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Abstract. Spatial birth-and-death processes are obtained as solutions of
a stochastic equation. The processes are required to be finite. Conditions
are given for existence and uniqueness of such solutions, as well as for
continuous dependence on the initial conditions. The possibility of an
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discussed.
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Introduction

This article deals with spatial birth-and-death processes which may describe
stochastic dynamics of spatial population. Specifically, at each moment of
time the population is represented as a collection of motionless points in Rd.
We interpret the points as particles, or individuals. Existing particles may die
and new particles may appear. Each particle is characterized by its location.

The state space of a spatial birth-and-death Markov process on Rd with
finite number of points is the space of finite configurations over Rd,

Γ0(Rd) = {η ⊂ Rd : |η| <∞},
where |η| is the number of points of η.

Denote by B(Rd) the Borel σ-algebra on Rd. The evolution of a spa-
tial birth-and-death process in Rd admits the following description. Two
functions characterize the development in time, the birth rate coefficient b :
Rd × Γ0(Rd)→ [0;∞) and the death rate coefficient d : Rd × Γ0(Rd)→ [0;∞).
If the system is in state η ∈ Γ0(Rd) at time t, then the probability that a new
particle appears (a “birth”) in a bounded set B ∈ B(Rd) over time interval
[t; t+Δt] is

Δt

∫
B

b(x, η)dx+ o(Δt),

the probability that a particle x ∈ η is deleted from the configuration (a
“death”) over time interval [t; t+Δt] is

d(x, η)Δt+ o(Δt),

and no two events happen simultaneously. By an event we mean a birth or a
death. Using a slightly different terminology, we can say that the rate at which
a birth occurs in B is

∫
B
b(x, η)dx, the rate at which a particle x ∈ η dies is

d(x, η), and no two events happen at the same time.
Such processes, in which the birth and death rates depend on the spatial

structure of the system as opposed to classical Z+-valued birth-and-death pro-
cesses (see e.g. [22], [5], [18, Page 116], [3, Page 109], and references therein),
were first studied by Preston in [36]. A heuristic description similar to that
above appeared already there. Our description resembles the one in [14].

The (heuristic) generator of a spatial birth-and-death process should be
of the form

LF (η) =

∫
x∈Rd

b(x, η)[F (η ∪ x)− F (η)]dx

+
∑
x∈η

d(x, η)(F (η \ x)− F (η)), (0.1)

for F in an appropriate domain, where η∪x and η\x are shorthands for η∪{x}
and η \ {x}, respectively.

Spatial point processes have been used in statistics for simulation pur-
poses, see e.g. [32], [33, chapter 11] and references therein. For application of
spatial and stochastic models in biology see e.g. [29], [9], and references therein.
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To construct a spatial birth-and-death process with given birth and death
rate coefficients, we consider in Section 2 stochastic equations with Poisson
type noise

ηt(B) =

∫
B×(0;t]×[0;∞]

I[0;b(x,ηs−)](u)dN1(x, s, u)

−
∫

Z×(0;t]×[0;∞)

I{xi∈ηr−∩B}I[0;d(xi,ηr−)](v)dN2(i, r, v) (0.2)

where (ηt)t≥0 is a suitable Γ0(Rd)-valued cadlag stochastic process, the “solu-
tion” of the equation, IA is the indicator function of the set A, B ∈ B(Rd) is
a Borel set, N1 is a Poisson point processes on Rd × R+ × R+ with intensity
dx × ds × du, N2 is a Poisson point process on Z × R+ × R+ with intensity
# × dr × dv, # is the counting measure on Zd, η0 is a (random) initial finite
configuration, b, d : Rd × Γ0(Rd) → [0;∞) are functions that are measurable
with respect to the product σ-algebra B(R)×B(Γ0(R)) and {xi} is some col-
lection of points satisfying ηs ⊂ {xi} for every moment of time s (the precise
definition is given in Section 1.3.1). We require the processes N1, N2, η0 to be
independent of each other. Equation (0.2) is understood in the sense that the
equality holds a.s. for all bounded B ∈ B(Rd) and t ≥ 0.

Garcia and Kurtz studied in [14] equations similar to (0.2) for infinite
systems. In the earlier work [13] of Garcia another approach was used: birth-
and-death processes were obtained as projections of Poisson point processes.
A further development of the projection method appears in [15]. Xin [40]
formulates and proves functional central limit theorem for spatial birth-and-
death processes constructed in [14]. Fournier and Meleard in [11] considered
a similar equation for the construction of the Bolker-Pacala-Dieckmann-Law
process with finitely many particles.

Holley and Stroock [19] constructed a spatial birth-and-death process as
a Markov family of unique solutions to the corresponding martingale problem.
For the most part, they consider a process contained in a bounded volume, with
bounded birth and death rate coefficients. They also proved the corresponding
result for the nearest neighbor model in R1 with an infinite number of particles.

Kondratiev and Skorokhod [25] constructed a contact process in contin-
uum, with the infinite number of particles. The contact process can be de-
scribed as a spatial birth-and-death process with

b(x, η) = λ
∑
y∈η

a(x− y), d(x, η) ≡ 1,

where λ > 0 and 0 ≤ a ∈ L1(Rd). Under some additional assumptions, they
showed existence of the process for a broad class of initial conditions. Further-
more, if the value of some energy functional on the initial condition is finite,
then it stays finite at any point in time.

In the aforementioned references as well as in the present work the evo-
lution of the system in time via Markov process is described. An alternative
approach consists in using the concept of statistical dynamics that substitutes
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the notion of a Markov stochastic process. This approach is based on consid-
ering evolutions of measures and their correlation functions. For details see
e.g. [7], [8], and references therein.

There is an enormous amount of literature concerning interacting particle
systems on lattices and related topics (e.g., [30], [31], [24], [1], [12], [39], etc.)
Penrose in [34] gives a general existence result for interacting particle systems
on a lattice with local interactions and bounded jump rates (see also [30, Chap-
ter 9]). The spin space is allowed to be non-compact, which gives the opportu-
nity to incorporate spatial birth-and-death processes in continuum. Unfortu-
nately, the assumptions become rather restrictive when applied to continuous
space models. More specifically, the birth rate coefficient should be bounded,
and for every bounded Borel set B the expression

∑
x∈η∩B

d(x, η)

should be bounded uniformly in η, η ∈ Γ(Rd).
Let us briefly describe the contents of the article.
In Section 1 we introduce give some general notions, definitions and results

related to Markov processes in configuration spaces. We start with configura-
tion spaces, which are the state spaces for birth-and-death processes, then we
introduce and discuss metrical and topological structures thereof. Also, we
present some facts and constructions from probability theory, such as integra-
tion with respect to a Poisson point process, or a sufficient condition for a
functional transformation of a Markov chain to be a Markov chain again.

In the second section we construct a spatial birth-and-death process (ηt)t≥0
as a unique solution to equation (0.2). We prove strong existence and pathwise
uniqueness for (0.2). A key condition is that we require b to grow not faster
than linearly in the sense that

∫
Rd

b(x, η)dx ≤ c1|η|+ c2. (0.3)

The equation is solved pathwisely, “from one jump to another”. Also,
we prove uniqueness in law for equation (0.2) and the Markov property for
the unique solution. Considering (0.2) with a (non-random) initial condition
α ∈ Γ0(Rd) and denoting corresponding solution by (η(α, t))t≥0, we see that a
unique solution induces a Markov family of probability measures on the Sko-
rokhod space DΓ0(Rd)[0;∞) (which can be regarded as the canonical space for
a solution of (0.2)).

When the birth and death rate coefficients b and d satisfy some continuity
assumptions, the solution is expected to have continuous dependence on the
initial condition, at least in some proper sense. Realization of this idea and
precise formulations are given in Section 2.1. The proof is based on considering
a coupling of two birth-and-death processes.

The formal relation of a unique solution to (0.2) and operator L in (0.1)
is given via the martingale problem, in Section 2.2, and via some kind of a
pointwise convergence, in Section 2.5.
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In Section 2.4 we formulate and prove a theorem about coupling of two
birth-and-death processes. The idea to compare a spatial birth-and-death pro-
cess with some “simpler” process goes back to Preston, [36]. In [11] this tech-
nique was applied to the study of the probability of extinction.

1 Configuration spaces and Markov processes:
miscellaneous

In this section we list some notions and facts we use in this work.

1.1 Some notations and conventions

Sometimes we write∞ and +∞ interchangeably, so that f →∞ and f → +∞,
or a <∞ and a < +∞ may have the same meaning. However, +∞ is reserved
for the real line only, whereas ∞ have wider range of applications, e.g. for a
sequence {xn}n∈N ⊂ Rd we may write xn →∞, n→∞, which is equivalent to
|xn| → +∞. On the other hand, we do not assign any meaning to xn → +∞.

In all probabilistic constructions we work on a probability space (Ω,F , P ),
sometimes equipped with a filtration of σ-algebras. Elements of Ω are usually
denoted as ω.

The set Ac is the complement of the set A ⊂ Ω: Ac = Ω \ A. We write
[a; b], [a; b) etc. for the intervals of real numbers. For example, (a; b] = {x ∈
R | a < x ≤ b}, −∞ ≤ a < b ≤ +∞. The half line R+ includes 0: R+ = [0;∞).

1.2 Configuration spaces

In this section we introduce notions and facts about spaces of configurations,
in particular, topological and metrical structures on Γ(Rd) as well as a charac-
terization of compact sets of Γ(Rd). We discuss configurations over Euclidean
spaces only.

Definition 1.1. For d ∈ N and a measurable set Λ ⊂ Rd, the configuration
space Γ(Λ) is defined as

Γ(Λ) = {γ ⊂ Λ : |γ ∩K| < +∞ for any compact K ⊂ Rd}.

We recall that |A| denotes the number of elements of A. We also say that
Γ(Λ) is the space of configurations over Λ. Note that ∅ ∈ Γ(Λ).

Let Z+ be the set {0, 1, 2, . . .}. We say that a Radon measure μ on
(Rd,B(Rd)) is a counting measure on Rd if μ(A) ∈ Z+ for all A ∈ B(Rd).
When a counting measure ν satisfies additionally ν({x}) ≤ 1 for all x ∈ Rd, we
call it a simple counting measure.

As long as it does not lead to ambiguities, we identify a configuration
with a simple counting Radon measures on Rd: as a measure, a configuration
γ ∈ Γ(Rd) maps a set B ∈ B into |γ ∩B|. In other words, γ = ∑

x∈γ
δx.

One equips Γ(Rd) with the vague topology, i.e., the weakest topology such
that for all f ∈ Cc(Rd) (the set of continuous functions on Rd with compact
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support) the map

Γ(Rd) � γ �→ 〈γ, f〉 :=
∑
x∈γ

f(x) ∈ R

is continuous.
Equipped with this topology, Γ(Rd) is a Polish space, i.e., there exists

a metric on Γ(Rd) compatible with the vague topology and with respect to
which Γ(Rd) is a complete separable metric space, see, e.g., [27], and refer-
ences therein. We say that a metric is compatible with a given topology if the
topology induced by the metric coincides with the given topology.

For a bounded B ⊂ Rd and γ ∈ Γ(Rd), we denote δ(γ,B) = min{|x− y| :
x, y ∈ γ ∩ B, x �= y}. Let Br(x) denote the closed ball in Rd of the radius r
centered at x.

A set is said to be relatively compact if its closure is compact. The fol-
lowing theorem gives a characterization of compact sets in Γ(Rd), cf. [27], [19].

Theorem 1.2. A set F ⊂ Γ(Rd) is relatively compact in the vague topology if
and only if

sup
γ∈F

{γ(Bn(0)) + δ−1(γ,Bn(0))} <∞ (1.1)

holds for all n ∈ N.

Proof. Assume that (1.1) is satisfied for some F ⊂ Γ(Rd). In metric spaces
compactness is equivalent to sequential compactness, therefore it is sufficient to
show that an arbitrary sequence contains a convergent subsequence in Γ(Rd).
To this end, consider an arbitrary sequence {γn}n∈N ⊂ F . The supremum
sup
n
γn(B1(0)) is finite, consequently, by the Banach–Alaoglu theorem there

exists a measure α1 ∈ C(B1(0))∗; here C(B1(0))∗ is the dual space of C(B1(0));
and a subsequence {γ(1)n } ⊂ {γn} such that γ

(1)
n |B1(0) → α1 in C(B1(0))

∗.
Furthermore, one may see that α1 ∈ Γ(B1(0)) (it is particularly important
here that sup

γ∈F
{δ−1(γ,B1(0))} < ∞ ). Indeed, arguing by contradiction one

may get that α1(A) ∈ Z+ for all Borel sets A, and Lemma 1.6 below ensures
that α1 is a simple counting measure.

Similarly, from the sequence γ
(1)
n we may extract subsequence {γ(2)n } ⊂

{γ(1)n } in such a way that γ(2)n converges to some α2 ∈ Γ(B2(0)). Continuing

in the same way, we will find a sequence of sequences {γ(m)n } such that γ(m)n →
αm ∈ Γ(Bm(0)) and {γ(m+1)n } ⊂ {γ(m)n }. Consider now the sequence {γ(n)n }n∈N.
For any m, restrictions of its elements to Bm(0) converge to αm in Γ(Bm(0)),

Therefore, γ
(n)
n → α in Γ(Rd), where α =

⋃
n
αn.

