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Abstract. We consider the influence of the Fermi statistics of nucleons on
the binding energy of a new type of nuclear structures such as fractal nu-
clear clusters (fractal isomers of nuclei). It is shown that the fractal nuclear
isomers possess a wide spectrum of binding energies that exceed, in many
cases, the values known at the present time. The transition of the nuclear
matter in the form of ordinary nuclei (drops of the nuclear fluid) in the state
with the fractal structure or in the form of bubble nuclei opens new sources
of energy and has huge perspectives. This transition is based on a new state
of matter – collective coherently correlated state. It manifests itself, first
of all, in the property of nonlocality of nuclear multiparticle processes. We
develop a phenomenological theory of the binding energy of nuclear fractal
structures and modify the Bethe–Weizsäcker formula for nuclear clusters
with the mass number A, charge Z, and fractal dimension Df . The consid-
eration of fractal nuclear isomers allows one to interpret the experimental
results on a new level of the comprehension of processes of the nuclear
dynamics. The possibility to determine the fractal dimension of nuclear
systems with the help of the method of nuclear dipole resonance for fractal
isomers is discussed. The basic relations for fractal electroneutral struc-
tures such as the electron—nucleus plasma of fractal isomers are presented.

1 Introduction

During many decades, the development of the fundamental and applied nuclear
physics is referred to the priority trends of science and technology in many
countries. The special interest in the development of nuclear physics is mainly
related to the hope for that the nuclear power industry could become the most
powerful source of energy.

All primary sources of energy in the Nature have the single base, namely
the processes with a change of the binding energy of systems. This concerns
the most spread sources of energy based on the transformation of the binding
energy on the atomic and molecular levels, e.g., at the combustion of organic
fuel, and the nuclear processes generated by a change of the binding energy of
nucleons in the nuclei of atoms [1] at the running of nuclear reactions.
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The most powerful sources of energy are those which use the binding
energy of many-nucleon nuclear systems, because the density of this energy has
a value (by modern representations) of the order of several MeV per nucleon,
as distinct from the chemical energy, whose value is several eV per atom or
molecule.

The significance of the quantities directly related to the binding energy
(mass defect, packing coefficient [2]) for the comprehension of the nature of
nuclear phenomena and processes becomes clear very rapidly. When nuclear
physics originated, the structure of nuclei and the interactions between nucleons
composing a nucleus were known only in the very general features. At that time,
some attempts to clarify the structure of a nucleus were based on the analysis
of available data on the masses of nuclei (and, hence, their mass defects).

In [3], Weizsäcker obtained a rather awkward phenomenological formula
for the masses of nuclei on the basis of experimental data on mass defects
and the binding energy of nuclei in the Thomas–Fermi approximation of self-
consistent field with regard for the finite size of a nucleus (finite value of the
surface energy). The formula includes the sum of contributions of the bulk
energy, surface energy, and Coulomb energy and well represents the general
dependence of the binding energy of nuclei on the parameters of a nucleus (the
number of protons Z and the number of neutrons N = A − Z in a nucleus).
In work [4], Bethe modified the formula for the binding energy (in MeV) to
the commonly accepted form, where the meaning of terms is quite transparent
(especially from the viewpoint of collective representations):

B (A,Z) =

(
c0 − c3

(
1− 2Z

A

)2
)
A− c1A2/3 − c2

Z2

A1/3

+
cp
A1/2


1, Z = 2l, N = 2k

0, A = 2k + 1

−1, Z = 2l + 1, N = 2k + 1

; (1)

c0 = 15.75, c1 = 17.8, c2 = 0.71, c3 = 23.7, cp ≈ 12.0.

The first term gives the bulk contribution of the strong interaction jointly
with the so-called symmetry energy related to the Pauli principle. The second
term is the contribution of the surface of a nucleus to the binding energy.
The third term corresponds to the Coulomb energy of a charged drop. The
last term is the “pairing” energy related to the quantum corrections and the
shell effects in the structure of a nucleus. By the order of magnitude, the
“pairing” energy is equal to the energy of separation of a neutron from a nucleus
Sn = B (A,Z,Df )−B (A− 1, Z,Df ). The coefficients in (1) are usually chosen
from the condition of the best fitting of experimental data.

