(F (γ+\x ∪ y, γ−)− F (γ))dy,

where 0 ≤ a ∈ L1(Rd) is symmetric. In such case the operator on quasi-
observables is given by

(L̂G)(η)

= −〈c〉
∑
x∈η+

∑
w∈η−

a(x− w)G(η)− 〈c〉
∑
x∈η+

∑
w∈η−

a(x− w)G(η+, η−\w)

+
∑
x∈η+

∑
w∈η−

a(x− w)

∫
Rd

c(x− y)(G(η+ ∪ y\x, η−\w) +G(η+ ∪ y\x, η−))dy

and on correlation functions by

(L∆k)(η) = −〈c〉
∑
x∈η+

∑
w∈η−

a(x− w)k(η)− 〈c〉
∑
x∈η+

∫
Rd

a(x− w)k(η+, η− ∪ w)dw

+
∑
y∈η+

∫
Rd

∫
Rd

a(x− w)c(x− y)k(η+\y ∪ x, η− ∪ w)dxdw

+
∑
y∈η+

∑
w∈η−

∫
Rd

a(x− w)c(x− w)k(η+\y ∪ x, η−)dx,



Stochastic models of tumour development and related mesoscopic equations 67

thus Mα = Nα with

Mα(η) = 〈c〉
∑
x∈η+

∑
w∈η−

a(x− w) + 2〈c〉〈a〉eα
−
|η+|+

∑
x∈η+

∑
w∈η−

(a ∗ c)(x− w).

Scaling the potentials means a→ εa and after renormalization and limit tran-
sition ε→ 0 we arrive at

(L̂VG)(η) = −〈c〉
∑
x∈η+

∑
w∈η−

a(x− w)G(η+, η−\w)

+
∑
x∈η+

∑
w∈η−

a(x− w)

∫
Rd

c(x− y)G(η+ ∪ y\x, η−)dy

and

(L∆
V k)(η) = −〈c〉

∑
x∈η+

∫
Rd

a(x− w)k(η+, η− ∪ w)dw

+
∑
y∈η+

∫
Rd

∫
Rd

a(x− w)c(x− y)k(η+\y ∪ x, η− ∪ w)dxdw,

so NV
α (η) = 2〈c〉〈a〉eα− |η+|. Therefore the kinetic description is given by

∂ρ+
t

∂t
(x) = (c ∗ ((a ∗ ρ−t )ρ+

t ))(x)− 〈c〉(a ∗ ρ−t )(x)ρ+
t (x),

∂ρ−t
∂t

(x) = 0.

Let us now look at interactions, where it is allowed to change the type of
cells. We will only investigate the change from + to − cells, whereas the other
case can be obtained, by simply exchanging all + with − and vice versa.

Example 19. In the simplest case, the intensity to change from + to − is
constant, here q > 0. In such case the Markov generator has the form

(LF )(γ) = q
∑
x∈γ+

(F (γ+\x, γ− ∪ x)− F (γ)).

It is not difficult to see, that in this case the operator on quasi-observables will
have the form

(L̂G)(η) = −q|η+|G(η) + q
∑
x∈η+

G(η+\x, η− ∪ x)

and on correlation functions it will be given by

(L∆k)(η) = −q|η+|k(η) + q
∑
x∈η−

k(η+ ∪ x, η−\x),

so Mα(η) = Nα(η) = NV
α (η) = q|η+| + qeα

+−α− |η−|. Since on scaling is
necessary here, we immediately obtain the kinetic description

∂ρ+
t

∂t
(x) = −qρ+

t (x),
∂ρ−t
∂t

(x) = qρ+
t (x).
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Example 20. Let us consider density dependent changes of types, where the
intensity depends on the same type of particles, in such case the Markov gen-
erator is given by

(LF )(γ) =
∑
x∈γ+

E(x, γ+)(F (γ+\x, γ− ∪ x)− F (γ)).

The generator on quasi-observables is given by

(L̂G)(η) = −E(η+)G(η)−
∑
x∈η+

∑
y∈η+\x

a(x− y)G(η+\y, η−)

+
∑
x∈η+

∑
y∈η+\x

a(x− y)G(η+\x\y, η− ∪ x)

+
∑
x∈η+

∑
y∈η+\x

a(x− y)G(η+\x, η− ∪ x)

where E(η+) =
∑
x∈η+

∑
y∈η+\x

a(x − y). Similarly we can compute the operator

for correlation functions and obtain

(L∆k)(η) = −E(η+)G(η)−
∑
x∈η+

∫
Rd

a(x− y)k(η+ ∪ y, η−)dy

+
∑
x∈η−

∫
Rd

a(x− y)k(η+ ∪ x ∪ y, \x)dy

+
∑
x∈η−

∑
y∈η+

a(x− y)k(η+ ∪ x, η−\x),

which implies Mα = Nα given by

Mα(η) = E(η+) + eα
+

〈a〉|η+|+ e2α+−α−〈a〉|η−|+ eα
+−α−

∑
x∈η−

∑
y∈η+

a(x− y).