Conversely, if (1.1) is not fulfilled for some n0 ∈ N, then we can construct
a sequence {γn}n∈N ⊂ F such that either the first summand in (1.1) tends to
infinity:

γj(Bn0
(0))→∞, j →∞

in which case, of course, there is no convergent subsequence, or the second
summand in (1.1) tends to infinity. In the latter case, a subsequence of the
sequence {γn|Bn0 (0)

}n∈N may converge to a counting measure (when all γn are
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considered as measures). However, the limit measure can not be a simple count-
ing measure. Thus, the sequence {γn}n∈N ⊂ F does not contain a convergent
subsequence in Γ(Rd).

We denote by CS(Γ(Rd)) the space of all compact subsets of Γ(Rd).

Proposition 1.3. The topological space Γ(Rd) is not σ-compact.

Proof. Let {Km}n∈N be an arbitrary sequence from CS(Γ(Rd)). We will show

that
⋃
n
Kn �= Γ(Rd). To each compact Km we may assign a sequence q

(m)
1 ,

q
(m)
2 , . . . of positive numbers such that

sup
γ∈Km

{γ(Bn(0)) + δ−1(γ,Bn(0))} < q(m)n .

There exists a configuration whose intersection with Bn(0) contains at

least q
(n)
n +1 points, for each n ∈ N. This configuration does not belong to any

of the sets {Km}m∈N, hence it can not belong to the union
⋃
m
Km.

Remark 1.4. Since Γ(Rd) is a separable metrizable space, Proposition 1.3
implies that Γ(Rd) is not locally compact.

For another description of all compact sets in Γ(Rd) we will use the set Φ ⊂
C(Rd) of all positive continuous functions φ satisfying the following conditions:

1) φ(x) = φ(y) whenever |x| = |y|, x, y ∈ Rd,
2) lim|x|→∞ φ(x) = 0.
For φ ∈ Φ we denote

Ψ = Ψφ(x, y) := φ(x)φ(y)
|x− y|+ 1

|x− y| I{x �= y}.

Proposition 1.5. (i) For all c > 0 and φ ∈ Φ

Kc :=

{
γ :

∫∫
Rd×Rd

Ψφ(x, y)γ(dx)γ(dy) � c

}
∈ CS(Γ(Rd));

(ii) For all K ∈ CS(Γ(Rd)) there exist φ ∈ Φ such that

sup
γ∈K

{
∫∫

Rd×Rd

Ψφ(x, y)γ(dx)γ(dy)} � 1.

Proof. (i) Denote θn = min
x∈Bn(0)

φ(x) > 0. For γ ∈ Kc we have

c �
∫∫

Bn(0)×Bn(0)

Ψ(x, y)γ(dx)γ(dy)

�
∫∫

Bn(0)×Bn(0)

φ(x)φ(y)I{x �= y}γ(dx)γ(dy) � θ2nγ(Bn(0))(γ(Bn(0))− 1)
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and

c �
∫∫

Bn(0)×Bn(0)

Ψ(x, y)γ(dx)γ(dy) � θ2n
δ−1(γ,Bn(0)) + 1

δ−1(γ,Bn(0))
� θ2nδ

−1(γ,Bn(0)).

Consequently,

sup
γ∈Kc

γ(Bn(0)) � θn
√
c+ 1,

and

sup
γ∈Kc

δ−1(γ,Bn(0)) �
c

θ2n
.

It remains to show that Kc is closed, in which case Theorem 1.2 will imply
compactness of Kc. The space Γ(Rd) is metrizable, therefore sequential closed-
ness will suffice. Take γk ∈ Kc, γk → γ in Γ(Rd), k → ∞. For n ∈ N, let
Ψn ∈ Cc(Rd × Rd) be an increasing sequence of functions such that Ψn � Ψ,

Ψn(x, y) = Ψ(x, y) for x, y ∈ Rd satisfying |x|, |y| ≤ n, |x − y| ≥ 1

n
. For such

a sequence we have Ψn(x, y) ↑ Ψ(x, y) for all x, y ∈ Rd, x �= y. For each
f ∈ Cc(Rd × Rd), the map

η �→ 〈η × η, f〉 :=
∫∫

Rd×Rd

f(x, y)η(dx)η(dy)

is continuous in the vague topology. Thus for all n ∈ N, 〈γk × γk,Ψn〉 →
〈γ × γ,Ψn〉. Consequently, 〈γ × γ,Ψn〉 ≤ c, n ∈ N, and by Fatou’s Lemma

〈γ × γ,Ψ〉 =
∫∫

Rd×Rd

Ψ(x, y)γ(dx)γ(dy)

=

∫∫
Rd×Rd

lim inf
n

Ψn(x, y)γ(dx)γ(dy) ≤ lim inf
n

∫∫
Rd×Rd

Ψn(x, y)γ(dx)γ(dy) ≤ c.

To prove (ii), for a given compact set K ⊂ Γ(Rd) and a given function
φ ∈ Φ, denote

an(K) := sup
γ∈K

{γ(Bn(0)) + δ−1(γ,Bn(0))}

and

bn(φ) := sup
|x|>n

|φ(x)|.

Theorem 1.2 implies an(K) <∞, and we can estimate
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∫∫
(
Bn+1(0)\Bn(0)

)
×
(
Bn+1(0)\Bn(0)

)Ψ(x, y)γ(dx)γ(dy)

=

∫∫
(
Bn+1(0)\Bn(0)

)
×
(
Bn+1(0)\Bn(0)

)φ(x)φ(y)
|x− y|+ 1

|x− y| I{x �= y}γ(dx)γ(dy)

�
∫∫

(
Bn+1(0)\Bn(0)

)
×
(
Bn+1(0)\Bn(0)

) b
2
n(an + 1)γ(dx)γ(dy) � b2n(an + 1)3.

Taking a function φ ∈ Φ such that

3b2n(φ)(an + 1)3 <
6

π2
1

(n+ 1)2
,

we get

sup
γ∈K

{ ∫∫
Rd×Rd

Ψ(x, y)γ(dx)γ(dy)

}
� 1.

1.2.1 The space of finite configurations

For Λ ⊂ Rd, the space Γ0(Λ) is defined as

Γ0(Λ) := {η ⊂ Λ : |η| <∞}.
We see that Γ0(Λ) is the collection of all finite subsets of Λ. We denote the

space of n-point configurations as Γ
(n)
0 (Λ):

Γ
(n)
0 (Λ) := {η ∈ Γ0(Λ) | |η| = n}, n ∈ N,

and Γ
(0)
0 (Λ) := {∅}. Sometimes we will write Γ0 instead of Γ0(Rd). Recall

that we occasionally write η \ x instead of η \ {x} , η ∪ x instead of η ∪ {x}.
To define a topological structure on Γ0(Rd), we introduce the following

surjections (see, e.g., [26] and references therein)

sym :

∞⊔
n=0

(̃Rd)n → Γ0(Rd)

sym((x1, . . . , xn)) = {x1, . . . , xn},
(1.2)

where

(̃Rd)n := {(x1, . . . , xn) ∈ (Rd)n | xj ∈ Rd, j = 1, . . . , n, xi �= xj , i �= j}, (1.3)

and, by convention, (̃Rd)0 = {∅}.
The map sym produces a one-to-one correspondence between Γ

(n)
0 (Rd),

n ≥ 1, and the quotient space (̃Rd)n/ ∼n, where ∼n is the equivalence relation
on (Rd)n,

(x1, . . . , xn) ∼n (y1, . . . , yn)
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when there exist a permutation σ : {1, . . . , n} → {1, . . . , n} such that

(xσ(1), . . . , xσ(n)) = (y1, . . . , yn).

We endow Γ
(n)
0 (Rd) with the topology induced by this one-to-one corre-

spondence. Equivalently, a set A ⊂ Γ
(n)
0 (Rd) is open iff sym−1(A) is open in

(̃Rd)n. The space (̃Rd)n ⊂ (Rd)n we consider, of course, with the relative, or

subspace, topology. As far as Γ
(0)
0 (Rd) = {∅} is concerned, we regard it as an

open set.

Having defined topological structures on Γ
(n)
0 (Rd), n ≥ 0, we endow

Γ0(Rd) with the topology of disjoint union,

Γ0(Rd) =
∞⊔
n=0

Γ
(n)
0 (Rd). (1.4)

In this topology, a set K ⊂ Γ0(Rd) is compact iff K ⊂
N⊔
n=0

Γ
(n)
0 (Rd) for

some N ∈ N and for each n ≤ N the set K ∩ Γ(n)0 (Rd) is compact in Γ(n)0 (Rd).

A set Kn ⊂ Γ
(n)
0 (Rd) is compact iff sym−1(Kn) is compact in (̃Rd)n. We note

that in order for Kn to be compact, the set sym
−1Kn, regarded as a subset of

(Rd)n, should not have limit points on the diagonals, i.e. limit points from the

set (Rd)n \ (̃Rd)n.
Let us introduce a metric compatible with the described topology on

Γ0(Rd). We set

dist(ζ, η) :=

{
1 ∧ dEucl(ζ, η), |ζ| = |η|,
1, otherwise.

Here dEucl(ζ, η) is the metric induced by the Euclidean metric and the map
sym:

dEucl(ζ, η) = inf{|x− y| : x ∈ sym−1ζ, y ∈ sym−1η}, (1.5)

where |x−y| is the Euclidean distance between x and y, sym−1η = sym−1({η}).
In many aspects, this metric resembles the Wasserstein type distance in [37].
The differences are, dist is bounded by 1 and it is defined on Γ0(Rd) only.

Note that the metric dist satisfies equalities

dist(ζ ∪ x, η ∪ x) = dist(ζ, η) (1.6)

for ζ, η ∈ Γ0(Rd), x ∈ Rd, x /∈ ζ, η, and

dist(ζ \ x, η \ x) = dist(ζ, η), (1.7)

x ∈ ζ, η. We note that the space Γ0(Rd) equipped with this metric is not
complete. Nevertheless, Γ0(Rd) is a Polish space, i.e., Γ0(Rd) is separable and
there exists a metric ρ̃ which induces the same topology as dist does and such
that Γ0(Rd) equipped with ρ̃ is a complete metric space. To prove this, we
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embed Γ
(n)
0 (Rd) into the space Γ̈

(n)
0 (Rd) of n-point multiple configurations,

which we define as the space of all counting measures η on Rd with η(Rd) = n.

Abusing notation, we may represent each η ∈ Γ̈
(n)
0 (Rd) as a set {x1, . . . , xn},

where some points among xj ∈ Rd may be equal (recall our convention on

identifying a configuration with a measure; as a measure, η =
n∑
j=1

δxj ). One

should keep in mind that {x1, . . . , xn} is not really a set here, since it is possible
that xi = xj for i �= j, i, j ∈ {1, . . . , n}. The representation allows us to extend
sym to the map

sym :

∞⊔
m=0

(Rd)n → Γ̈
(n)
0 (Rd)

sym((x1, . . . , xn)) := {x1, . . . , xn},
(1.8)

and define a metric on Γ̈
(n)
0 (Rd): for ζ, η ∈ Γ̈

(n)
0 (Rd) we set dist(ζ, η) = 1 ∧

dEucl(ζ, η), dEucl(ζ, η) is the metric induced by the Euclidean metric and the
map sym:

dEucl(ζ, η) = inf{|x− y| : x ∈ sym−1ζ, y ∈ sym−1η}, (1.9)

The metrics dist and dist coincide on Γ
(n)
0 (Rd)×Γ(n)0 (Rd) (as functions).

Furthermore, one can see that (Γ̈
(n)
0 (Rd), dist) is a complete separable metric

space, and thus a Polish space. The next lemma describes convergence in

Γ̈
(n)
0 (Rd) (compare with Lemma 3.3 in [27]).

Lemma 1.6. Assume that ηm → η in Γ̈
(n)
0 (Rd), and let η = {x1, . . . , xn}.

Then ηm, m ∈ N, may be numbered, ηm = {xm1 , . . . , xmn }, in such a way that

xmi → xi, m→∞

in Rd.

Proof. The inequality dist(ηm, ηm) < ε implies existence of a point from ηm

in the ball Bε(xi) of radius ε centered at xi, i ∈ {1, . . . , n}. Furthermore, in
the case when xi is a multiple point, i.e., if xj = xi for some j �= i, then there
are at least as many points from ηm in Bε(xi) as η({xi}). Observe that, for
ε <

1

2
inf{|x − y| : η({x}), η({x}) ≥ 1} ∧ 1, we have in the previous sentence

“exactly as many” instead of “at least as many”, because otherwise there would
not be enough points in ηm. The statement of the lemma follows by letting
ε→ 0.

Lemma 1.7. Γ0(Rd) is a Polish space.