For the first time, the representations about a nucleus as a system re-
vealing the collective behavior and properties arose in connection with the
attempt to describe the processes of fission of nuclei. Moreover, the term “fis-
sion” appeared in work [5] due to the analogy with the biological process of
fission of cells. The description of properties of a nucleus involved the Frenkel
model ideas of a charged liquid drop [6] which were developed in the theory
of a liquid nuclear drop by Bohr and Wheeler [7, 8] and well agreed with the
Bethe–Weizsäcker theory.
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Formula (1) was further modified, and its coefficients were corrected on
the basis of permanently renewed experimental data [9]. The development of
the ideas of nuclei and the nuclear matter within the theory of Fermi-fluid
allowed one to calculate the coefficients in the Bethe–Weizsäcker formula and,
proceeding from the general representations about the structure of a nucleus, to
theoretically determine the binding energy of nuclei with a sufficient accuracy
[10, 11].

The phenomenological theory of the binding energy of nuclei on the basis
of the drop model leads to a nonmonotonous of the specific binding energy per
nucleon on the ratio of the numbers of protons and neutrons (see (1)) and to
the existence of the maximum of the specific binding energy per nucleon in the
region of nuclei with mass numbers close to those of the stable isotopes of iron
and nickel.

As a result, it is traditionally considered that only two types of nuclear
processes (reactions) with a positive energy yield (i.e., processes causing the
growth of the binding energy of a system):

• reactions of fusion, at which nuclei lighter than iron form heavier nuclei;
• reactions of fission of nuclei heavier than iron into lighter ones.
In any case, according to these ideas accepted also at the present time,

the elements in a neighborhood of the local maximum of the specific binding
energy (elements of the “iron” peak) cannot be used as an efficient source of
energy.

However, it becomes more and more clearly now that the ideas of a spatial
structure of the dense matter in nuclei should be reconsidered, and the analysis
of the variety of possible nuclear structures is required again.

The steady ideas of structures of the nuclear matter do not already cor-
respond to the level of our knowledge and experimental results [12]: “What
we have learned over the last decade of research on exotic nuclei forces us to
revise some of our basic truths. These were deduced from intensive studies of
stable nuclei, but it has become clear that stable isotopes do not exhibit all
features. . . Nuclear radii don’t go as A1/3. For all stable isotopes the density in
the atomic nucleus as well as the diffuseness of the surface are nearly constant.
Explorations into the far-unstable regions of the nuclear chart have convinc-
ingly shown that the diffuseness, and thus the radii of the atomic nuclei, vary
strongly. . . Many more bound nuclei exist than anticipated. The neutron drip
line is much further out than anticipated twenty years ago. The importance
of nucleon correlations and clustering that create more binding for the nuclear
system has been underestimated.”

The indicated circumstances make it necessary to construct the new more
general relations for the calculation of the binding energy of developed nuclear
structures. All previous studies and attempts to generalize the Weizsäcker for-
mula (see, e.g., [9, 10]) were based on the application of the theory of analytic
functions and the geometry of regular formations. Here, we first make attempt
to estimate the coefficients of the Weizsäcker formula with the use of general
notions of the fractal geometry. We will demonstrate that the nuclei with more
complicated structure than that a drop of the nuclear fluid (in the general case,
the nuclei representing fractal nuclear structures) have properties qualitatively
different from those of ordinary nuclei. The binding energy of such fractal nu-
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clei increases significantly, and the dependence of the binding energy on the
nucleus mass changes qualitatively. In particular, there appears the possibility
for the existence of stable superheavy nuclei with specific binding energy ex-
ceeding the relevant values characteristic of nuclei of the “iron” peak from the
Periodic Mendeleev table, which open new perspectives in the development of
the nuclear power industry.

2 Geometrical properties of fractal structures

Among the commonly accepted postulates, the assertions concerning the struc-
ture of nuclei and their stability give rise now to the strongest doubts. Accord-
ing to the hydrodynamical model (where a nucleus is represented by a homo-
geneous spherical drop of the nuclear Fermi-fluid [8] with the mean density of
nucleons ρ≈ 0.17 nucleon/(fm)3), the number of nucleons in a nucleus, A, and
the external radius of a nucleus, RA, are connected with each other by the
relations

RA (A, ρ) = r0A
1/3, r0 =

(
3

4πρ

)1/3

. (2)

However, as was indicated above, the contemporary studies of the struc-
ture of nuclei show that such ideas of the structure of a nucleus must be re-
considered and reanalyzed from the viewpoint of the extension of the set of
elements of the “nuclear Lego constructor.” For example, it was assumed in
[13] that the superheavy nuclei are clusters of α-particles, the possibility of
the existence of bubble and quasibubble nuclei was comprehensively studied in
[14], and the results of numerical studies of the stability of nuclear structures
at low densities indicate the possibility of the existence of nuclear structures
[15] which do not correspond obviously to the idea of a liquid drop (see Fig. 1
in [15]).