Scaling a→ εa and renormalizing we arrive at

(L̂VG)(η) = −
∑
x∈η+

∑
y∈η+\x

a(x− y)G(η+\y, η−)

+
∑
x∈η+

∑
y∈η+\x

a(x− y)G(η+\x\y, η− ∪ x)

and

(L∆
V k)(η) = −

∑
x∈η+

∫
Rd

a(x− y)k(η+ ∪ y, η−)dy

+
∑
x∈η−

∫
Rd

a(x− y)k(η+ ∪ x ∪ y, η−\x)dy,

so NV
α (η) = eα

+〈a〉|η+|+ e2α+−α−〈a〉|η−|. Therefore the kinetic description is
given by

∂ρ+
t

∂t
(x) = −ρ+

t (x)(a ∗ ρ+
t )(x),

∂ρ−t
∂t

(x) = ρ+
t (x)(a ∗ ρ+

t )(x).
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Example 21. In this case the intensity to change the type dependent on the
collection of cells of different type, here the Markov generator has the form

(LF )(γ) =
∑
x∈γ+

E(x, γ−)(F (γ+\x, γ− ∪ x)− F (γ)).

Some computations yield

(L̂G)(η) = −
∑
x∈η+

∑
y∈η−

a(x− y)G(η)−
∑
x∈η+

∑
y∈η−

a(x− y)G(η+, η−\y)

+
∑
x∈η+

∑
y∈η−

a(x− y)G(η+\x, η− ∪ x\y)

+
∑
x∈η+

∑
y∈η−

a(x− y)G(η+\x, η− ∪ x)

and

(L∆k)(η) = −
∑
x∈η+

∑
y∈η−

a(x− y)k(η)−
∑
x∈η+

∫
Rd

a(x− y)k(η+, η− ∪ y)dy

+
∑
x∈η−

∫
Rd

a(x− y)k(η+ ∪ x, η− ∪ y\x)dy

+
∑
x∈η−

∑
y∈η−\x

a(x− y)k(η+ ∪ y, η−\y).

This yields Mα = Nα with

Mα(η) =
∑
x∈η+

∑
y∈η−

a(x−y)+eα
−
〈a〉|η+|+eα

+

〈a〉|η−|+eα
+−α−

∑
x∈η−

∑
y∈η−\x

a(x−y).

Scaling a→ εa and renormalizing we obtain

(L̂VG)(η) = −
∑
x∈η+

∑
y∈η−

a(x− y)G(η+, η−\y)

+
∑
x∈η+

∑
y∈η−

a(x− y)G(η+\x, η− ∪ x\y)

and

(L∆k)(η) = −
∑
x∈η+

∫
Rd

a(x− y)k(η+, η− ∪ y)dy

+
∑
x∈η−

∫
Rd

a(x− y)k(η+ ∪ x, η− ∪ y\x)dy,

so NV
α (η) = eα

−〈a〉|η+|+ eα
+〈a〉|η−|. Finally the kinetic equation is given by

∂ρ+
t

∂t
(x) = −ρ+

t (x)(a ∗ ρ−t )(x),
∂ρ−t
∂t

(x) = ρ+
t (x)(a ∗ ρ−t )(x).
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Example 22. Let us take here exponential decaying intensities for changing
the type. More precisely the Markov generator is given by

(LF )(γ) =
∑
x∈γ+

e−Eφ(x,γ−)e−Eψ(x,γ+\x)(F (γ+\x, γ− ∪ x)− F (γ)).

The operator on quasi-observables is given by

(L̂G)(η) =
∑
ξ⊂η

∑
x∈ξ+

e−Eφ(x,ξ−)e−Eψ(x,ξ+\x)(G(ξ+\x, ξ− ∪ x)−G(ξ))

× eλ(e−φ(x−·) − 1; η−\ξ−)eλ(e−ψ(x−·) − 1; η+\ξ+)

and on correlation functions by

(L∆k)(η)

=
∑
x∈η−

e−Eφ(x,η−\x)e−Eψ(x,η+)

×
∫
Γ2
0

eλ(e−φ(x−·) − 1; ξ−)eλ(e−ψ(x−·) − 1; ξ+)k(η+ ∪ ξ+ ∪ x, η− ∪ ξ−\x)dλ2(ξ)

−
∑
x∈η+

e−Eφ(x,η−)e−Eψ(x,η+\x)

×
∫
Γ2
0

eλ(e−φ(x−·) − 1; ξ−)eλ(e−ψ(x−·) − 1; ξ+)k(η ∪ ξ)dλ2(ξ),

which implies

Mα(η) = eα
+−α−βψ(α+)βφ(α−)

∑
x∈η−

e−Eψ(x,η+)e−Eφ(x,η−\x)

+ βψ(α+)βφ(α−)
∑
x∈η+

e−Eψ(x,η+\x)e−Eφ(x,η−)

with

βψ(α+) = exp

Å
eα

+

∫
Rd

(1− e−ψ(x))dx

ã
, βφ(α−) exp

Å
eα
−
∫
Rd

(1− e−φ(x))dx

ã
.

Scaling φ, ψ → εφ, εψ and renormalize we obtain

(L̂ε,renG)(η) =
∑
ξ⊂η

∑
x∈ξ+

e−εEφ(x,ξ−)e−εEψ(x,ξ+\x)(G(ξ+\x, ξ− ∪ x)−G(ξ))

× eλ

Ç
e−εφ(x−·) − 1

ε
; η−\ξ−

å
eλ

Ç
e−εψ(x−·) − 1

ε
; η+\ξ+

å
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and

(L∆
ε,renk)(η)

=
∑
x∈η−

e−εEφ(x,η−\x)e−εEψ(x,η+)

×
∫
Γ2
0

eλ

Ç
e−εφ(x−·) − 1

ε
; ξ−
å
eλ

Ç
e−εψ(x−·) − 1

ε
; ξ+

å
× k(η+ ∪ ξ+ ∪ x, η− ∪ ξ−\x)dλ2(ξ)

−
∑
x∈η+

e−εEφ(x,η−)e−εEψ(x,η+\x)

×
∫
Γ2
0

eλ

Ç
e−εφ(x−·) − 1

ε
; ξ−
å
eλ

Ç
e−εψ(x−·) − 1

ε
; ξ+

å
k(η ∪ ξ)dλ2(ξ)

so that

Nα(η) = exp(eα
+

〈ψ〉+ eα
−
〈φ〉)(eα

+−α− |η−|+ |η+|) = NV
α (η).