Proof. Since Γ0(Rd) is a disjoint union of countably many spaces Γ
(n)
0 (Rd), it

suffices to establish that each of them is a Polish space. To prove that Γ
(n)
0 (Rd)

is a Polish space, n ∈ N, we will show that it is a countable intersection of open

sets in a Polish space Γ̈
(n)
0 (Rd). Then we may apply Alexandrov’s theorem:

any Gδ subset of a Polish space is a Polish space, see §33, VI in [28].
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To do so, denote by Bm the closed ball of radius m in Rd, with the center
at the origin. Define Fm := {η ∈ Γ̈(n)0 (Rd) | η({x}) ≥ 2 for some x ∈ Bm} and
note that

Γ
(n)
0 (Rd) =

∞⋂
m=1

[Γ̈
(n)
0 (Rd) \ Fm]

Since Γ̈
(n)
0 (Rd) is Polish, it only remains to show that Fm is closed in Γ̈

(n)
0 (Rd).

This is an immediate consequence of the previous lemma.

1.2.2 Lebesgue-Poisson measures

Here we define the Lebesgue-Poisson measure on Γ0(Rd), corresponding to a
non-atomic Radon measure σ on Rd. Our prime example for σ will be the
Lebesgue measure on Rd. For any n ∈ N the product measure σ⊗n can be

considered by restriction as a measure on (̃Rd)n. The projection of this measure
on Γ

(n)
0 via sym we denote by σ(n), so that

σ(n)(A) = σ⊗n(sym−1A), A ∈ B(Γ
(n)
0 ).

On Γ
(0)
0 the measure σ(0) is given by σ(0)({∅}) = 1. The Lebesgue-Poisson

measure on (Γ0(Rd),B(Γ0(Rd))) is defined as

λσ :=

∞∑
n=0

1

n!
σ(n). (1.10)

The measure λσ is finite iff σ is finite. We say that σ is the intensity
measure of λσ.

1.2.3 The Skorokhod space

For a complete separable metric space (E, ρ) the space DE of all cadlag E-
valued functions equipped with the Skorokhod topology is a Polish space; for
this statement and related definitions, see, e.g., Theorem 5.6, Chapter 3 in [6].
Let ρD be a metric on DE compatible with the Skorokhod topology and such
that (DE , ρD) is a complete separable metric space. Denote by (P(DE), ρp)
the metric space of probability measures on B(DE), the Borel σ - algebra of
DE , with the Prohorov metric, i.e. for P,Q ∈ P(DE)

ρp(P,Q) = inf{ε > 0 : P (F ) ≤ Q(F ε) + ε for all F ∈ B(DE)} (1.11)

where

F ε = {x ∈ DE : ρD(x, F ) < ε}.
Then (P(DE), ρp) is separable and complete; see, e.g., [6], Section 1,

Chapter 3, and Theorem 1.7, Chapter 3. The Borel σ-algebra B(DE) co-
incides with the one generated by the coordinate mappings; see Theorem 7.1,
Chapter 3 in [6]. In this work, we mostly considerDΓ0(Rd)[0;T ] andDΓ(Rd)[0;T ]
endowed with the Skorokhod topology.
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1.3 Integration with respect to Poisson point processes

We give a short introduction to the theory of integration with respect to Pois-
son point processes. For construction of Poisson point processes with given
intensity, see e.g. [21, Chapter 12], [23], [38, Chapter 12, § 1] or [20, Chapter
1, § 8,9]. All definitions, constructions and statements about integration given
here may be found in [20, Chapter 2, § 3]. See also [17, Chapter 1] for the
theory of integration with respect to an orthogonal martingale measure.

On some filtered probability space (Ω,F , {F}t≥0, P ), consider a Poisson
point process N on R+×X×R+ with intensity measure dt×β(dx)×du, where
X = Rd or X = Zd. We require the filtration {F}t≥0 to be increasing and
right-continuous, and we assume thatF0 is complete under P . We interpret the
argument from the first space R+ as time. For X = Rd the intensity measure
β will be the Lebesgue measure on Rd, for X = Zd we set β = #, where

#A = |A|, A ∈ B(Zd).

The Borel σ-algebra over Zd is the collection of all subsets of Zd, i.e. B(Zd) =
2Z

d

. Again, as is the case with configurations, for X = Rd we treat a point
process as a random collection of points as well as a random measure.

We say that the process N is called compatible with (Ft, t ≥ 0) if N is
adapted, that is, all random variables of the type N(T̄1, U), T̄1 ∈ B([0; t]),
U ∈ B(X × R+), are Ft-measurable, and all random variables of the type
N(t+h, U)−N(t, U), h ≥ 0, U ∈ B(X×R+), are independent of Ft, N(t, U) =
N([0; t], U). For any U ∈ B(X× R+) with (β × l)(U) < ∞, l is the Lebesgue
measure on Rd, the process (N([0; t], U)−tβ×l(U), t ≥ 0) is a martingale (with
respect to (Ft, t ≥ 0); see [20, Lemma 3.1, Page 60]).

Definition 1.8. A process f : R+ ×X × R+ × Ω → R is predictable, if it is
measurable with respect to the smallest σ - algebra generated by all g having
the following properties:

(i) for each t > 0, (x, u, ω) �→ g(t, x, u, ω)) is B(X×R+)×Ft measurable;
(ii) for each (x, u, ω), the map t �→ g(t, x, u, ω)) is left continuous.

For a predictable process f ∈ L1([0;T ] × X × R+ × Ω), t ∈ [0;T ] and
U ∈ B(X×R+) we define the integral It(f) =

∫
[0;t]×U

f(s, x, u, ω)dN(s, x, u) as

the Lebesgue-Stieltjes integral with respect to the measure N :

∫
[0;t]×U

f(s, x, u, ω)dN(s, x, u) =
∑

s≤t,(s,x,u)∈N
f(s, x, u, ω).

This sum is well defined, since

E
∑

s≤t,(s,x,u)∈N
|f(s, x, u, ω)| =

∫
[0;t]×U

|f(s, x, u, ω)|dsβ(dx)du <∞

We use dN(s, x, u) and N(ds, dx, du) interchangeably when we integrate over
all variables. The process It(f) is right-continuous as a function of t, and
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adapted. Moreover, the process

Ĩt(f) =

∫
[0;t]×U

f(s, x, u, ω)[dN(s, x, u)− dsβ(dx)du]

is a martingale with respect to (Ft, t ≥ 0), [20, Page 62]. Thus,

E

∫
[0;t]×U

f(s, x, u, ω)dN(s, x, u) = E

∫
[0;t]×U

f(s, x, u, ω)dsβ(dx)du. (1.12)

This equality will be used several times throughout this work.

Remark 1.9. We can extend the collection of integrands, in particular, we
can define

∫
[0;t]×U

f(s, x, u, ω)dN(s, x, u) for f satisfying

E

∫
[0;t]×U

(|f(s, x, u, ω)| ∧ 1)dsβ(dx)du <∞.

However, we do not use such integrands.

The Lebesgue-Stieltjes integral is defined ω-wisely and it is a function of
an integrand and an integrator. As a result, we have the following statement.

The sign
d
= means equality in distribution.

Statement 1.10. Let Mk be Poisson point processes defined on some, possi-
bly different, probability spaces, and let αk be integrands, k = 1, 2, such that

integrals
∫
αkdMk are well defined. If (α1,M1)

d
=(α2,M2), then

∫
α1dM1

d
=

∫
α2dM2.

The proof is straightforward.

1.3.1 An auxiliary construction

Let #̃ be the counting measure on [0, 1], i.e.

#̃C = |C|, C ∈ B([0; 1]).

The measure #̃ is not σ-finite. For a cadlag Γ0(Rd)-valued process (ηt)t∈[0;∞],
adapted to {Ft}t∈[0;∞], we would like to define integrals of the form

∫
Rd×[0;∞]×[0;∞)

I{x∈B∩ηr−}f(x, r, v, ω)dÑ2(x, r, v) (1.13)

whereB is a bounded Borel subset of Rd, f is a bounded predictable process and
Ñ2 is a Poisson point process on Rd× [0;T ]× [0;∞) with intensity #̃×dr×dv,
compatible with {Ft}t∈[0;∞].
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We can not hope to give a meaningful definition for an integral of the type
(1.13), because of the measurability issues. For example, the map

Ω→ R,

ω �→ Ñ2(u(ω), [0; 1], [0; 1]),

where u is an independent of Ñ2 uniformly distributed on [0; 1] random variable,
does not have to be a random variable. Even if it were a random variable, some
undesirable phenomena would appear, see, e.g., [35].

To avoid this difficulty, we employ another construction. A similar ap-
proach was used in [11]. If we could give meaningful definition to the integrals
of the type (1.13), we would expect

∫
Rd×[0;t]×[0;∞)

I{x∈B∩ηr−}f(x, r, v, ω)dÑ2(x, r, v)

−
∫

Rd×[0;t]×[0;∞)

I{x∈B∩ηr−}f(x, r, v, ω)#̃(dx)drdv

to be a martingale (under some conditions on f and B).
Having this in mind, consider a Poisson point process N2 on Z×R+×R+

with intensity # × dr × dv, defined on (Ω,F , {F}t≥0, P ) (here # denotes
the counting measure on Z. This measure is σ-finite). We require N2 to
be compatible with {F}t≥0. Let (ηt)t∈[0,∞] be an adapted cadlag process in

Γ0(Rd), satisfying the following condition: for any T <∞,

RT = |
⋃

t∈[0;T ]
ηt| <∞ a.s. (1.14)

The set R∞ :=
⋃
t∈[0;∞] ηt is at most countable, provided (1.14). Let � be the

lexicographical order on Rd. We can label the points of η0,

η0 = {x0, x−1, . . . , x−q}, x0 � x−1 � . . . � x−q.

There exists an a.s. unique representation

R∞ \ η0 = {x1, x2, . . .}
such that for any n,m ∈ N, n < m, either inf

s≥0
{s : xn ∈ ηs} < inf

s≥0
{s : xm ∈ ηs},

or inf
s≥0
{s : xn ∈ ηs} = inf

s≥0
{s : xm ∈ ηs} and xn � xm. In other words,

as time goes on, appearing points are added to {x1, x2, . . .} in the order in
which they appear. If several points appear simultaneously, we add them in
the lexicographical order.

For the sake of convenience, we set x−i = Δ, i ≤ −q − 1, where Δ /∈ Z.
We say that the sequence {. . . , x−1, x1, x2, . . .} is related to (ηt)t∈[0;∞].

For a predictable process f ∈ L1(Rd × R+ × R+ × Ω) and B ∈ B(Rd),
consider ∫

Z×(t1;t2]×[0;∞)

I{xi∈ηr−∩B}f(xi, r, v, ω)dN2(i, r, v). (1.15)
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Assume that RT is bounded for some T > 0. Then, for a bounded pre-
dictable f ∈ L1(Rd × R+ × R+ × Ω) and B ∈ B(Rd), the process

∫
Z×(0;t]×[0;∞)

I{xi∈ηr−∩B}f(xi, r, v, ω)dN2(i, r, v)

−
∫

Z×(0;t]×[0;∞)

I{xi∈ηr−∩B}f(xi, r, v, ω)#(di)drdv

is a martingale, cf. [20, Page 62].

1.3.2 The strong Markov property of a Poisson point process

We will need the strong Markov property of a Poisson point process. To sim-
plify notations, assume that N is a Poisson point process on R+ × Rd with
intensity measure dt× dx. Let N be compatible with a right-continuous com-
plete filtration {Ft}t≥0, and τ be a finite a.s. {Ft}t≥0-stopping time (stopping
time with respect to {Ft}t≥0). Introduce another Point process N on R+×Rd,

N([0; s]× U) = N((τ ; τ + s]× U), U ∈ B(Rd).

Proposition 1.11. The process N is a Poisson point process with intensity
dt× dx, independent of Fτ .

Proof. To prove the proposition, it is enough to show that
(i) for any b > a > 0 and open bounded U ⊂ Rd, N((a; b), U) is a Poisson

random variable with mean (b− a)β(U), and
(ii) for any bk > ak > 0, k = 1, . . . ,m, and any open bounded Uk ⊂ Rd,

such that ((ai; bi)×Ui)∩ ((aj ; bj)×Uj) = ∅, i �= j, the collection {N((ak; bk)×
Uk)}k=1,m is a sequence of independent random variables, independent of Fτ .

Indeed, N is determined completely by values on sets of type (b−a)β(U),
a, b, U as in (i), therefore it must be an independent of Fτ Poisson point process
if (i) and (ii) hold.

Let τn be the sequence of {Ft}t≥0-stopping times, τn =
k

2n
on {τ ∈

(
k − 1

2n
;
k

2n
]}, k ∈ N. Then τn ↓ τ and τn − τ ≤ 1

2n
. The stopping times τn

take only countably many values. The process N satisfies the strong Markov
property for τn: the processes Nn, defined by

Nn([0; s]× U) := N((τn; τn + s]× U),
are Poisson point processes, independent of Fτn . To prove this, take k with

P{τn = k

2n
} > 0 and note that on {τn = k

2n
}, Nn coincides with process the

Poisson point process Ñ k

2n

given by

Ñ k

2n

([0; s]× U) := N

(
(
k

2n
;
k

2n
+ s]× U)

)
, U ∈ B(Rd).
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Conditionally on {τn = k

2n
}, Ñ k

2n

is again a Poisson point process, with the

same intensity. Furthermore, conditionally on {τn = k

2n
}, Ñ k

2n

is independent

of F k

2n

, hence it is independent of Fτ ⊂ F k

2n

.