Fig. 1: Nuclear clusters in the
form of a nuclear pasta (nu-

clear gel) [15]

Fig. 2: View of a typical cluster
formed at the growth of a structure

of solid particles [16]
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In Fig. 2, we present a typical three-dimensional fractal cluster grown due
to the Brownian process in the system “particles – cluster” with the probability
for particles to stick to the cluster equal to 1 (see [16]). It is seen that the nuclear
structure ensuring the minimum energy in the Hartree – Fock approximation
constructed in [15] is very close by its spatial distribution to the classical fractal
cluster of particles.

The notion of a fractal object was introduced by Mandelbrot [17] into
science as an alternative to the regular geometrical and physical objects. In
the Nature, we observe a lot of periodic regular phenomena: from the motion
of a pendulum to the oscillations of atoms. Despite the absence of strictly
periodic motions in the Nature (at least due to the boundedness in time), the
periodicity turns out to be the exceptionally useful notion for the explanation of
the basic laws and mechanisms in many branches of natural science. One of the
reasons for the universality of harmonic motion is the quasilinearity of many
physical systems and the invariance of laws guiding their behavior at shifts in
space and in time. However, in the course of time, the dominance of linear
ideas in science is broken now by the spreading of new nonlinear approaches
to the real phenomena surrounding us. The new century has started under the
sign of a total penetration of nonlinear phenomena, “nonlinear” thinking, and
methods of nonlinear physics into all fields of knowledge.

In the majority of real phenomena, the linearity is violated, and, instead
of the periodicity, we deal with aperiodic chaotic motions. In this case, the aris-
ing geometrical structures turn out irregular and rugged. At the huge variety
of the behavior of nonlinear systems which appear as a result of the nonlinear
evolution, there exist the general properties common for most of these systems
such as the self-similarity and the invariance relative to a change of the scale
(scaling). In other words, the main feature of nonlinear systems is not the
invariance under additive shifts, but the invariance under multiplicative trans-
formations of the scale and, hence, the specific role of fractal functions and
distributions, rather than that of harmonic ones. Scaling is revealed in many
nonlinear physical processes, especially at the study of critical phenomena char-
acteristic of the behavior of substances in a neighborhood of phase transition
points.

In the general case, one of the most considerable consequences of the
self-similarity is the existence of objects with exceptionally irregular structure,
which are called fractals [17]. In some meaning, the self-similarity is also a
periodicity, but only on the logarithmic scale. The self-similarity—strict or
approximate – plays the principal role in many fields, though it is revealed in
very different ways. One of the last branches of physics, where the notion of a
fractal is not yet used, is nuclear physics.

In the present work, we will construct a phenomenological theory of the
binding energy of nuclear fractal structures, by considering them as the struc-
tures determined by their basic geometrical characteristic, namely by the fractal
dimension Df .

One of the power dependences characteristic of a fractal is that of the
correlation function averaged over angles on the distance to its geometrical
center. In this case, the mean density of particles in the cluster ρ (r) varies, as
a function of the distance r, inside the cluster by the law coinciding with the
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law of decay of spatial correlations:

ρ (r) = ρstr(Rstr (Astr)/r)
3−Df . (3)

These general consequences of the fractal geometry yield a simple relation be-
tween the mass number of a fractal cluster A, external size of the cluster RA,
and characteristic size Rstr (Astr) of structureless elements, i.e., monomers with
the mass number Astr and the density ρstr, from which the fractal structure is
built [16],

A = kAstr(R (A,Astr, ρ)/Rstr (Astr))
Df , (4)

where the coefficient k has value of the order of 1 and is determined by a packing
of monomers in the cluster. Relation (3) can be used to present the external
radius of the cluster through its mass number and the fractal dimension:

RA (A,Astr, Df ) = Rstr(A/Astr)
1/Df . (5)

As monomers, we can consider any nuclear structures with a sufficiently
high stability or/and particles efficiently forming the condensate (particles
which can participate in the evolutionary sequence of nuclear phase transi-
tions). We may assume that monomers are, first of all, α-particles from the
side of low-weight structures (see, e.g., [13]) and the nearest neighbors of he-
lium nuclei in the Periodic Mendeleev table (i.e., stable light nuclei, which can
form the condensate of particles with a high probability, e.g., lithium nuclei).
From the side of heavier nuclei, the role of monomers can be played by the
most stable nuclei such as nuclei of carbon, oxygen, and iron. Moreover, as
will be shown below, the most probable monomer for a low-density structure
of nucleons with A� 5 · 104 immersed in the electron fluid is iron. As for the
fractal dimension, the modeling of the processes of growth of clusters in the
three-dimensional space at a high probability of the adhesion of monomers to
one another shows that the fractal dimension of clusters is near Df = 2.39.