In the limit ε→ 0 we arrive at

(L̂VG)(η)

=
∑
ξ⊂η

∑
x∈ξ+

(G(ξ+\x, ξ− ∪ x)−G(ξ))eλ(−φ(x− ·); η−\ξ−)eλ(−ψ(x− ·); η+\ξ+)

and

(L∆
V k)(η)

=
∑
x∈η−

∫
Γ2
0

eλ(−φ(x− ·); ξ−)eλ(−ψ(x− ·); ξ+)k(η+ ∪ ξ+ ∪ x, η− ∪ ξ−\x)dλ2(ξ)

−
∑
x∈η+

∫
Γ2
0

eλ(−φ(x− ·); ξ−)eλ(−ψ(x− ·); ξ+)k(η ∪ ξ)dλ2(ξ)

and hence the kinetic description is given by

∂ρ+
t

∂t
(x) = −ρ+

t (x)e−(φ∗ρ−t )(x)e−(ψ∗ρ+t )(x),
∂ρ−t
∂t

(x) = ρ+
t (x)e−(φ∗ρ−t )(x)e−(ψ∗ρ+t )(x).

5.1 Cell-death model

Let us start with the analysis of the first model stated in the context of two-
component systems, the heuristic Markov generator is given by, c.f. (23),

(LF )(γ+, γ−) = (AF )(γ+, γ−) + (BF )(γ+, γ−) + (V F )(γ+, γ−).
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The first operator A is the Contact Model for usual cells and has the form

(LCMF )(γ+, γ−) = m0

∑
x∈γ+

(F (γ+\x, γ− ∪ x)− F (γ+, γ−))

+ λ
∑
x∈γ+

∫
Rd

a(x− y)(F (γ+ ∪ y, γ−)− F (γ+, γ−))dy.

The operator B describes the evolution of − cells, which can only disappear
from the system, so it has the simple form

(BF )(γ+, γ−) = m1

∑
x∈γ−

(F (γ+, γ−\x)− F (γ+, γ−)).

The last part describes the interaction of both types and is assumed to be of
the form

(V F )(γ+, γ−) = λ−
∑
x∈γ+

∑
y∈γ−

ϕ(x− y)(F (γ+\x, γ− ∪ x)− F (γ+, γ−)).

The intensities m0,m1, λ, λ
− are strictly positive and the potentials 0 ≤ a, ϕ ∈

L1(Rd) are symmetric and normalized to 1. In [9] the general form of L̂ =

Â+ “B + “V was computed for G ∈ Bbs(Γ2
0). In this special case we get

(ÂG)(η+, η−) = −m0|η+|G(η+, η−) +m0

∑
x∈η+

G(η+\x, η− ∪ x)

+ λ
∑
x∈η+

∫
Rd

a(x− y)G(η+\x ∪ y, η−)dy

+ λ
∑
x∈η+

∫
Rd

a(x− y)G(η+ ∪ y, η−)dy

for the first part
(BG)(η+, η−) = −m1|η−|G(η+, η−)

for the second part, and finally

(“V G)(η+, η−) = λ−
∑
x∈η+

∑
y∈η−

ϕ(x− y)(G(η+\x, η− ∪ x\y)−G(η+, η−\y))

+ λ−
∑
x∈η+

∑
y∈η−

ϕ(x− y)(G(η+\x, η− ∪ x)−G(η+, η−)).

Let us first realize this operator on the Banach space Bα.

Lemma 5.1. The corresponding function Mα = MA
α +MB +MV

α is given by

MA
α (η+, η−) = (m0 + eα

+−α−m0 + λ)|η+|+ λe−α
+ ∑
x∈η+

∑
y∈η+\x

a(x− y)

MB(η+, η−) = m1|η−|

MV
α (η+, η−) = λ−(eα

−
|η+|+ eα

+

|η−|) + λ−eα
+−α−

∑
x∈η−

∑
y∈η−\x

ϕ(x− y)

+ λ−
∑
x∈η+

∑
y∈η−

ϕ(x− y).

If a, ϕ ∈ L∞(Rd), then L̂ ∈ L(Bα,Bα′) for any α′ < α.