To prove (i), note that Nn((a; b)×U)→ N((a; b)×U) a.s. and all random
variables Nn((a; b)× U) have the same distribution, therefore N((a; b)× U) is
a Poisson random variable with mean (b − a)λ(U). The random variables
Nn((a; b) × U) are independent of Fτ , hence N((a; b) × U) is independent of
Fτ , too. Similarly, (ii) follows.

Analogously, the strong Markov property for a Poisson point process on
R+ × N with intensity dt×# may be formulated and proven.

Remark 1.12. We assumed in Proposition 1.11 that the filtration {Ft}t≥0,
compatible with N , is right-continuous and complete. To be able to apply
Proposition 1.11, we should show that such filtrations exist.

Introduce the natural filtration of N ,

F 0
t = σ{Nk(C,B), B ∈ B(Rd), C ∈ B([0; t])},

and let Ft be the completion of F 0
t under P . Then N is compatible with

{Ft}. We claim that {Ft}t≥0, defined in such a way, is right-continuous (this
may be regarded as an analog of Blumenthal 0 − 1 law). Indeed, as in the
proof of Proposition 1.11, one may check that Ña is independent of Fa+. Since
F∞ = σ(Ña) ∨Fa, σ(Ña) and Fa are independent and Fa+ ⊂ F∞, one sees
that Fa+ ⊂ Fa. Thus, Fa+ = Fa.

Remark 1.13. We prefer to work with right-continuous complete filtrations,
because we want to ensure that there is no problem with conditional probabil-
ities, and that the hitting times we will consider are stopping times.

1.4 Miscellaneous

When we write ξ ∼ Exp(λ), we mean that the random variable ξ is exponen-
tially distributed with parameter λ.

Lemma 1.14. If α and β are exponentially distributed random variables with
parameters a and b respectively (notation: α ∼ Exp(a), β ∼ Exp(b) ) and they
are independent, then

P{α < β} = a

a+ b
.

Proof. Indeed,

P{α < β} =
∫ ∞

0

aP{x < β}e−ax = a

∫ ∞

0

e−(a+b)x =
a

a+ b
.

Here are few other properties of exponential distributions. If ξ1, ξ2, . . . , ξn
are independent exponentially distributed random variables with parameters
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c1, . . . , cn respectively, then min
k∈{1,...,n}

ξk is exponentially distributed with pa-

rameter c1 + . . .+ cn. Again, the proof may be done by direct computation. If
ξ1, ξ2, . . . are independent exponentially distributed random variables with pa-
rameter c and α1, α2, . . . is an independent sequence of independent Bernoulli
random variables with parameter p ∈ (0; 1), then the random variable

ξ =

θ∑
i=1

ξi, θ = min{k ∈ N : αk = 1}

is exponentially distributed with parameter
c

p
. The random variable ξ is the

time of the first jump of a thinned Poisson point process with intensity c. The
statement about the distribution of ξ is a consequence of the property that the
independent thinning of a Poisson point process with intensity λ is a Poisson
point process with intensity pλ, see [21, Theorem 12.2,(iv)].

We will also need the result about finiteness of the expectation of the
Yule process. A Yule process (Zt)t≥0 is a pure birth Markov process in Z+
with birth rate μn, μ > 0, n ∈ Z+. That is, if Zt = n, then a birth occur at
rate μn, i.e.

P{Zt+Δt − Zt = 1 | Zt = n} = μn+ o(Δt).

For more details about Yule processes see e.g. [3, Chapter 3], [18, Chapter
5], [2] and references therein. Let (Zt(n))t≥0 be a Yule process started at n.
The process (Zt(n))t≥0 can be considered as a sum of n independent Yule
processes started from 1, see e.g. [2]. The expectation of Zt(1) is finite and
EZt(1) = eμt, see e.g. [3, Chapter 3, Section 6] or [18, Chapter 5, Sections 6,7].
Consequently, if (Zt)t≥0 is a Yule process with EZ0 <∞, then EZt <∞ and
EZt = EZ0e

μt.
Here are some other properties of Poisson point processes which are used

throughout in the article. If N is a Poisson point process on R+ × Rd × R+
with intensity ds× dx× du, then a.s.

∀x ∈ Rd : N(R+ × {x} × R+) ≤ 1. (1.16)

Put differently, no plane of the form R+×{x}×R+ contains more than 1 point
of N . Using the σ-additivity of the probability measure, one can deduce (1.16)
from

∀x ∈ Rd : N([0; 1]× {x} × [0; 1]) ≤ 1. (1.17)

We can write

{
∀x ∈ Rd : N([0; 1]× {x} × [0; 1]) ≤ 1

}

⊃
{
∀k ∈ {0, 1, . . . , n− 1} : N([0; 1]× [

k

n
;
k + 1

n
]× [0; 1]) ≤ 1

}
,
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and then we can compute

P

{
∀k ∈ {0, 1, . . . , n− 1} : N([0; 1]× [

k

n
;
k + 1

n
]× [0; 1]) ≤ 1

}

=
(
P{N([0; 1]× [0;

1

n
]× [0; 1]) ≤ 1}

)n
=

(
exp(− 1

n
)[1 +

1

n
]
)n

=
(
1− o( 1

n
)
)n

= 1− o( 1
n
).

Thus, (1.17) holds.
Let ψ ∈ L1(Rd), ψ ≥ 0. Consider the time until the first arrival

τ = inf{t > 0 :

∫
[0;t]×Rd×R+

I[0;ψ(x)](u)N(ds, dx, du) > 0}. (1.18)

The random variable τ is distributed exponentially with the parameter ||ψ||L1 .
From (1.16) we know that a.s.

N({τ} × Rd × R+) = N
({(τ, x, u) | x ∈ Rd, u ∈ [0;ψ(x)]}) = 1

Let xτ be the unique element of Rd defined by

N({τ} × {xτ} × R+) = 1.

Then

P{xτ ∈ B} =
∫
B
ψ(x)dx∫

Rd ψ(x)dx
, B ∈ B(Rd). (1.19)

1.5 Pure jump type Markov processes

In this section we give a very concise treatment of pure jump type Markov
processes. Most of the definitions and facts given here can be found in [21,
Chapter 12]; see also, e.g., [16, Chapter 3, § 1].

We say that a process X = (Xt)t≥0 in some measurable space (S,S) is of
pure jump type if its paths are a.s. right-continuous and constant apart from
isolated jumps. In that case we may denote the jump times of X by τ1, τ2, . . .,
with understanding that τn = ∞ if there are fewer that n jumps. The times
τn are stopping times with respect to the right-continuous filtration induced
by X. For convenience we may choose X to be the identity mapping on the
canonical path space (Ω,F ) = (S[0;∞),S [0;∞)). When X is a Markov process,
the distribution with initial state x is denoted by Px, and we note that the
mapping x �→ Px(A) is measurable in x, A ∈ Ω.
Theorem. [21, Theorem 12.14] (strong Markov property, Doob). A pure jump
type Markov process satisfies strong Markov property at every stopping time.

We say that a state x ∈ S is absorbing if Px{X ≡ x} = 1.

Theorem. [21, Lemma 12.16]. If x is non-absorbing, then under Px the time
τ1 until the first jump is exponentially distributed and independent of θτ1X.
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Here θt is a shift, and θτ1X defines a new process,

θτ1X(s) = X(s+ τ1).

For a non-absorbing state x, we may define the rate function c(x) and
jump transition kernel μ(x,B) by

c(x) = (Exτ1)
−1, μ(x,B) = Px{Xτ1 ∈ B}, x ∈ S, B ∈ S.

In the sequel, c(x) will also be referred to as jump rate. The kernel cμ is
called a rate kernel.

The following theorem gives an explicit representation of the process in
terms of a discrete-time Markov chain and a sequence of exponentially dis-
tributed random variables. This result shows in particular that the distribution
Px is uniquely determined by the rate kernel cμ. We assume existence of the
required randomization variables (so that the underlying probability space is
“rich enough”).

Theorem. [21, Theorem 12.17] (embedded Markov chain). Let X be a pure
jump type Markov process with rate kernel cμ. Then there exists a Markov
process Y on Z+ with transition kernel μ and an independent sequence of i.i.d.,
exponentially distributed random variables γ1, γ2, . . . with mean 1 such that a.s.

Xt = Yn, t ∈ [τn, τn+1), n ∈ Z+, (1.20)

where

τn =

n∑
k=1

γk
c(Yk−1)

, n ∈ Z+. (1.21)

In particular, the differences between the moments of jumps τn+1 − τn
of a pure jump type Markov process are exponentially distributed given the
embedded chain Y , with parameter c(Yn). If c(Yk) = 0 for some (random) k,
we set τn =∞ for n ≥ k + 1, while Yn are not defined, n ≥ k + 1.

Theorem. [21, Theorem 12.18] (synthesis). For any rate kernel cμ on S
with μ(x, {x}) ≡ 0, consider a Markov chain Y with transition kernel μ and
a sequence γ1, γ2, . . . of independent exponentially distributed random variables

with mean 1, independent of Y . Assume that
∑
n

γn
c(Yn)

= ∞ a.s. for every

initial distribution for Y . Then (1.20) and (1.21) define a pure jump type
Markov process with rate kernel cμ.

Next proposition gives a convenient criterion for non-explosion.

Theorem. [21, Theorem 12.19] (explosion). For any rate kernel cμ and initial
state x, let (Yn) and (τn) be such as in Theorem 12.17. Then a.s.

τn →∞ iff
∑
n

1

c(Yn)
=∞. (1.22)

In particular, τn →∞ a.s. when x is recurrent for (Yn).
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1.6 Markovian functions of a Markov chain

Let (S,B(S)) be a Polish (state) space. Consider a (homogeneous) Markov
chain on (S,B(S)) as a family of probability measures on S∞. Namely, on
the measurable space (Ω,F ) = (S∞,B(S∞)) consider a family of probability
measures {Ps}s∈S such that for the coordinate mappings

Xn : Ω→ S,

Xn(s1, s2, . . .) = sn

the process X = {Xn}n∈Z+
is a Markov chain, and for all s ∈ S
Ps{X0 = s} = 1,

Ps{Xn+mj ∈ Aj , j = 1, . . . , k1 | Fn} = PXn{Xmj ∈ Aj , j = 1, . . . , k1}.
Here Aj ∈ B(S), mj ∈ N, k1 ∈ N, Fn = σ{X1, . . . , Xn}. The space S is

separable, hence there exists a transition probability kernel Q : S ×B(S) →
[0; 1] such that

Q(s,A) = Ps{X1 ∈ A}, s ∈ S, A ∈ B(S).

Consider a transformation of the chain X, Yn = f(Xn), where f : S → Z+
is a Borel-measurable function, with convention B(Z+) = 2Z+ . In the future
we will need to know when the process Y = {Yn}Z+ is a Markov chain. A
similar question appeared for the first time in [4].

A sufficient condition for Y to be a Markov chain is given in the next
lemma.

Lemma 1.15. Assume that for any bounded Borel function h : S → S

Esh(X1) = Eqh(X1) whenever f(s) = f(q), (1.23)

Then Y is a Markov chain.

Remark 1.16. Condition (1.23) is the equality of distributions of X1 under
two different measures, Ps and Pq.

Proof. For the natural filtrations of the processes X and Y we have an inclusion

FX
n ⊃ FY

n , n ∈ N, (1.24)

since Y is a function ofX. For k ∈ N and bounded Borel functions hj : Z+ → R,
j = 1, 2, . . . , k (any function on Z+ is a Borel function),

Es

⎡
⎣ k∏
j=1

hj(Yn+j) | FX
n

⎤
⎦ = EXn

k∏
j=1

hj(f(Xj))

=

∫
S

Q(x0, dx1)h1(f(x1))

∫
S

Q(x1, dx2)h2(f(x2)) . . .

×
∫
S

Q(xn−1, dxn)hn(f(xn))

∣∣∣∣∣
x0=Xn

(1.25)
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To transform the last integral, we introduce a new kernel: for y ∈ f(S)
chose x ∈ S with f(x) = y, and then for B ⊂ Z+ define

Q(y,B) = Q(x, f−1(B)); (1.26)

The expression on the right-hand side does not depend on the choice of x
because of (1.23). To make the kernel Q defined on Z+ ×B(Z+), we set

Q(y,B) = I{0∈B}, y /∈ f(S).
Then from the change of variables formula for the Lebesgue integral it

follows that the last integral in (1.25) allows the representation∫
S

Q(xn−1, dxn)hn(f(xn)) =
∫
Z+

Q(f(xn−1), dzn)hn(zn).

