Markov birth-and-death dynamics of populations

Viktor Bezborodov

Анотація


Spatial birth-and-death processes are obtained as solutions of a stochastic equation. The processes are required to be nite. Conditions are given for existence and uniqueness of such solutions, as well as for continuous dependence on the initial conditions. The possibility of an explosion and connection with the heuristic generator of the process are discussed.

Повний текст:

PDF (English)

Посилання


D. Aldous. Interacting particle systems as stochastic social dynamics. Bernoulli, 19: 1122–1149, 2013.

d. Arnaud. Yule process sample path asymptotics. Electron. Comm. Probab., 11: 193–199, 2006.

K. Athreya and P. Ney. Branching processes. Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen. Springer, 1972.

C. J. Burke and M. Rosenblatt. A Markovian function of a markov chain. E Ann. Math. Statist, 29: 1112–1122, 1958.

M. M. Castro and F. A. Gr¨unbaum. On a seminal paper by karlin and mcgregor. Symmetry Integrability Geom. Methods Appl., 9.

S. N. Ethier and T. G. Kurtz. Markov Processes. Characterization and convergence. Wiley-Interscience, New Jersey, 1986.

D. Finkelshtein, O. Kutovyi, and Y. Kondratiev. Semigroup approach to birth-and-death stochastic dynamics in continuum. Journal of Functional Analysis, 262 (3): 1274–1308, 2012.

D. Finkelshtein, O. Kutovyi, and Y. Kondratiev. Statistical dynamics of continuous systems: perturbative and approximative approaches. Arabian Journal of Mathematics, 2014. doi:10.1007/s40065-014-0111-8.

D. Finkelshtein, O. Ovaskainen, O. Kutovyi, S. Cornell, B. Bolker, and Y. Kondratiev. A mathematical framework for the analysis of spatialtemporal point processes. Theoretical Ecology, 7: 101–113, 2014.

D. Finkilstein, Y. Kondratiev, and O. Kutoviy. Semigroup approach to birth-and-death stochastic dynamics in continuum. J. Funct. Anal., 262 (3): 1274–1308, 2012.

N. Fournier and S. M´el´eard. A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Probab, 14 (4): 1880–1919, 2004.

T. Franco. Interacting particle systems: hydrodynamic limit versus high density limit. 2014. preprint; arXiv:1401.3622 [math.PR].

N. L. Garcia. Birth and death processes as projections of higherdimensional poisson processes. Adv. in Appl. Probab., 27 (4): 911–930, 1995.

N. L. Garcia and T. G. Kurtz. Spatial birth and death processes as solutions of stochastic equations. ALEA Lat. Am. J. Probab. Math. Stat., (1): 281–303, 2006.

N. L. Garcia and T. G. Kurtz. Spatial point processes and the projection method. Progr. Probab. In and out of equilibrium. 2,, 60 (2): 271–298, 2008.

I. I. Gikhman and A. V. Skorokhod. The Theory of Stochastic Processes, volume 2. Springer, 1975.

I. I. Gikhman and A. V. Skorokhod. The Theory of Stochastic Processes, volume 3. Springer, 1979.

T. Harris. The theory of branching processes. Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen. Springer, 1963.

R. A. Holley and D. W. Stroock. Nearest neighbor birth and death processes on the real line. Acta Math, 140 (1-2): 103–154, 1978.

N. Ikeda and S.Watanabe. Stochastic Differential Equations and Diffusion Processes. Nord-Holland publiching company, 1981.

O. Kallenberg. Foundations of modern probability. Springer, 2 edition, 2002.

S. Karlin and J. McGregor. Random walks. Illinois J. Math., 3: 66–81, 1959.

J. F. C. Kingman. Poisson Processes. Oxford University Press, 1993.

C. Kipnis and C. Landim. Scaling limits of interacting particle systems. Springer, 1999.

Y. Kondratiev and A. Skorokhod. On contact processes in continuum. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9 (2): 187–198, 2006.

Y. G. Kondratiev and T. Kuna. Harmonic analysis on configuration space. i. general theory. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5 (2): 201–233, 2002.

Y. G. Kondratiev and O. V. Kutoviy. On the metrical properties of the configuration space. Math. Nachr., 279: 774–783, 2006.

K. Kuratowski. Topology, volume 1. Academic Press, New York and London, 1966.

S. Levin. Complex adaptive systems:exploring the known, the unknown and the unknowable. Bulletin of the AMS, 40 (1): 3–19, 2003.

T. M. Liggett. Interacting particle systems. Grundlehren der Mathematischen Wissenschaften. Springer, 1985.

T. M. Liggett. Interacting particle systems – An introduction. 2004. ICTP Lect. Notes, XVII.

J. Møller and M. Sørensen. Statistical analysis of a spatial birth-anddeath process model with a view to modelling linear dune fields. Scand. J. Statist., 21 (1): 1–19, 1994.

J. Møller and R. P. Waagepetersen. Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, 2004.

M. D. Penrose. Existence and spatial limit theorems for lattice and continuum particle systems. Probab. Surv., 5: 1–36, 2008.

K. Podczeck. On existence of rich fubini extensions. Econom. Theory, 45 (1-2): 1–22, 2009.

C. Preston. Spatial birth-and-death processes. In Proceedings of the 40th Session of the International Statistical Institute, volume 46 of Bull. Inst. Internat. Statist, pages 371–391, 405–408, 1975.

M. R¨ockner and A. Schied. Rademacher’s theorem on configuration spaces and applications. J. Funct. Anal., 169 (2): 325–356, 1999.

D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer, 3 edition, 2005.

F. Spitzer. Stochastic time evolution of one dimensional infinite particle systems. Bull. Amer. Math. Soc., 83 (5): 880–890, 1977.

Q. Xin. A functional central limit theorem for spatial birth and death processes. Adv. in Appl. Probab., 40 (3): 759–797, 2008.


Пристатейна бібліографія ГОСТ




Посилання

  • Поки немає зовнішніх посилань.