Stochastic models of tumour development and related mesoscopic equations 73

Proof. Let G ∈ D(Mα), then clearly ÂG, “BG ∈ Bα, so we will only check“V G ∈ Bα, which follows from

∫
Γ2
0

∑
x∈η+

∑
y∈η−

ϕ(x− y)|G(η+\x, η− ∪ x\y)|eα
+|η+|eα

−|η−|dλ(η+, η−)

= eα
++α−

∫
Γ2
0

∫
Rd

∫
Rd

ϕ(x− y)|G(η+, η− ∪ x)|eα
+|η+|eα

−|η−|dxdydλ(η+, η−)

= eα
+

∫
Γ2
0

∑
x∈η−

∫
Rd

ϕ(x− y)|G(η+, η−)|eα
+|η+|eα

−|η−|dydλ(η+, η−)

= eα
+

∫
Γ2
0

|η−||G(η+, η−)|dλ2(η+, η−)

and ∫
Γ2
0

∑
x∈η+

∑
y∈η−

ϕ(x− y)|G(η+\x, η− ∪ x)|eα
+|η+|eα

−|η−|dλ(η+, η−)

= eα
∫
Γ2
0

∑
y∈η−

∫
Rd

ϕ(x− y)|G(η+, η− ∪ x)eα
+|η+|eα

−|η−|dxdλ(η+, η−)

=

∫
Γ2
0

∑
x∈η−

∑
y∈η−\x

ϕ(x− y)|G(η+, η−)|eα
+|η+|eα

−|η−|dλ(η+, η−).

The contributions from the negative parts can be dealt in the same way and
the estimate for ‖L̂‖αα′ can be shown like in the one-component case.

Again the computation of the operator L∆ was done for a more general
case in [9] which shows that for |k(η)| ≤ |η|!C |η| for some C > 0 the operator
L∆ = A∆ +B∆ + V ∆ is given by

(A∆k)(η+, η−) = −m0|η+|k(η+, η−) +
∑
x∈η−

k(η+ ∪ x, η−\x)

+ λ
∑
x∈η+

∫
Rd

a(x− y)k(η+\x ∪ y, η−)dy

+ λ
∑
x∈η+

∑
y∈η+\x

a(x− y)k(η+\x, η−)

and

(Bk)(η+, η−) = −m1|η−|k(η+, η−)|
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and

(V ∆k)(η+, η−) = λ−
∑
x∈η−

∫
Rd

ϕ(x− y)k(η+ ∪ x, η− ∪ y\x)dy

− λ−
∑
x∈η+

∫
Rd

ϕ(x− y)k(η+, η− ∪ y)dy

+ λ−
∑
x∈η−

∑
y∈η−\x

ϕ(x− y)k(η+ ∪ x, η−\x)

− λ−
∑
x∈η+

∑
y∈η−

ϕ(x− y)k(η+, η−).

As before (43) can be used to realize L∆ on B∗α.

Scaling

For scaling let us scale the potentials a, ϕ to εa and εϕ, then the renormalized
operator will have the form L̂ε,ren = L̂V + εC given by

(L̂VG)(η+, η−) = −m0|η+|G(η+, η−)−m1|η−|G(η+, η−)

+
∑
x∈η+

G(η+\x, η− ∪ x) + λ
∑
x∈η+

∫
Rd

a(x− y)G(η+\x ∪ y)dy

+
∑
x∈η+

∑
y∈η−

ϕ(x− y)(G(η+\x, η− ∪ x\y)−G(η+, η−\y))

and

(CG)(η) = λ
∑
x∈η+

∫
Rd

a(x− y)G(η+ ∪ y, η−)dy

+ λ−
∑
x∈η+

∑
y∈η−

ϕ(x− y)(G(η+\x, η− ∪ x)−G(η+, η−))

Therefore the function the functionNα is given byMα. Concerning convergence
of the generators we obtain the following.

Theorem 5.2. For each G ∈ D(Nα)

L̂ε,renG→ L̂VG, ε→ 0

in Bα. If a, ϕ ∈ L∞(Rd), then for all α′ < α

‖L̂ε,ren − L̂V ‖αα′ → 0, ε→ 0

holds.
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The dual operators can be simply computed and are given by:

(L∆
V k)(η+, η−) = −m0|η+|k(η+, η−)−m1|η−|k(η+, η−) +

∑
x∈η−

k(η+ ∪ x, η−\x)

+ λ
∑
x∈η+

∫
Rd

a(x− y)k(η+\x ∪ y, η−)dy

+ λ−
∑
x∈η−

∫
Rd

ϕ(x− y)k(η+ ∪ x, η− ∪ y\x)dy

− λ−
∑
x∈η+

∫
Rd

ϕ(x− y)k(η+, η− ∪ y)dy

and

(C∆k)(η+, η−) = −λ−
∑
x∈η+

∑
y∈η−

ϕ(x− y)k(η+, η−)

+ λ−
∑
x∈η−

∑
y∈η−

ϕ(x− y)k(η+ ∪ x, η−\x)

+ λ
∑
x∈η+

∑
y∈η+\x

a(x− y)k(η+\x, η−).

If a, ϕ ∈ L∞(Rd), then

‖L∆
ε,ren − L∆

V ‖α′α → 0, ε→ 0.

Let us finally compute L∆
V eλ(ρ+)eλ(ρ−) and derive from this the kinetic de-

scription.

(L∆
V eλ(ρ+)eλ(ρ−))(η+, η−)

=
∑
x∈η−

∫
Rd

ϕ(x− y)ρ+(x)ρ−(y)eλ(ρ+; η+)eλ(ρ−; η−\x)

−
∑
x∈η+

∫
Rd

ϕ(x− y)ρ+(x)eλ(ρ+; η+\x)ρ−(y)eλ(ρ−; η−)

−
∑
x∈η+

m0ρ
+(x)eλ(ρ+; η+\x)eλ(ρ−; η−)

−
∑
x∈η−

m1ρ
−(x)eλ(ρ−; η−\y)eλ(ρ+; η+)

+
∑
x∈η+

λ

∫
Rd

a(x− y)ρ+(y)dyeλ(ρ+; η+\x)eλ(ρ−; η−)

+
∑
x∈η−

m0ρ
+(x)eλ(ρ+; η+)eλ(ρ−; η−\x)
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and thus the system of equations for ρ+
t and ρ−t is given by, c.f. (24)

∂ρ−t
∂t

(x) = −m1ρ
−
t (x) + ρ+

t (x)(ϕ ∗ ρ−t )(x) +m0ρ
+
t (x)

∂ρ+
t

∂t
(x) = −(m0 + (ϕ ∗ ρ−t )(x))ρ+

t (x) + (a ∗ ρ+
t )(x)

.