Likewise, we set zn−1 = f(xn−1) in the next to last integral:∫
S

Q(xn−2, dxn−1)hn(f(xn−1))
∫
S

Q(xn−1, dxn)hn(f(xn))

=

∫
S

Q(xn−2, dxn−1)hn(f(xn−1))
∫
Z+

Q(f(xn−1), dzn)hn(zn)

=

∫
Z+

Q(f(xn−2), dzn−1)hn(zn−1)
∫
Z+

Q(zn−1, dzn)hn(zn).

Further proceeding, we get∫
S

Q(x0, dx1)h1(f(x1))

∫
S

Q(x1, dx2)h2(f(x2)) . . .

∫
S

Q(xn−1, dxn)hn(f(xn))

=

∫
Z+

Q(z0, dz1)h1(z1)

∫
Z+

Q(z1, dz2)h2(z2) . . .

∫
Z+

Q(zn−1, dzn)hn(zn),

where z0 = f(x0).
Thus,

Es

⎡
⎣ k∏
j=1

hj(Yn+j) | FX
n

⎤
⎦

=

∫
Z+

Q(f(X0), dz1)h1(z1)

∫
Z+

Q(z1, dz2)h2(z2) . . .

∫
Z+

Q(zn−1, dzn)hn(zn).

This equality and (1.24) imply that Y is a Markov chain.

Remark 1.17. The kernel Q and the chain f(Xn) are related: for all s ∈ S,
n,m ∈ N and M ⊂ N,

Ps{f(Xn+1) ∈M | f(Xn) = m} = Q(m,M)

whenever Ps{f(Xn+1) = m} > 0. Informally, one may say that Q is the
transition probability kernel for the chain {f(Xn)}n∈Z+

.

Remark 1.18. Clearly, this result holds for a Markov chain which is not
necessarily defined on a canonical state space, because the property of a process
to be a Markov chain depends on its distribution only.
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2 A birth-and-death process in the space of
finite configurations: construction and basic
properties

We would like to construct a Markov process in the space of finite configurations
Γ0(Rd), with a heuristic generator of the form

LF (η) =

∫
x∈Rd

b(x, η)[F (η ∪ x)− F (η)]dx

+
∑
x∈η

d(x, η)(F (η \ x)− F (η)). (2.1)

for F in an appropriate domain. We call the functions b : Rd×Γ0(Rd)→ [0;∞)
and d : Rd × Γ0(Rd) → [0;∞) the birth rate coefficient and the death rate
coefficient, respectively. Theorem 2.16 summarizes the main results obtained
in this section.

To construct a spatial birth-and-death process, we consider the stochastic
equation with Poisson noise

ηt(B) =

∫
B×(0;t]×[0;∞]

I[0;b(x,ηs−)](u)dN1(x, s, u)

−
∫

Z×(0;t]×[0;∞)

I{xi∈ηr−∩B}I[0;d(xi,ηr−)](v)dN2(i, r, v) + η0(B), (2.2)

where (ηt)t≥0 is a suitable cadlag Γ0(Rd)-valued stochastic process, the “solu-
tion” of the equation, B ∈ B(Rd) is a Borel set, N1 is a Poisson point process
on Rd×R+×R+ with intensity dx× ds× du, N2 is a Poisson point process on
Z×R+×R+ with intensity #×dr×dv ; η0 is a (random) finite initial configura-
tion, b, d : Rd × Γ0(R

d)→ [0;∞) are functions measurable with respect to the
product σ-algebra B(R)×B(Γ0(R)), and the sequence {. . . , x−1, x0, x1, . . .} is
related to (ηt)t∈[0;∞], as described in Section 1.3.1. We require the processes
N1, N2, η0 to be independent of each other. Equation (2.2) is understood in
the sense that the equality holds a.s. for every bounded B ∈ B(Rd) and t ≥ 0.

As it was said in the preliminaries on Page 9, we identify a finite configu-
ration with a finite simple counting measure, so that a configuration γ acts as
a measure in the following way:

γ(A) = |γ ∩A|, A ∈ B(Rd).

We will treat an element of Γ0(Rd) both as a set and as a counting mea-
sure, as long as this does not lead to ambiguity. An appearing of a new point
will be interpreted as a birth, and a disappearing will be interpreted as a death.
We will refer to points of ηt as particles.

Some authors write d̃(x, η \x) where we write d(x, η), so that (2.1) trans-
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lates to

LF (η) =

∫
x∈Rd

b(x, η)[F (η ∪ x)− F (η)]dx

+
∑
x∈η

d̃(x, η \ x)(F (η \ x)− F (η)), (2.3)

see e.g. [36], [10].
These settings are formally equivalent: the relation between d and d̃ is

given by
d(x, η) = d̃(x, η \ x), η ∈ Γ0(Rd), x ∈ η,

or, equivalently,

d(x, ξ ∪ x) = d̃(x, ξ), ξ ∈ Γ0(Rd), x ∈ Rd \ ξ.
The settings used here appeared in [19], [14], etc.
We define the cumulative death rate at ζ by

D(ζ) =
∑
x∈ζ

d(x, ζ), (2.4)

and the cumulative birth rate by

B(ζ) =

∫
x∈Rd

b(x, ζ)dx. (2.5)

Definition 2.1. A (weak) solution of equation (2.2) is a triple ((ηt)t≥0, N1, N2),
(Ω,F , P ), ({Ft}t≥0), where

(i) (Ω,F , P ) is a probability space, and {Ft}t≥0 is an increasing, right-
continuous and complete filtration of sub - σ - algebras of F ,

(ii) N1 is a Poisson point process on Rd × R+ × R+ with intensity dx ×
ds× du,

(iii)N2 is a Poisson point process on Z×R+×R+ with intensity #×ds×du,
(iv) η0 is a random F0-measurable element in Γ0(Rd),
(v) the processes N1, N2 and η0 are independent, the processes N1 and

N2 are compatible with {Ft}t≥0,
(vi) (ηt)t≥0 is a cadlag Γ0(Rd)-valued process adapted to {Ft}t≥0, ηt

∣∣
t=0

=
η0,

(vii) all integrals in (2.2) are well-defined, and
(viii) equality (2.2) holds a.s. for all t ∈ [0;∞] and all bounded Borel sets

B, with {xm}m∈Z being the sequence related to (ηt)t≥0.
Note that due to Statement 1.10 item (viii) of this definition is a statement

about the joint distribution of (ηt), N1, N2.
Let

C 0
t = σ

{
η0, N1(B, [0; q], C), N2(i, [0; q], C);

B ∈ B(Rd), C ∈ B(R+), q ∈ [0; t], i ∈ Z
}
,

and let Ct be the completion of C 0
t under P . Note that {Ct}t≥0 is a right-

continuous filtration, see Remark 1.12.
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Definition 2.2. A solution of (2.2) is called strong if (ηt)t≥0 is adapted to
(Ct, t ≥ 0).

Remark 2.3. In the definition above we considered solutions as processes
indexed by t ∈ [0;∞). The reformulations for the case t ∈ [0;T ], 0 < T <∞,
are straightforward. This remark applies to the results below, too.

Sometimes only the solution process (that is, (ηt)t≥0) will be referred to
as a (strong or weak) solution, when all the other structures are clear from the
context.

We will say that the existence of strong solution holds, if on any prob-
ability space with given N1, N2, η0, satisfying (i)-(v) of Definition (2.1), there
exists a strong solution.

Definition 2.4. We say that pathwise uniqueness holds for equation (2.2) and
an initial distribution ν if, whenever the triples ((ηt)t≥0, N1, N2), (Ω,F , P ),
({Ft}t≥0) and ((η̄t)t≥0, N1, N2), (Ω,F , P ), ({F̄t}t≥0) are weak solutions of
(2.2) with P{η0 = η̄0} = 1 and Law(η) = ν, we have P{ηt = η̄t, t ∈ [0;T ]} = 1
(that is, the processes η, η̄ are indistinguishable).

We assume that the birth rate b satisfies the following conditions: sublin-
ear growth on the second variable in the sense that∫

Rd

b(x, η)dx ≤ c1|η|+ c2, (2.6)

and let d satisfy
∀m ∈ N : sup

x∈Rd,|η|≤m
d(x, η) <∞. (2.7)

We also assume that
E|η0| <∞. (2.8)

By a non-random initial condition we understand an initial condition with
a distribution, concentrated at one point: for some η′ ∈ Γ0(Rd),

P{η0 = η′} = 1.

From now on, we work on a filtered probability space (Ω,F , ({Ft}t≥0), P ).
On this probability space, the Poisson point processes N1, N2 and η0 are de-
fined, so that the whole set-up satisfies (i)-(v) of Definition 2.1.

Let us now consider the equation

ηt(B) =

∫
B×(0;t]×[0;∞]

I[0;b(x,ηs)]dN(x, s, u) + η0(B), (2.9)

where b(x, η) := sup
ξ⊂η

b(x, ξ). Note that b satisfies sublinear growth condition

(2.6), if b satisfies it.
This equation is of the type (2.2) (with b being the birth rate coefficient,

and the zero function being the death rate coefficient), and all definitions of ex-
istence and uniqueness of solution are applicable here. Later a unique solution
of (2.9) will be used as a majorant of a solution to (2.2).
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Proposition 2.5. Under assumptions (2.6) and (2.8), strong existence and
pathwise uniqueness hold for equation (2.9). The unique solution (η̄t)t≥0 sat-
isfies

E|η̄t| <∞, t ≥ 0. (2.10)

Proof. For ω ∈ {∫
Rd

b(x, η0)dx = 0}, set ζt ≡ η0, σn =∞, n ∈ N.

For ω ∈ F := {∫
Rd

b(x, η0)dx > 0}, we define the sequence of random pairs

{(σn, ζσn
)}, where σ0 = 0,

σn+1 = inf

{
t > 0 :

∫
Rd×(σn;σn+t]×[0;∞)

I[0;b(x,ζσn )]
(u)dN1(x, s, u) > 0

}
+ σn,

and
ζ0 = η0, ζσn+1

= ζσn
∪ {zn+1}

for zn+1 = {x ∈ Rd : N1(x, σn+1, [0; b(x, ζσn)]) > 0}. From (1.16) it follows
that the points zn are uniquely determined almost surely on F . Moreover,
σn+1 > σn a.s., and σn are finite a.s. on F (particularly because b(x, ζσn

) ≥
b(x, η0)). For ω ∈ F , we define ζt = ζσn

for t ∈ [σn;σn+1). Then by induction
on n it follows that σn is a stopping time for each n ∈ N, and ζσn

is Fσn
∩ F -

measurable. By direct substitution we see that (ζt)t≥0 is a strong solution for
(2.9) on the time interval t ∈ [0; lim

n→∞σn). Although we have not defined what
is a solution, or a strong solution, on a random time interval, we do not discuss
it here. Instead we are going to show that

lim
n→∞σn =∞ a.s. (2.11)

This relation is evidently true on the complement of F . If P (F ) = 0, then
(2.11) is proven.

If P (F ) > 0, define a probability measure on F , Q(A) =
P (A)

P (F )
, A ∈

S := F ∩ F , and define St = Ft ∩ F .
The process N1 is independent of F , therefore it is a Poisson point pro-

cess on (F,S , Q) with the same intensity, compatible with {St}t≥0. From
now on and until other is specified, we work on the filtered probability space
(F,S , {St}t≥0, Q). We use the same symbols for random processes and ran-
dom variables, having in mind that we consider their restrictions to F .

The process (ζt)t∈[0; lim
n→∞σn) has the Markov property, because the pro-

cess N1 has the strong Markov property and independent increments. Indeed,
conditioning on Sσn

,

E
[
I{ζσn+1

=ζσn∪x for some x∈B} | Sσn

]
=

∫
B

b(x, ζσn)dx∫
Rd

b(x, ζσn)dx
,

thus the chain {ζσn
}n∈Z+

is a Markov chain, and, given {ζσn
}n∈Z+

, σn+1− σn
are distributed exponentially:

E{I{σn+1−σn>a} | {ζσn
}n∈Z+} = exp

{
−a

∫
Rd

b(x, ζσn)dx

}
.
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Therefore, the random variables γn = (σn − σn−1)(
∫
Rd

b(x, ζσn
)dx) constitute

a sequence of independent random variables exponentially distributed with
parameter 1, independent of {ζσn}n∈Z+ . Theorem 12.18 in [21] (see above)
implies that (ζt)t∈[0; lim

n→∞σn) is a pure jump type Markov process.

The jump rate of (ζt)t∈[0; lim
n→∞σn) is given by

c(α) =

∫
Rd

b(x, α)dx.

Condition (2.6) implies that c(α) ≤ c1|α|+ c2. Consequently,

c(ζσn
) ≤ c1|ζσn

|+ c2 = c1|ζ0|+ c1n+ c2.

