Control of multiscale systems with constraints. 2. Fractal nuclear isomers and clusters

S. Adamenko, V. Bolotov, V. Novikov


We consider the influence of the Fermi statistics of nucleons on the binding energy of a new type of nuclear structures such as fractal nuclear clusters (fractal isomers of nuclei). It is shown that the fractal nuclear isomers possess a wide spectrum of binding energies that exceed, in many cases, the values known at the present time. The transition of the nuclear matter in the form of ordinary nuclei (drops of the nuclear fluid) in the state with the fractal structure or in the form of bubble nuclei opens new sources of energy and has huge perspectives. This transition is based on a new state of matter – collective coherently correlated state. It manifests itself, first of all, in the property of nonlocality of nuclear multiparticle processes. We develop a phenomenological theory of the binding energy of nuclear fractal structures and modify the Bethe–Weizs?acker formula for nuclear clusters with the mass number A, charge Z, and fractal dimension Df .  The consid-eration of fractal nuclear isomers allows one to interpret the experimental results on a new level of the comprehension of processes of the nuclear dynamics. The possibility to determine the fractal dimension of nuclear systems with the help of the method of nuclear dipole resonance for fractal isomers is discussed. The basic relations for fractal electroneutral struc- tures such as the electron—nucleus plasma of fractal isomers are presented.

Повний текст:

PDF (English)


Okun’ L. B., The notion of mass, Usp. Fiz. Nauk, v. 158, Iss. 3, 511–530 (1989).

Aston F. W., Mass-Spectra and Isotopes. London: Arnold, 1933.

Weizsacker, C. F.: Zur Theorie der Kernmassen; Zeitschrift fur Physik, b. 96, 431–458 (1935).

Bethe, H. A., Bacher, R. F., Nuclear physics I. Stationary states of nuclei, Rev. Mod. Phys. 8, 82–229 (1936).

Meitner L., Frisch O. R., Disintegration of uranium by neutrons: a new type of nuclear reaction, Nature, v. 143, 239–240 (1939).

Frenkel Ya. I., To the statistical theory of decay of atomic nuclei, Izv. AN SSSR. Ser. Fiz., v. 1/2, 233–248 (1938).

Bohr N., Wheeler J. A., The mechanism of nuclear fission, Phys. Rev., v. 56, 426–450 (1939).

Hill D. L., Wheeler J. A., Nuclear constitution and the interpretation of fission phenomena, Phys. Rev., v. 89, 1102-1145 (1953).

Bethe, H. A, Nuclear physics, Rev. Mod. Phys. 71, S6–S15 (1999).

Migdal A. B., Voskresenskii D. N., Sapershtein E. E., Troitskii M. A., Pion Degrees of Freedom in the Nuclear Matter [in Russian], Moscow: Nauka, 1991.

Sapershtein E. E., Khodel’ V. A., Calculation of the parameters of the Weizsacker mass formula on the basis of the matching conditions, Pis’ma ZhETF, v. 25, Iss. 4, 220–223 (1977).

NuPECC (Expert Committee of the European Science Foundation). Long Range Plan 2004: Perspectives for Nuclear Physics Research in Europe in the Coming Decade and Beyond.

Greiner W., Exotic nuclei: from superheavies to hyper and antimatter, Phys. Atom. Nucl., 66, 1009–1014 (2003).

Decharge J., Berger J.-F., Girod M., Dietrich K., Bubble and semi bub- bles as a new kind of superheavy nuclei, Nuclear Physics, A 716, 55–86 (2003).

Maruyama T., Niita K., Oyamatsu K., Maruyama T., Chiba S., and Iwamoto A., Quantum molecular dynamics approach to the nuclear mat- ter below the saturation density, Phys. Rev. C, Vol 57, No. 2, 655–665 (1998).

Smirnov B. M., Physics of Fractal Clusters [in Russian], Moscow: Nauka, 1991; Smirnov B. M., Energy processes in macroscopic fractal structures, Usp. Fiz. Nauk, v. 161, 171–200 (1991).

Mandelbrot B. B., The Fractal Geometry of Nature, New York: Freeman, 1982.

Marinov A., Rodushkin I., Kolb D., Pape A., Kashiv Y., Brandt R., Gentry R. V., Evidence for a long-lived superheavy nucleus with atomic mass number A = 292 and atomic number Z = 122 in natural Th, arXiv:0804.3869 (2008).

Adamenko S. V., Method and device for compressing a substance by impact and plasma cathode thereto, EP 1 464 210 B1.

Adamenko S. V., Conception of the artificially initiated collapse of a substance and the main results of the first stage of its experimental realization [in Russian], Preprint, Kiev: Akademperiodika, 2004.

Adamenko S. V., Selleri F., van der Merwe A., Controlled Nucleosynthe- sis. Breakthroughs in Experiment and Theory, Berlin: Springer, 2007.

Adamenko S. V., Adamenko A. S., Gurin A. A., Onishchuk Yu. M., Track measurement of fast particle streams in pulsed discharge explosive plasma, Radiation Measurements, v. 40, 486–489 (2005).

Adamenko S. V., Vysotskii V. I., Mechanism of synthesis of superheavy nuclei via the process of controlled electron-nuclear collapse. FoPL, v. 17, 3, 2004.

Adamenko S. V., Vysotskii V. I., Neutronization and protonization of nuclei: two possible ways of the evolution of astrophysical objects and the laboratory electron-nucleus collapse. Foundations of Physics Letters, v. 19, No. 1, 2006.

Wiener N., Cybernetics or Control and Communication in the Animal and the Machine, New York: Wiley, 1948.

Ebeling W., Engel A., Feistel R. Physik der Evolutionsprozesse, Berlin: Akademie-Verlag, 1990.

Prigogine I., Introduction to Thermodynamics of Irreversible Processes, New York: Interscience, 1961.

Hentschel H. G. E., Phys. Rev. Let., v. 52, 212–215 (1984).

Bethe H. A., Bacher R. F., Nuclear Physics A: Stationary states of nuclei, Rev. Mod. Phys., v. 8, 82–229 (1936)

Khodel’ V. A., A low-density nuclear isomer and a possible explanation of the anomaly of the free path of nuclear fragments in a photoemulsion, Pis’ma ZhETF, v. 36, Iss. 7, 265–267 (1982).

Пристатейна бібліографія ГОСТ


  • Поки немає зовнішніх посилань.