5.2 Go-or-grow models

First model

Here the first model is given by L = LCM + Lhop + V , where LCM is given by

(LCMF )(γ+, γ−) = m
∑
x∈γ−

(F (γ+, γ−\x)− F (γ+, γ−))

+ λ
∑
x∈γ−

∫
Rd

a(x− y)(F (γ+, γ− ∪ x)− F (γ+, γ−))dy

and is describing the proliferation of the −-cells. The density independent
intensity of death is given by m > 0 and the proliferation intensity by λ > 0.
The kernel 0 ≤ a ∈ L1(Rd) is again symmetric and normalized to 1. The motion
of the moving +-cells is described by

(LhopF )(γ+, γ−) = d
∑
x∈γ+

(F (γ+\x, γ−)− F (γ+, γ−))

+
∑
x∈γ+

∫
Rd

c(x− y)(F (γ+\x ∪ y, γ−)− F (γ+, γ−))dy.

Here we included also density independent mortality of the moving cells with
intensity d > 0. The microscopic behaviour to change from one type (state) to
another is given by

(V F )(γ+, γ−) = q
∑
x∈γ+

(F (γ+\x, γ− ∪ y)− F (γ+, γ−))

+
∑
x∈γ−

Ñ
p+

∑
y∈γ−\x

ϕ(x− y)

é
(F (γ+ ∪ x, γ−\x)− F (γ+, γ−)).

The operator for quasi-observables L̂ = L̂CM + L̂hop + “V is given by, c.f. [9]

(“V G)(η+, η−) = q
∑
x∈η+

(G(η+\x, η− ∪ x)−G(η+, η−))

+ p
∑
x∈η−

(G(η+ ∪ x, η−\x)−G(η+, η−))

+
∑
x∈η−

∑
y∈η−\x

ϕ(x− y)(G(η+ ∪ x, η−\x\y)−G(η+, η−\y))

+
∑
x∈η−

∑
y∈η−\x

ϕ(x− y)(G(η+ ∪ x, η−\x)−G(η+, η−))
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and

(L̂hopG)(η+, η−) = −d|η+|G(η+, η−)

+
∑
x∈η+

∫
Rd

c(x− y)(G(η+\x ∪ y, η−)−G(η+, η−))dy.

The expression for L̂CM is similar to those before and is given by

(L̂CMG)(η+, η−) = −m|η−|G(η+, η−) + λ
∑
x∈η−

∫
Rd

a(x− y)G(η+, η−\x ∪ y)dy

+ λ
∑
x∈η−

∫
Rd

a(x− y)G(η+, η− ∪ y)dy.

Lemma 5.3. The function Mα = MCM
α +Mhop +MV

α is given by

MCM
α (η+, η−) = (m+ λ)|η−|+ λe−α

− ∑
x∈η−

∑
x∈η−\y

a(x− y)

Mhop(η+, η−) = (d+ 2〈c〉)|η+|

MV
α (η+, η−) = |η+|(q + peα

−−α+

+ e2α−−α+

〈ϕ〉)

+ |η−|(p+ qeα
+−α− + e2α−−α+

〈ϕ〉)

+
∑
x∈η−

∑
y∈η−\x

ϕ(x− y) + eα
−−α+ ∑

x∈η+

∑
y∈η−

ϕ(x− y).

If a, ϕ ∈ L∞(Rd) then L̂ ∈ L(Bα,Bα′) for any α′ < α.

Proof. We will only compute the function MV
α for three terms, the rest can be

done in the same way.∫
Γ2
0

∑
x∈η−

∑
y∈η−\x

ϕ(x− y)|G(η+ ∪ x, η−\x\y)|eα
+|η+|eα

−|η−|dλ(η+, η−)

= e2α−
∫
Γ2
0

∫
Rd

∫
Rd

ϕ(x− y)|G(η+ ∪ x, η−)|eα
+|η+|eα

−|η−|dxdydλ(η+, η−)

= e2α−−α+

∫
Γ2
0

∫
Rd

∑
x∈η+

ϕ(x− y)|G(η+, η−)|eα
+|η+|eα

−|η−|dydλ(η+, η−)

= e2α−−α+

〈ϕ〉
∫
Γ2
0

|η+||G(η+, η−)|eα
+|η+|eα

−|η−|dλ(η+, η−)

and ∫
Γ2
0

∑
x∈η−

∑
y∈η−\x

ϕ(x− y)|G(η+, η−\y)|eα
+|η+|eα

−|η−|dλ(η+, η−)
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= e2α−
∫
Γ2
0

∫
Rd

∫
Rd

ϕ(x− y)|G(η+, η− ∪ x)|eα
+|η+|eα

−|η−|dxdydλ2(η+, η−)