We see that
∑
n

1

c(ζσn
)
= ∞ a.s., hence Proposition 12.19 in [21] (given

in Section 1.5) implies that σn →∞.
Now, we return again to our initial probability space (Ω,F , {Ft}t≥0, P ).
Thus, we have existence of a strong solution. Uniqueness follows by in-

duction on jumps of the process. Indeed, let (ζ̃t)t≥0 be another solution of
(2.9). From (viii) of Definition 2.1 and equality

∫
Rd×(0;σ1)×[0;∞]

I[0;b(x,η0)]dN1(x, s, u) = 0,

one can see that P{ζ̃ has a birth before σ1} = 0. At the same time, equality

∫
Rd×{σ1}×[0;∞]

I[0;b(x,η0)]dN1(x, s, u) = 1,

which holds a.s., yields that ζ̃ has a birth at the moment σ1, and in the same
point of space at that. Therefore, ζ̃ coincides with ζ up to σ1 a.s. Similar
reasoning shows that they coincide up to σn a.s., and, because σn →∞ a.s.,

P{ζ̃t = ζt for all t ≥ 0} = 1.

Thus, pathwise uniqueness holds. The constructed solution is strong.
Now we turn our attention to (2.10). We can write

|ζt| = |η0|+
∞∑
n=1

I{|ζt| − |η0| ≥ n} = |η0|+
∞∑
n=1

I{σn ≤ t}. (2.12)

Since

σn =

n∑
i=1

γi∫
Rd

b(x, ζσi
)dx

,
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we have

{σn ≤ t} = {
n∑
i=1

γi∫
Rd

b(x, ζσi
)dx

≤ t} ⊂ {
n∑
i=1

γi
c1|ζσi

|+ c2
≤ t}

⊂ {
n∑
i=1

γi
(c1 + c2)(|η0|+ i)

≤ t} = {Zt − Z0 ≥ n},

where (Zt) is the Yule process (see Page 22) with birth rate defined as follows:
Zt − Z0 = n when

n∑
i=1

γi
(c1 + c2)(|η0|+ i)

≤ t <
n+1∑
i=1

γi
(c1 + c2)(|η0|+ i)

,

and Z0 = |η0|. Thus, we have |ζt| ≤ Zt a.s., hence E|ζt| ≤ EZt <∞.

Theorem 2.6. Under assumptions (2.6)-(2.8), pathwise uniqueness and strong
existence hold for equation (2.2). The unique solution (ηt) is a pure jump type
process satisfying

E|ηt| <∞, t ≥ 0. (2.13)

Proof. Let us define stopping times with respect to {Ft, t ≥ 0}, 0 = θ0 ≤ θ1 ≤
θ2 ≤ θ3 ≤ . . ., and the sequence of (random) configurations {ηθj}j∈N as follows:
as long as

B(ηθn) +D(ηθn) > 0,

we set
θn+1 = θbn+1 ∧ θdn+1 + θn,

θbn+1 = inf{t > 0 :

∫
Rd×(θn;θn+t]×[0;∞)

I[0;b(x,ηθn )](u)dN1(x, s, u) > 0},

θdn+1 = inf{t > 0 :

∫
(θn;θn+t]×[0;∞)

I{xi∈ηθn}I[0;d(xi,ηθn )]
(v)dN2(i, r, v) > 0},

ηθn+1
= ηθn ∪ {zn+1} if θbn+1 ≤ θdn+1, where {zn+1} = {z ∈ Rd : N1(z, θn +

θbn+1,R+) > 0}; ηθn+1
= ηθn \ {zn+1} if θbn+1 > θdn+1, where {zn+1} = {xi ∈

ηθn : N2(i, θn + θdn+1,R+) > 0}; the configuration ηθ0 = η0 is the initial condi-
tion of (2.2), ηt = ηθn for t ∈ [θn; θn+1), {xi} is the sequence related to (ηt)t≥0.
Note that

P{θbn+1 = θdn+1 for some n | B(ηθn) +D(ηθn) > 0} = 0,

the points zn are a.s. uniquely determined, and

P{zn+1 ∈ ηθn | θbn+1 ≤ θdn+1} = 0.

If for some n
B(ηθn) +D(ηθn) = 0,

then we set θn+k =∞, k ∈ N, and ηt = ηθn , t ≥ θn.
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As in the proof of Proposition 2.5, (ηt) is a strong solution of (2.2), t ∈
[0; limn θn).

Random variables θn, n ∈ N, are stopping times with respect to the filtra-
tion {Ft, t ≥ 0}. Using the strong Markov property of a Poisson point process,
we see that, on {θn < ∞}, the conditional distribution of θbn+1 given Fθn

is exp(
∫
Rd

b(x, ηθn)dx), and the conditional distribution of θdn+1 given Fθn is

exp(
∑

x∈ηθn
d(x, ηθn)). In particular, θ

b
n, θ

d
n > 0, n ∈ N, and the process (ηt) is of

pure jump type.
Similarly to the proof of Proposition 2.5, one can show by induction on n

that equation (2.2) has a unique solution on [0; θn]. Namely, each two solutions
coincide on [0; θn] a.s. Thus, any solution coincides with (ηt) a.s. for all t ∈
[0; θn].

Now we will show that θn →∞ a.s. as n→∞. Denote by θ′k the moment
of the k-th birth. It is sufficient to show that θ′k → ∞, k → ∞, because only
finitely many deaths may occur between any two births, since there are only
finitely particles. By induction on k′ one may see that {θ′k}k′∈N ⊂ {σi}i∈N,
where σi are the moments of births of (ηt)t≥0, the solution of (2.9), and ηt ⊂ ηt
for all t ∈ [0; limn θn). For instance, let us show that (ηt)t≥0 has a birth at θ

′
1.

We have ηθ′1− ⊃ η0 = η0, and ηθ′1− ⊂ ηt |t=0= η0, hence for all x ∈ Rd

b(x, ηθ′1−) ≥ b(x, ηθ′1−) ≥ b(x, ηθ′1−)

The latter implies that at time moment θ′1 a birth occurs for the process
(ηt)t≥0 in the same point. Hence, ηθ′1 ⊂ ηθ′1 , and we can go on. Since σk →∞
as k →∞, we also have θ′k →∞, and therefore θn →∞, n→∞.

Since ηt ⊂ ηt a.s., Proposition 2.5 implies (2.13).

In particular, for any time t the integral∫
Rd×(0;t]×[0;∞]

I[0;b(x,ηs−)](u)dN1(x, s, u)

is finite a.s.

Remark 2.7. Let η0 be a non-random initial condition, η0 ≡ α, α ∈ Γ0(Rd).
The solution of (2.2) with η0 ≡ α will be denoted as (η(α, t))t≥0. Let Pα be
the push-forward of P under the mapping

Ω � ω �→ (η(α, ·)) ∈ DΓ0(Rd)[0;T ]. (2.14)

From the proof one may derive that, for fixed ω ∈ Ω, constructed unique
solution is jointly measurable in (t, α). Thus, the family {Pα} of probability
measures on DΓ0(Rd)[0;T ] is measurable in α. We will often use formulations
related to the probability space (DΓ0(Rd)[0;T ],B(DΓ0(Rd)[0;T ]), Pα); in this
case, coordinate mappings will be denoted by ηt,

ηt(x) = x(t), x ∈ DΓ0(Rd)[0;T ].

The processes (ηt)t∈[0;T ] and (η(α, ·))t∈[0;T ] have the same law (under Pα
and P , respectively). As one would expect, the family of measures {Pα, α ∈
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Γ0(Rd)} is a Markov process, or a Markov family of probability measures; see
Theorem 2.15 below. For a measure μ on Γ0(Rd), we define

Pμ =

∫
Pαμ(dα).

We denote by Eμ the expectation under Pμ.

Remark 2.8. Let b1, d1 be another pair of birth and death coefficients, sat-
isfying all conditions imposed on b and d. Consider a unique solution (η̃t)
of (2.2) with coefficients b1, d1 instead of b, d, but with the same initial con-
dition η0 and all the other underlying structures. If for all ζ ∈ D, where
D ∈ B(Γ0(Rd)) , b1(·, ζ) ≡ b(·, ζ), d1(·, ζ) ≡ d(·, ζ), then η̃t = ηt for all
t ≤ inf{s ≥ 0 : ηs /∈ D} = inf{s ≥ 0 : η̃s /∈ D}. This may be proven in the
same way as the theorem above.

Remark 2.9. Assume that all the conditions of Theorem 2.6 are fulfilled except
Condition (2.8). Then we could not claim that (2.13) holds. However, other
conclusions of the theorem would hold. We are mostly interested in the case
of a non-random initial condition, therefore we do not discuss the case when
(2.13) is not satisfied.

Remark 2.10. We solved equation (2.2) ω-wisely. As a consequence, there is
a functional dependence of the solution process and the “input”: the process
(ηt)t≥0 is some function of η0, N1 and N2. Note that θn and zn from the proof
of Theorem 2.6 are measurable functions of η0, N1 and N2 in the sense that,
e.g., θ1 = F1(η0, N1, N2) a.s. for a measurable F1 : Γ0(Rd) × Γ(Rd × R+ ×
R+)× Γ(Zd × R+ × R+)→ R+.

Proposition 2.11. If (ηt)t≥0 is a solution to equation (2.2), then the inequality

E|ηt| < (c2t+ E|η0|)ec1t

holds for all t > 0.

Proof. We already know that E|ηt| is finite. Since ηt satisfies equation (2.2)
we have

ηt(B) =

∫
B×(0;t]×[0;∞]

I[0;b(x,ηs−)](u)dN1(x, s, u)

−
∫

Z×(0;t]×[0;∞)

I{xi∈ηr−∩B}I[0;d(xi,ηr−)](v)dN2(i, r, v)

≤
∫

B×(0;t]×[0;∞]

I[0;b(x,ηs−)](u)dN1(x, s, u) + η0(B).

For B = Rd, taking expectation in the last inequality, we obtain

E|ηt| = Eηt(Rd) ≤ E

∫
Rd×(0;t]×[0;∞]

I[0;b(x,ηs−)](u)dN1(x, s, u) + Eη0(Rd)
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= E

∫
Rd×(0;t]×[0;∞]

I[0;b(x,ηs−)](u)dxdsdu+ Eη0(Rd)

= E

∫
Rd×(0;t]

b(x, ηs−)dxds+ Eη0(Rd).

Since η is a solution of (2.2), we have for all s ∈ [0; t] almost surely
ηs− = ηs. Consequently, E|ηs−| = E|ηs|. Applying this and (2.6), we see that

Eηt(Rd) ≤ E

∫
(0;t]

(c1|ηs−|+ c2)ds+ Eη0(Rd) = c1

∫
(0;t]

E|ηs|ds+ c2t+ Eη0(Rd),

so the statement of the lemma follows from (2.8) and Gronwall’s inequality.

Definition 2.12. We say that joint uniqueness in law holds for equation (2.2)
with an initial distribution ν if any two (weak) solutions ((ηt), N1, N2) and
((ηt)

′, N ′1, N
′
2) of (2.2), Law(η0) = Law((η0)

′) = ν, have the same joint distri-
bution:

Law((ηt), N1, N2) = Law((ηt)
′, N ′1, N

′
2).

The following corollary is a consequence of Theorem 2.6 and Remark 2.10
.

Corollary 2.13. Joint uniqueness in law holds for equation (2.2) with initial
distribution ν satisfying

∫
Γ0(Rd)

|γ|ν(dγ) <∞.

Remark 2.14. We note here that altering the order of the initial configuration
does not change the law of the solution. We could replace the lexicographical
order with any other. To see this, note that if ς is a permutation of Z (that is,
ς : Z→ Z is a bijection), then the process Ñ2 defined by

Ñ2(K,R, V ) = N2(ςK,R, V ), K ⊂ Z, R, V ∈ B(R+), (2.15)

has the same law as N2, and is adapted to {Ft}t≥0, too. Therefore, so-

lutions of (2.2) and of (2.2) with N2 being replaced by Ñ2 have the same
law. But replacing N2 with Ñ2 in equation (2.2) is equivalent to replacing
{x−|η0|+1, . . . , x0, x1, . . .} with

{xς−1(−|η0|+1), . . . , xς−1(0), xς−1(1), . . .}.

Let ν be a distribution on Γ0(Rd), and let T > 0. Denote by L (ν, b, d, T )
the law of the restriction (ηt)t∈[0;T ] of the unique solution (ηt)t≥0 to (2.2) with
an initial condition distributed according to ν. Note that L (ν, b, d, T ) is a
distribution on DΓ0(Rd)([0;T ]). As usually, the Markov property of a solution
follows from uniqueness.

Theorem 2.15. The unique solution (ηt)t∈[0;T ] of (2.2) is a Markov process.
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Proof. Take arbitrary t′ < t, t′, t ∈ [0;T ]. Consider the equation

ξt(B) =

∫
B×(t′;t]×[0;∞]

I[0;b(x,ξs−)](u)dN1(x, s, u)

−
∫

Z×(t′;t]×[0;∞)

I{x′i∈ξr−∩B}I[0;d(x′i,ξr−)]dN2(i, r, v) + ηt′(B), (2.16)

where the sequence {x′i} is related to the process (ξs)s∈[0;t], ξs = ηs. The unique
solution of (2.16) is (ηs)s∈[t′;t]. As in the proof of Theorem 2.6 we can see that
(ηs)s∈[t′;t] is measurable with respect to the filtration generated by the random
variables N1(B, [s; q], U), N2(i, [s; q], U), and ηt′(B), where B ∈ B(Rd), i ∈
Z, t′ ≤ s ≤ q ≤ t, U ∈ B(R+). Poisson point process have independent
increments, hence

P{(ηt)t∈[s;T ] ∈ U | Fs} = P{(ηt)t∈[s;T ] ∈ U | ηs}
almost surely. Furthermore, using arguments similar to those in Remark 2.14,
we can conclude that (ηs)s∈[t′;t] is distributed according to L (νt′ , b, d, t − t′),
where νt′ is the distribution of ηt′ .

The following theorem sums up the results we have obtained so far.

Theorem 2.16. Under assumptions (2.6), (2.7), (2.8), equation (2.2) has a
unique solution. This solution is a pure jump type Markov process. The family
of push-forward measures {Pα, α ∈ Γ0(Rd)} defined in Remark 2.7 forms a
Markov process, or a Markov family of probability measures, on DΓ0(Rd)[0;∞).

Proof. The statement is a consequence of Theorem 2.6, Remark 2.7 and Theo-
rem 2.15. In particular, the Markov property of {Pα, α ∈ Γ0(Rd)} follows from
the statement given in the last sentence of the proof of Theorem 2.15.

We call the unique solution of (2.2) (or, sometimes, the corresponding
family of measures on DΓ0(Rd)[0;∞)) a (spatial) birth-and-death Markov pro-
cess.

Remark 2.17. We note that d does not need to be defined on the whole
space Rd × Γ0(Rd). The equation makes sense even if d(x, η) is defined on
{(x, η) | x ∈ η}. Of course, any such function may be extended to a function
on Rd × Γ0(Rd).

2.1 Continuous dependence on initial conditions

In order to prove the continuity of the distribution of the solution of (2.2) with
respect to initial conditions, we make the following continuity assumptions on
b and d.

Continuity assumptions 2.18. Let b, d be continuous with respect to both
arguments. Furthermore, let the map

Γ0(Rd) � η �→ b(·, η) ∈ L1(Rd).
be continuous.
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In light of Remark 2.17, let us explain what we understand by continuity
of d when d(x, η) is defined only on {(x, η) | x ∈ η}. We require that, whenever
ηn → η and ηn � zn → x ∈ η, we also have d(zn, ηn) → d(x, η). Similar
condition appeared in [19, Theorem 3.1].

Theorem 2.19. Let the birth and death coefficients b and d satisfy the above
continuity assumptions 2.18. Then for every T > 0 the map

Γ0(Rd) � α �→ Law{η(α, ·)·, · ∈ (0;T ]},
which assigns to a non-random initial condition η0 = α the law of the solution
of equation (2.2) stopped at time T , is continuous.

Remark 2.20. We mean continuity in the space of measures on DΓ0(Rd)[0;T ];
see Page 16.

Proof. Denote by η(α, · ) the solution of (2.2), started from α. Let αn → α,
αn, α ∈ Γ0(Rd), α = {x0, x−1, . . . , x−|α|+1}, x0 � x−1 � . . . � x−|α|+1. With
no loss in generality we assume that |αn| = |α|, n ∈ N. By Lemma 1.6 we

can label elements of αn, αn = {x(n)0 , x
(n)
−1 , . . . , x

(n)
−|α|+1}, so that x(n)−i → x−i,

i = 0, . . . , |α| − 1. Taking into account Remark 2.14, we can assume

x
(n)
0 � x

(n)
−1 � . . . � x

(n)
−|α|+1 (2.17)

without loss of generality (in the sense that we do not have to use lexicograph-

ical order; not in the sense that we can make x
(n)
0 , x

(n)
−1 , . . . satisfy (2.17) with

the lexicographical order).
We will show that

sup
t∈[0;T ]

dist(η(α, t), η(αn, t))
p→ 0, n→∞. (2.18)

Let {θi}i∈N be the moments of jumps of process η(α, · ). Without loss of
generality, assume that d(x, α) > 0, x ∈ α, and ||b(·, α)||L1 > 0, L1 := L1(Rd)
(if some of these inequalities are not fulfilled, the following reasonings should
be changed insignificantly).

Depending on whether a birth or a death occurs at θ1, we have either

N1({x1} × {θ1} × [0; b(x1, η0)]) = 1 (2.19)

or for some x−k ∈ α
N2({−k} × {θ1} × [0; d(x−k, α)]) = 1.

The probability of last two equalities holding simultaneously is zero, hence
we can neglect this event. In both cases N1(x1, {θ1}, {b(x1, α)}) = 0 and
N2(−k, {θ1}, {d(x−k, α)}) = 0 a.s. We also have

N1(Rd × [0; θ1)× [0; b(x, α)]) = 0,

and for all j ∈ 0, 1, . . . , |α| − 1

N2({−j} × [0; θ1)× [0; d(x−j , α)]) = 0.
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Denote

m := b(x1, α) ∧min{d(x, α) : x ∈ α} ∧ ||b(·, α)||L1 ∧ 1
and fix ε > 0. Let δ1 > 0 be so small that for ν ∈ Γ0(Rd), ν = {x′0, x′−1, . . . , x′−|α|+1},
|x−j − x′−j | ≤ δ1 the inequalities

|d(x′−j , ν)− d(x−j , α)| < εm, ||b(·, ν)− b(·, α)||L1 < εm

hold. Then we may estimate

P

{ ∫
Rd×[0;θ1)×[0;∞]

I[0;b(x,ν)](u)dN1(x, s, u) ≥ 1

}
< ε. (2.20)

and

P

{ ∫
Z×[0;θ1)×[0;∞]

I{x′−i∈ν}I[0;d(x′−i,ν)]
(v)dN2(i, r, v) ≥ 1

}
< ε|α|. (2.21)

Indeed, the random variable

θ̃ := inf
t>0

{ ∫
Rd×[0;t)×[0;∞]

I[0;0∨{b(x,ν)−b(x,α})](u)dN1(x, s, u) ≥ 1

}
(2.22)

is exponentially distributed with parameter ||(b(·, ν)−b(·, α))+||L1 < ε||b(·, α)||L1 .
By Lemma 1.14,

P{θ̃ < θ1} < ε||b(·, α)||L1

||b(·, α)||L1

= ε, (2.23)

which is exactly (2.20). Likewise, (2.21) follows.
Similarly, the probability that the same event as for η(α, ·) occurs at time

θ1 for η(ν, ·) is high. Indeed, assume, for example, that a birth occurs at θ1,
that is to say that (2.19) holds. Once more using Lemma 1.14 we get

P{N1({x1} × {θ1} × [0; b(x1, ν)]) = 0} ≤ ||(b(·, ν)− b(·, α))+||L1

||b(·, α)||L1

≤ ε.

The case of death occurring at θ1 may be analyzed in the same way.
From inequalities (1.6) and (1.7) we may deduce

sup
t∈(0;θ1]

dist(η(α, t), η(αn, t))
p→ 0, n→∞. (2.24)

Proceeding in the same manner we may extend this to

sup
t∈(0;θn]

dist(η(α, t), η(αn, t))
p→ 0, n→∞, (2.25)

particularly because of the strong Markov property of a Poisson point process.
In fact, with high probability the processes η(αn, · ) and η(α, · ) change up to
time θn in the same way in the following sense: births occur in the same places
at the same time moments. Deaths occur at the same time moments, and when
a point is deleted from η(α, · ), then its counterpart is deleted from η(αn, · ).
Since θn →∞, we get (2.18).
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Remark 2.21. In fact, we have proved an even stronger statement. Namely,

take αn → α. Then there exist processes (ξ
(n)
t )t∈[0;T ] such that

(ξ
(n)
t )t∈[0;T ]

d
=(η(αn, t))t∈[0;T ]

and
sup
t∈[0;T ]

dist(η(α, t), ξ
(n)
t )

p→ 0, n→∞.

Thus, Law{η(α, · ), · ∈ (0;T ]} and Law{η(αn, · ), · ∈ (0;T ]} are close in the
space of measures over DΓ0

, even when DΓ0
is considered as topological space

equipped with the uniform topology (induced by metric dist), and not with
the Skorokhod topology.

2.2 The martingale problem

Now we briefly discuss the martingale problem associated with L defined in
(2.1). Let Cb(Γ0(Rd)) be the space of all bounded continuous functions on
Γ0(Rd). We equip Cb(Γ0(Rd)) with the supremum norm.

Definition 2.22. A probability measure Q on (DΓ0
[0;∞),B(DΓ0

[0;∞))) is
called a solution to the local martingale problem associated with L if

Mf
t = f(y(t))− f(y(0))−

t∫
0

Lf(y(s−))ds, It, 0 ≤ t <∞,

is a local martingale for every f ∈ Cb(Γ0). Here y is the coordinate mapping,
y(t)(ω) = ω(t), ω ∈ DΓ0 [0;∞), It is the completion of σ(y(s), 0 ≤ s ≤ t)
under Q.

Thus, we require Mf to be a local martingale under Q with respect to
{It}t≥0. Note that L can be considered as a bounded operator on Cb(Γ0(Rd)).

Proposition 2.23. Let (η(α, t))t≥0 be a solution to (2.2). Then for every
f ∈ C(Γ0) the process

Mf
t = f(η(α, t))− f(η(α, t))−

t∫
0

Lf(η(α, s−))ds (2.26)

is a local martingale under P with respect to {Ft}t≥0.
Proof. In this proof ζt will stand for η(α, t). Denote τn = inf{t ≥ 0 : |ζt| >
n or ζt � [−n;n]d}. Clearly, τn, n ∈ N, is a stopping time and τn → ∞ a.s.

Let ζnt = ζt∧τn . We want to show that ((n)Mf
t )t≥0 is a martingale, where

(n)Mf
t = f(ζnt )− f(ζnt )−

t∫
0

Lf(ζns−)ds. (2.27)

The process (ζt)t≥0 satisfies

ζt =
∑

s≤t,ζs �=ζs−
[ζs − ζs−] + ζ0. (2.28)
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In the above equality as well as in few other places throughout this proof we
treat elements of Γ0(Rd) as measures rather than as configurations. Since (ζt)
is of the pure jump type, the sum on the right-hand side of (2.28) is a.s. finite.
Consequently we have

f(ζnt )− f(ζn0 ) =
∑

s≤t,ζs �=ζs−
[f(ζns )− f(ζns−)] (2.29)

=

∫
B×(0;t]×[0;∞]

[f(ζs)− f(ζs−)]I{s≤τn}I[0;b(x,ζs−)](u)dN1(x, s, u)

−
∫

Z×(0;t]×[0;∞]

I{xi∈ζs−}[f(ζs)− f(ζs−)]I{s≤τn}I[0;d(xi,ζs−)](v)dN2(i, s, v).

Note that ζs = ζs− ∪ x a.s. in the first summand on the right-hand side
of (2.29), and ζs = ζs− \ xi a.s. in the second summand. Now, we may write

t∫
0

I{s≤τn}Lf(ζs)ds (2.30)

=

t∫
0

∫
x∈Rd,u≥0

I{s≤τn}I[0;b(x,ζs−)](u)[f(ζs− ∪ x)− f(ζs−)]dxduds

−
t∫
0

∫
x∈Rd,u≥0

I{s≤τn}I[0;d(x,ζs−))](v)[f(ζs− \ x)− f(ζs−)]ζs−(dx)dvds.

Functions b, d(·, ·) and f are bounded on Rd × {α : |α| ≤ n and α ⊂
[−n;n]d} and {α : |α| ≤ n and α ⊂ [−n;n]d} respectively by a constant C > 0.
Now, for a predictable bounded processes (γs(x, u))0≤s≤t and (βs(x, v))0≤s≤t,
the processes ∫

B×(0;t]×[0;C]

I{s≤τn}γs(x, u)[dN1(x, s, u)− dxdsdu],

∫
Z×(0;t]×[0;C]

I{s≤τn}I{xi∈ζs−}βs(xi, v)[dN2(i, s, v)−#(di)dsdv].

are martingales. Observe that

∫
Z×(0;t]×[0;C]

I{s≤τn}I{xi∈ζs−}βs(xi, v)#(di)dsdv

=

∫
Z×(0;t]×[0;C]

I{s≤τn}βs(x, v)ζs−(dx)dsdv

Taking

γs(x, u) = I[0;b(x,ζs−)](u)[f(ζs− ∪ x)− f(ζs−)],
βs(x, v)) = I[0;d(x,ζs−)](v)[f(ζs− \ x)− f(ζs−)],
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we see that the difference on the right hand side of (2.27) is a martingale
because of (2.29) and (2.30).

Corollary 2.24. The unique solution of (2.2) induces a solution of the mar-
tingale problem 2.22.

Remark 2.25. Since y(s) = y(s−) Pα-a.s., the process

f(y(t))− f(y(0))−
t∫
0

Lf(y(s))ds, 0 ≤ t <∞,

is a local martingale, too.

2.3 Birth rate without sublinear growth condition

In this section we will consider equation (2.2) with the a birth rate coefficient
that does not satisfy the sublinear growth condition (2.6).