= eα
−
∫
Γ2
0

∑
x∈η−

∫
Rd

ϕ(x− y)|G(η+, η−)|eα
+|η+|eα

−|η−|dydλ2(η+, η−)

≤ eα
−
〈ϕ〉

∫
Γ2
0

|η−||G(η+, η−)|eα
+|η+|eα

−|η−|dλ(η+, η−)

and, finally,∫
Γ2
0

∑
x∈η−

∑
y∈η−\x

ϕ(x− y)|G(η+ ∪ x, η−\x)|eα
+|η+|eα

−|η−|dλ(η+, η−)

= eα
−
∫
Γ2
0

∑
y∈η−

∫
Rd

ϕ(x− y)|G(η+ ∪ x, η−)|eα
+|η+|eα

−|η−|dxdλ2(η+, η−)

= eα
−−α+

∫
Γ2
0

∑
x∈η+

∑
y∈η−

ϕ(x− y)|G(η+, η−)|eα
+|η+|eα

−|η−|dλ(η+, η−).

Next we easily see that

(L∆
hopk)(η+, η−) = −d|η+|k(η+, η−)

+
∑
x∈η+

∫
Rd

c(x− y)(k(η+\x ∪ y, η−)− k(η+, η−))dy

and

(V ∆k)(η+, η−) = q
∑
x∈η−

k(η+ ∪ x, η−\x)− q|η+|k(η+, η−)

+ p
∑
x∈η+

k(η+\x, η− ∪ x)− p|η−|k(η+, η−)

+
∑
x∈η+

∫
Rd

ϕ(x− y)k(η+\x, η− ∪ x ∪ y)dy

+
∑
x∈η+

∑
y∈η−

ϕ(x− y)k(η+\x, η− ∪ x)

−
∑
x∈η−

∫
Rd

ϕ(x− y)k(η+, η− ∪ y)dy

−
∑
x∈η−

∑
y∈η−\x

ϕ(x− y)k(η+, η−).

Again under the conditions a, ϕ ∈ L∞(Rd) this expression can be well-defined

as an element of L(B∗α′ ,B∗α) with the same norm estimate as ‖L̂‖αα′ .
In previous section the kinetic description for each term contained in L̂ was

derived, so let us give only a short outline how it works in this particular case.
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Since the jumping part is free, c.f. φ = 0 = ψ from previous section, the
operator Lhop will not change after renormalization. So let us scale the potential
ϕ by εϕ. This will lead to the renormalized operator

(“Vε,renG)(η+, η−) = q
∑
x∈η+

(G(η+\x, η− ∪ x)−G(η+, η−))

+ p
∑
x∈η−

(G(η+ ∪ x, η−\x)−G(η+, η−))

+
∑
x∈η−

∑
y∈η−\x

ϕ(x− y)(G(η+ ∪ x, η−\x\y)−G(η+, η−\y))

+ ε
∑
x∈η−

∑
y∈η−\x

ϕ(x− y)(G(η+ ∪ x, η−\x)−G(η+, η−))

and thus we get.

Theorem 5.4. For each G ∈ D(Mα) we have L̂ε,renG ∈ Bα and

L̂ε,renG→ L̂VG, ε→ 0

in Bα, where L̂V = Â + L̂hop + “VV is a superposition of the limiting part for

the contact model, the operator L̂hop and

(“VVG)(η+, η−) = q
∑
x∈η+

(G(η+\x, η− ∪ x)−G(η+, η−))

+ p
∑
x∈η−

(G(η+ ∪ x, η−\x)−G(η+, η−))

+
∑
x∈η−

∑
y∈η−\x

ϕ(x− y)(G(η+ ∪ x, η−\x\y)−G(η+, η−\y)).

Assume a, ϕ ∈ L∞, then for all α′ < α

‖L̂ε,ren − L̂V ‖αα′ → 0, ε→ 0.

and Â was given above.

The same result holds for correlation function operators with

(V ∆
V k)(η+, η−) = q

∑
x∈η−

k(η+ ∪ x, η−\x)− q|η+|k(η+, η−)

= p
∑
x∈η+

k(η+\x, η− ∪ x)− p|η−|k(η+, η−)

+
∑
x∈η+

∫
Rd

ϕ(x− y)k(η+\x, η− ∪ x ∪ y)dy

−
∑
x∈η−

∫
Rd

ϕ(x− y)k(η+, η− ∪ y)dy.
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Let us now compute (“VV eλ(ρ+)eλ(ρ−))(η+, η−). This is given by

(“VV eλ(ρ+)eλ(ρ−))(η+, η−)

= q
∑
x∈η−

ρ+(x)eλ(ρ+; η+)eλ(ρ−; η−\x)

− q
∑
x∈η+

ρ+(x)eλ(ρ+; η+\x)eλ(ρ−; η−)

+ p
∑
x∈η+

ρ−(x)eλ(ρ−; η−)eλ(ρ+; η+\x)

− p
∑
x∈η−

ρ−(x)eλ(ρ−; η−\x)eλ(ρ+; η+)

+
∑
x∈η+

eλ(ρ+; η+\x)eλ(ρ−; η−)ρ−(x)

∫
Rd

ϕ(x− y)ρ−(y)dy

−
∑
x∈η−

eλ(ρ+; η+)eλ(ρ−; η−)ρ−(x)

∫
Rd

ϕ(x− y)ρ−(y)dy

and hence the kinetic description is given by

∂ρ+

∂t
(x) = −(〈c〉+ q + d)ρ+(x) + (c ∗ ρ+)(x) + pρ−(x) + ρ−(x)(ϕ ∗ ρ−)(x)

∂ρ−

∂t
(x) = −(m+ p)ρ−(x) + λ(a ∗ ρ−)(x)− ρ−(x)(ϕ ∗ ρ−)(x) + qρ+(x).