Instead, we assume only that

sup
x∈Rd,|η|≤m

b(x, η) <∞. (2.31)

Under this assumption we can not guarantee existence of solution on the
whole line [0;∞) or even on a finite interval [0;T ]. It is possible that infinitely
many points appear in finite time.

We would like to show that a unique solution exists up to an explosion
time, maybe finite. Consider birth and death coefficients

bn(x, η) = b(x, η)I{|η|≤n}, dn(x, η) = d(x, η)I{|η|≤n}. (2.32)

Functions bn, dn are bounded, so equation (2.2) with birth rate coefficient
bn and death rate coefficient dn has a unique solution by Theorem 2.6. Remark
2.8 provides the existence and uniqueness of solution to (2.2) (with birth and
death rate coefficients b and d, respectively) up to the (random stopping) time
τn = inf{s ≥ 0 : |ηs| > n}. Clearly, τn+1 ≥ τn; if τn → ∞ a.s., then we have
existence and uniqueness for (2.2); if τn ↑ τ <∞ with positive probability, then
we have an explosion. However, existence and uniqueness hold up to explosion
time τ . When we have an explosion we say that the solution blows up.

2.4 Coupling

Here we discuss the coupling of two birth-and-death processes. The theorem
we prove here will be used in the sequel. As a matter of fact, we have already
used the coupling technique in the proof of Theorem 2.6.

Consider two equations of the form (2.2),

ξ
(k)
t (B) =

∫
B×(0;t]×[0;∞]

I
[0;bk(x,ξ

(k)
s− )]

(u)dN1(x, s, u)

−
∫

Z×(0;t]×[0;∞)

I{x(k)
i ∈ξ(k)

r−∩B}
I
[0;d(x

(k)
i ,ηr−)]

(v)dN2(i, r, v)

+ ξ
(k)
0 (B), k = 1, 2,

(2.33)
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where t ∈ [0;T ] and {x(k)i } is the sequence related to (ξ(k)t )t∈[0;T ].
Assume that initial conditions ξ

(k)
0 and coefficients bk, dk satisfy the con-

ditions of Theorem 2.6. Let (ξ
(k)
t )t∈[0;T ] be the unique strong solutions.

Theorem 2.26. Assume that almost surely ξ
(1)
0 ⊂ ξ

(2)
0 , and for any two finite

configurations η1 ⊂ η2,

b1(x, η
1) ≤ b2(x, η

2), x ∈ Rd (2.34)

and

d1(x, η
1) ≥ d2(x, η

2), x ∈ η1.
Then there exists a cadlag Γ0(Rd)-valued process (ηt)t∈[0;T ] such that (ηt)t∈[0;T ]

and (ξ
(1)
t )t∈[0;T ] have the same law and

ηt ⊂ ξ
(2)
t , t ∈ [0;T ]. (2.35)

Proof. Let {. . . , x(2)−1, x(2)0 , x
(2)
1 , . . .} be the sequence related to (ξ(2)t )t∈[0;T ]. Con-

sider the equation

ηt(B) =

∫
B×(0;t]×[0;∞]

I[0;bk(x,ηs−)](u)dN1(x, s, u)

−
∫

Z×(0;t]×[0;∞)

I{x(2)
i ∈ηr−∩B}I[0;d(x(2)

i ,ηr−)]
(v)dN2(i, r, v)

+ ξ
(1)
0 (B), k = 1, 2.

(2.36)

Note that here {x(2)i } is related to (ξ
(2)
t )t∈[0;T ] and not to (ηt)t∈[0;T ]. Thus

(2.36) is not an equation of form (2.2). Nonetheless, the existence of a unique
solution can be shown in the same way as in the proof of Theorem 2.6. Denote
the unique strong solution of (2.36) by (ηt)t∈[0;T ].

Denote by {τm}m∈N the moments of jumps of (ηt)t∈[0;T ] and (ξ
(2)
t )t∈[0;T ],

0 < τ1 < τ2 < τ3 < . . .. More precisely, a time t ∈ {τm}m∈N iff at least one of

the processes (ηt)t∈[0;T ] and (ξ
(2)
t )t∈[0;T ] jumps at time t.

We will show by induction that each moment of birth for (ηt)t∈[0;T ] is a
moment of birth for (ξ

(2)
t )t∈[0;T ] too, and each moment of death for (ξ

(2)
t )t∈[0;T ]

is a moment of death for (ηt)t∈[0;T ] if the dying point is in (ηt)t∈[0;T ]. More-
over, in both cases the birth or the death occurs at exactly the same point.
Here a moment of birth is a random time at which a new point appears,
a moment of death is a random time at which a point disappears from the
configuration. The statement formulated above is in fact equivalent to (2.35).

Here we deal only with the base case, the induction step is done in the

same way. We have nothing to show if τ1 is a moment of a birth of (ξ
(2)
t )t∈[0;T ]

or a moment of death of (ηt)t∈[0;T ]. Assume that a new point is born for
(ηt)t∈[0;T ] at τ1,

ητ1 \ ητ1− = {x1}.
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The process (ηt)t∈[0;T ] satisfies (2.36), thereforeN1({x}, {τ1}, [0; bk(x1, ητ1−)]) =
1. Since

ητ1− = ξ
(1)
0 ⊂ ξ

(2)
0 = ξ

(2)
τ1−,

by (2.34)

N1({x}, {τ1}, [0; bk(x1, ξ(2)τ1−)]) = 1,

hence

ξ(2)τ1 \ ξ(2)τ1− = {x1}.

The case when τ2 is a moment of death for (ξ
(2)
t )t∈[0;T ] is analyzed analogously.

It remains to show that (ηt)t∈[0;T ] and (ξ
(1)
t )t∈[0;T ] have the same law.

We mentioned above that formally equation (2.36) is not of the form (2.2),
so we can not directly apply the uniqueness in law result. However, since

ηt ∈ ξ(2)t a.s., t ∈ [0;T ], we can still consider (2.36) as an equation of the form
(2.2). Indeed, let {. . . , y−1, y0, y1, . . .} be the sequence related to ηt. We have

{y−|ξ(1)0 |+1, . . . , y−1, y0, y1, . . .} ⊂ {x−|ξ(2)0 |+1, . . . , x
(2)
−1, x

(2)
0 , x

(2)
1 , . . .}. There ex-

ists an injection ς : {−|ξ(1)0 |+ 1, . . . , 0, 1, . . .} → {−|ξ(2)0 |+ 1, . . . , 0, 1, . . .} such
that yς(i) = xi. Denote θi = inf{s ≥ 0 : yi ∈ ηs}. Note that θi is a stopping
time with respect to {Ft}. Define a Poisson point process N̄2 by

N̄2({i} ×R× V ) = N2({i} ×R× V ), i ∈ Z, R ⊂ [0; θi], V ⊂ R+,

and

N̄2({i} ×R× V ) = N2({ς(i)} ×R× V ), i ∈ Z, R ⊂ (θi;∞), V ⊂ R+.

The process N̄2 is {Ft}-adapted. One can see that (ηt)t∈[0;T ] is the unique
solution of equation (2.2) with N2 replaced by N̄2. Hence

(ηt)t∈[0;T ]
d
=(ξ

(1)
t )t∈[0;T ].

2.5 Related semigroup of operators

We say now a few words about the semigroup of operators related to the unique
solution of (2.2). We write η(α, t) for a unique solution of (2.2), started from
α ∈ Γ0(Rd). We want to define an operator St by

Stf(α) = Ef(η(α, t)) (= Eαf(η(t))) (2.37)

for an appropriate class of functions. Unfortunately, it seems difficult to make
St a C0-semigroup on some functional Banach space for general b, d satisfying
(2.6) and (2.7).

We start with the case when the cumulative birth and death rates are
bounded. Let Cb = Cb(Γ0(Rd)) be the space of all bounded continuous func-
tions on Γ0(Rd). It becomes a Banach space once it is equipped with the
supremum norm. We assume the existence of a constant C > 0 such that for
all ζ ∈ Γ0(Rd)

|B(ζ)|+ |D(ζ)| < C, (2.38)
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where B and D are defined in (2.4) and (2.5). Formula (2.1) defines then
a bounded operator L : Cb → Cb, and we will show that St coincides with
etL. For f ∈ Cb, the function Stf is bounded and continuous. Boundedness
is a consequence of the boundedness of f , and continuity of Stf follows from

Remark 2.21. Indeed, let αn → α, ξ
(n)
t

d
= η(αn, t) and

dist(η(α, t), ξ
(n)
t )

p→ 0, n→∞.
Unlike Γ(Rd), the space Γ0(Rd) is a σ-compact space. Consequently, for all
ε > 0 there exists a compact Kε ⊂ Γ0(Rd) such that for large enough n

P{η(α, t) ∈ Kε, ξ
(n)
t ∈ Kε} ≥ 1− ε.

Also, for fixed δ > 0 and for large enough n

P{dist(η(α, t), ξ(n)t ) ≤ δ} ≥ 1− δ.
Fix ε > 0. There exists δε ∈ (0; ε) such that |f(β) − f(γ)| ≤ ε whenever

dist(β, γ) ≤ δε, β, γ ∈ Kε. We have for large enough n

|E[f(η(α, t))− f(ξ(n)t )]|
≤ E|f(η(α, t))− f(ξ(n)t )|I{η(α, t) ∈ Kε, ξ

(n)
t ∈ Kε, dist(η(α, t), ξ

(n)
t ) ≤ δε}

+2(δε + ε)||f || ≤ ε+ 2(δε + ε)||f ||,
where ||f || = supζ∈Γ0(Rd) |f(ζ)|. Letting ε→ 0, we see that

Ef(η(αn, t)) = Ef(ξ
(n)
t )→ Ef(η(α, t)).

Thus, Stf is continuous (note that the continuity of Stf does not follow from
Theorem 2.19 alone, since for a fixed t ∈ [0;T ] the functional DΓ0(Rd)[0;T ] �
x �→ x(t) ∈ R is not continuous in the Skorokhod topology). Furthermore,
since for small t and for all A ∈ B(Rd),

P{η(α, t) = α} = 1− t[B(α) +D(α)] + o(t), (2.39)

P{η(α, t) = α ∪ {y} for some y ∈ A} = t

∫
y∈A

b(y, α)dy + o(t), (2.40)

and for x ∈ α
P{η(α, t) = α \ {x}} = td(x, α) + o(t), (2.41)

we may estimate

|Stf(α)− f(α)| ≤ t [B(α) +D(α)] ||f ||+ o(t)||f || ≤ C||f ||t+ o(t).

Therefore, (2.37) defines a C0 semigroup on Cb. Its generator

L̃f(α) = lim
t→0+

Stf(α)

t

= lim
t→0+

⎡
⎣ ∫
x∈Rd

b(x, α)[f(α ∪ x)− f(α)]dx+
∑
x∈α

d(x, α)(f(α \ x)− f(α)) + o(t)

⎤
⎦

= Lf(α).

Thus, St = etL, and we have proved the following
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Proposition 2.27. Assume that (2.38) is fulfilled. Then the family of op-
erators (St, t ≥ 0) on Cb defined in (2.37) constitutes a C0-semigroup. Its
generator coincides with L given in (2.1).

Now we turn out attention to general b, d satisfying (2.6) and (2.7) but not
necessarily (2.38). The family of operators (St)t≥0 still constitutes a semigroup,
however it does not have to be strongly continuous anymore. Consider trun-
cated birth and death coefficients (2.32) and corresponding process ηn(α, t).
Remark 2.8 implies that ηn(α, t) = η(α, t) for all t ∈ [0; τn], where

τn = inf{s ≥ 0 : |η(α, s)| > n}. (2.42)

Growth condition (2.6) implies that τn →∞ for any α ∈ Γ0(Rd).
Truncated coefficients bn, dn satisfy (2.38) and

S
(n)
t f(α) = Ef(η(n)(α, t)) (2.43)

defines a C0 - semigroup on Cb. In particular, for all α ∈ Γ0(Rd)

L(n)f(α) = lim
t→0+

Ef(η(n)(α, t))− f(α)
t

,

where L(n) is operator defined as in (2.1) but with bn, dn instead of b, d. Letting
n→∞ we get, for fixed α and f ,

Lf(α) = lim
t→0+

Ef(η(α, t))− f(α)
t

= lim
t→0+

Stf(α)− f(α)
t

. (2.44)

Taking limit by n is possible: for n ≥ |α| + 2, η(n)(α, t) satisfies (2.39),
(2.40) and (2.41), therefore η(α, t) satisfies (2.39), (2.40) and (2.41), too. Thus,
we have

Proposition 2.28. Let b and d satisfy (2.6) and (2.7) but not necessarily
(2.38). Then the family of operators (St, t ≥ 0) constitutes a semigroup on Cb
which does not have to be strongly continuous. However, for every α ∈ Γ0(Rd)
and f ∈ Cb we have (2.44).

Formula (2.44) gives us the formal relation of (η(α, t))t≥0 to the operator
L. Of course, for fixed f the convergence in (2.44) does not have to be uniform
in α.

Remark 2.29. The question about the construction of a semigroup acting on
some class of probability measures on Γ0(Rd) is yet to be studied.
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