Second model

Now let us investigate the second model. Here L = LCM + Lhop + V with the
operator V = V1 + V2 slightly changed to

(V F )(γ+, γ−) = q
∑
x∈γ+

exp

Å
−
∑
y∈γ−

ψ(x− y)

ã
(F (γ+\x, γ− ∪ y)− F (γ+, γ−))

+
∑
x∈γ−

Å
p+

∑
y∈γ−\x

ϕ(x− y)

ã
(F (γ+ ∪ x, γ−\x)− F (γ+, γ−)).

and therefore the rate of changing from + to − cells is also density dependent.
Clearly all results except these concerning V1 still hold true, so let us only
investigate this part. The expression for quasi-observables is given by

(“V1G)(η+, η−)

=
∑
x∈η+

∑
ξ−⊂η−

e−Eψ(x,ξ−)eλ(e−ψ(x−·) − 1; η−\ξ−)(G(η+\x, ξ− ∪ x)−G(η+, ξ−)).
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Lemma 5.5. The function Mα is given by Mα = MCM
α +Mhop +MV

α , where
MCM
α and Mhop are given as in the Cell-death model and

MV
α (η+, η−) = |η+|(peα

−−α+

+ e2α−−α+

〈ϕ〉) + |η−|(p+ e2α−−α+

〈ϕ〉)

+
∑
x∈η−

∑
y∈η−\x

ϕ(x− y) + eα
−−α+ ∑

x∈η+

∑
y∈η−

ϕ(x− y).

+ qβψ(α−)eα
+−α−

∑
x∈η−

e−Eψ(x,η−\x) + qβψ(α−)
∑
x∈η+

e−Eψ(x,η−),

where

βψ(α−) = exp

Å
eα
−
∫
Rd

(1− e−ψ(x))dx

ã
.

If ϕ, a ∈ L∞(Rd), then L̂ ∈ L(Bα,Bα′) for all α′ < α.

Proof. This follows from∫
Γ2
0

∑
x∈η+

∑
ξ−⊂η−

e−Eψ(x,ξ−)eλ(|e−ψ(x−·) − 1|; η−\ξ−)

× |G(η+\x, ξ− ∪ x)|eα
+|η+|eα

−|η−|dλ2(η+, η−)

= eα
+

∫
Γ2
0

∫
Rd

∫
Γ0

e−Eψ(x,ξ−)eλ(1− e−ψ(x−·); η−)

× |G(η+, ξ− ∪ x)|eα
+|η+|eα

−|η−|eα
−|ξ−|dλ(ξ−)dxdλ2(η+, η−)

= βψ(α−)eα
+−α−

∫
Γ2
0

Å∑
x∈ξ−

e−Eψ(x,ξ−\x)

ã
|G(η+, ξ−)|eα|η

+|eα|ξ
−|dλ2(η+, ξ−)

and ∫
Γ2
0

∑
x∈η+

∑
ξ−⊂η−

e−Eψ(x,ξ−)eλ(|e−ψ(x−·) − 1|; η−\ξ−)

× |G(η+, ξ−)|eα
+|η+|eα

−|η−|dλ2(η+, η−)

=

∫
Γ2
0

∑
x∈η+

∫
Γ0

e−Eψ(x,ξ−)eλ(1− e−ψ(x−·); η−)

× |G(η+, ξ−)|eα
+|η+|eα

−|η−|eα
−|ξ−|dλ(ξ−)dλ2(η+, η−)

= βψ(α−)

∫
Γ2
0

Å∑
x∈η+

e−Eψ(x,ξ−)

ã
|G(η+, ξ−)|eα

+|η+|eα
−|ξ−|dλ2(η+, ξ−).

Since ψ is non-negative we can skip the terms containing q in the definition
of the domain, i.e. if MV

α = MV1
α + qMV2

α , then

D(Mα) =
{
G ∈ Bα : MhopG,MCM

α G,MV1
α G ∈ Bα

}
,
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where MV1

alpha contains the terms for switching − to + cells and V2 corresponds
to the switching of + to − cells. The operator for correlation functions is

(V ∆
2 k)(η+, η−)

=
∑
x∈η−

e−Eψ(x,η−\x)

∫
Γ0

eλ(e−ψ(x−·) − 1; ξ−)k(η+ ∪ x, η− ∪ ξ−\x)dλ(ξ−)

−
∑
x∈η+

e−Eψ(x,η−)

∫
Γ0

eλ(e−ψ(x−·) − 1; ξ−)k(η+, η− ∪ ξ−)dλ(ξ−).

The scaling a, ϕ, ψ → εa, εϕ, εψ leads to the new renormalized expression for“V2,ε,ren

(“V2,ε,renG)(η+, η−) =
∑
x∈η+

∑
ξ−⊂η−

e−εEψ(x,ξ−)eλ

Ç
e−εψ(x−·) − 1

ε
; η−\ξ−

å
× (G(η+\x, ξ− ∪ x)−G(η+, ξ−))

and thus to the limiting hierarchical operator

(“V1,VG)(η+, η−) =
∑
x∈η+

∑
ξ−⊂η−

eλ(−ψ(x− ·); η−\ξ−)(G(η+\x, ξ− ∪ x)−G(η+, ξ−)).

Theorem 5.6. Assume ψ ∈ L1(Rd) ∩ L2(Rd), then for all G ∈ D(Mα) such
that

∑
x∈ξ−

∑
y∈ξ−\x

ψ(x−y)G ∈ Bα and
∑
x∈η+

∑
y∈ξ−

ψ(x−y)G ∈ Bα the convergence

L̂ε,renG → L̂VG for ε → 0 holds in Bα. If in addition a, ϕ, ψ ∈ L∞(Rd) then
for all α′ < α

‖L̂ε,ren − L̂V ‖αα′ → 0, ε→ 0.

Proof. Let us first estimate

|(“V1,ε,renG)(η)− (“V1,VG)(η)|

≤
∑
x∈η+

∑
ξ−⊂η−

|G(η+\x, ξ− ∪ x)−G(η+, ξ−)|

× |e−εEψ(x,ξ−)eλ

Ç
e−εψ(x−·) − 1

ε
; η−\ξ−

å
− eλ(−ψ(x− ·); η−\ξ−)|

and then the modulus in the sum by

|e−εEψ(x,ξ−)eλ

Ç
e−εψ(x−·) − 1

ε
; η−\ξ−

å
− eλ(−ψ(x− ·); η−\ξ−)|

≤ |1− e−εEψ(x,ξ−)|eλ

Ç
|e−εψ(x−·) − 1|

ε
; η−\ξ−

å
+

∣∣∣∣∣eλ
Ç
e−εψ(x−·) − 1

ε
; η−\ξ−

å
− eλ(−ψ(x− ·); η−\ξ−)

∣∣∣∣∣
≤ εEψ(x, ξ−)eλ(ψ(x− ·); η−\ξ−)
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+
∑

w∈η−\ξ−

∣∣∣∣∣e−εψ(x−w) − 1

ε
+ ψ(x− w)

∣∣∣∣∣ eλ(ψ(x− ·); η−\ξ−\w)

≤ εEψ(x, ξ−)eλ(ψ(x− ·); η−\ξ−) + ε
∑

w∈η−\ξ−
ψ(x− w)2eλ(ψ(x− ·); η−\ξ−\w).

Integrating over Γ2
0 with respect to eα

′+|η+|eα
′−|η−|dλ2(η+, η−) we obtain for

the part containing G(η+\x, ξ− ∪ x)

εeα
′+
∫
Γ2
0

∫
Rd

∫
Γ0

|G(η+, ξ− ∪ x)|Eψ(x, ξ−)eλ(ψ(x− ·); η−)

× eα
′−|ξ−|eα

′−|η−|eα
′+|η+|dxdλ3(η,ξ−)

≤ εee
α′− 〈ψ〉

∫
Γ2
0

Å∑
x∈η−

Eψ(x, ξ−\x)

ã
|G(η+, ξ−)|eα

′+|η+|eα
′−|ξ−|dλ2(η+, ξ−)

and for the second term

εeα
′
∫
Γ2
0

∫
Γ0

|G(η+, ξ−)|eα
′|η+|eα

′|ξ−|

×
∑
x∈η+

∫
Rd

ψ(x− w)2eλ(eα
′
ψ(x− ·); η−)dwdλ(η+, η−, ξ−)

≤ εeα
′〈ψ〉〈ψ2〉eα

′
∫
Γ2
0

|η+||G(η+, ξ−)|eα
′|η+|eα

′|ξ−|dλ(η+, ξ−).

Similar estimations for the parts containing G(η+, ξ−) show together with
above computations the first part of the assertion. The second part follows
from Eψ(x, ξ) ≤ ‖ψ‖L∞ |ξ|.

The operator for correlation function is changed only at the new operator
V ∆ and the rescaled version has the form

(V ∆
1,ε,renk)(η+, η−)

=
∑
x∈η−

e−εEψ(x,η−\x)

∫
Γ0

eλ

Ç
e−εψ(x−·) − 1

ε
; ξ−
å
k(η+ ∪ x, η− ∪ ξ−\x)dλ(ξ−)

−
∑
x∈η+

e−εEψ(x,η−)

∫
Γ0

eλ

Ç
e−εψ(x−·) − 1

ε
; ξ−
å
k(η+, η− ∪ ξ−)dλ(ξ−)

and the limiting operator

(V ∆
1,V k)(η+, η−) =

∑
x∈η−

∫
Γ0

eλ(−ψ(x− ·); ξ−)k(η+ ∪ x, η− ∪ ξ−\x)dλ(ξ−)

−
∑
x∈η+

∫
Γ0

eλ(−ψ(x− ·); ξ−)k(η+, η− ∪ ξ−)dλ(ξ−).
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Again if a, ϕ, ψ ∈ L∞(Rd), then the convergence

‖L∆
ε,ren − L∆

V ‖α′α → 0, ε→ 0

holds. Computing V1,V eλ(ρ+)eλ(ρ−) one sees that the equations for the local
densities will have the prescribed form (18),(19).

Last two models

Here the changes of types are density independent, i.e. ϕ = ψ = 0, but the
proliferation is changed either to density dependent mortality or to density
dependent birth. Both models were analysed in the one-component case. Since
the changes of types are prescribed by constant intensities they do not influence
the construction of an evolution and only contribute by additional terms in the
kinetic description. It is not difficult to combine all results and derive from
them the corresponding kinetic description stated before.
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