For the further applications, it is convenient to use the following estimate
of the surface area of a fractal cluster depending on the mass number of a
structural unit Astr and the fractal dimension:

S (A;Astr, Df ) = 4πR2
A(A/Astr)

γ−2/3
. (6)

The correction factor indicating the degree of growth of the surface area deter-
mined by the internal structure of a cluster depends on the number of structural

elements and is equal to

(
A

Astr

)γ−2/3

,
2

3
6 γ 6 1. The coefficient γ = 2/3

for a continuous structure (Df = 3) and γ = 1 for a developed system of
nuclear “threads of a web” or “bubble” nuclei (Df = 2) .

Relation (3) yields also the dependence of the fractal dimension of a clus-
ter with the mass number A on the mean density and the mass number of
structureless units forming the cluster:

Df = 3
ln (A/Astr)

ln (A/Astr) + ln (ρstr/ρ)
. (7)

The natural attempt to use the conceptions of the fractal geometry in
the model of a structure of multinucleon systems must obviously involve their
following specific features:
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• the appearance of the developed surface (and, hence, a decrease of the
binding energy of a nuclear system due to the increase of its surface
energy);

• The increase of characteristic sizes of a nuclear conglomerate, as the
mean density of the nuclear matter decreases (i.e., a decrease of the
Fermi energy of a system and, as it will be shown below, an increase of
the binding energy of a nuclear cluster).

We may expect that the formation of the internal fractal structure in
nuclear systems leads to a variation of their binding energy in very wide limits.

In the general case, the growth of structures and, hence, a decrease of the
number of degrees of freedom of a system, are described by the appearance of
two following components of the system: the structureless part and the coherent
part in the form of a nuclear “web” constructed from monomers with the mass
number Astr and some share of protons in monomers ystr = Zstr/Astr. In this
case, we denote the mass of the coherent part by mcog and the mass of the
substance in the structureless liquid part by mg and introduce the coherence
parameter η ≈ mcog/(mcog +mg).

The mean density of a system possessing the coherent part varies by the
power law (6) due to correlations. Since the potential energy of the nuclear
substance is proportional, in general, to the density, we may write

U (ρ) ∝ U (r) , U (αr) ∝ rksc , ksc = Df − 3 (8)

The value of coherence parameter can be estimated from the Lagrange
theorem (virial theorem) for systems with the potential energy possessing the
property of similarity, if we take into account that the coherent part is char-
acterized mainly by the potential energy, whereas the whole kinetic energy is
present in the structureless (liquid) part. Then the relation of the mean values
of kinetic and potential energies

Wkin

U
=
Df − 3

2
(9)

yields the formula for the coherence parameter

η ≈ 3−Df

Df − 1
, Df =

3 + η

1 + η
, 0 6 η 6 1. (10)

The contribution of the coherent part of the system to the binding energy
by the relations Acog = ηA and Zcog = ystrAcog, where Acog is the mass
number, and the mean density is determined by the fractal dimension (or the
coherence parameter) according to relation (3).

3 Main contributions to the binding energy of
nuclear systems

As is well known, the interaction of elements of a system causes the effective
decrease of the mass of the system (the mass defect appears) with the ap-
pearance of the binding energy of the system determined by this mass defect.
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For example, the total internal energy of a nucleon system including A nucle-
ons (Z protons with mass mp and (A− Z) neutrons with mass mn) can be
written in the form: W = Zmpc

2 + (A− Z)mnc
2 − B, where B is the bind-

ing energy of the system, to which all basic interactions make contributions:
B = BStrong +BQ +Bsurf .

Here,
• Bstrong = Bbulk +BFermiZ is the contribution of the strong interaction

consisting of two terms: Bbulk bearing the bulk character (i.e., Bbulk
is a strong-interaction-induced part of the binding energy which is pro-

portional to the mass number A) and the term BFermi ≈ −A
3

5
Ef (ρ)

which arises due to the Pauli principle and is proportional to (N − Z)
2
;

• BQZ is the contribution of the Coulomb interaction;
• BsurfZ is the contribution of the surface energy (i.e., energy related to

the degree of inhomogeneity of the distribution of nucleons in space).
In order to estimate the contributions to the binding energy, we need the

assumptions about the basic geometrical characteristics of a distribution of the
nuclear matter in the system. The first efficient model of a distribution of the
substance of a nucleus was the simplest model of a drop of the nuclear fluid, in
which the mass number A and the radius of a nucleus are connected through
relation (2).

At small excitations of a nucleus, the distribution of nucleons in the mo-
mentum space is usually considered homogeneous inside of the Fermi spherical
surface with the radius in the momentum space equal to the Fermi momentum

pf :f (p,Ef ) =

{
1, p < pf

0, p > pf
(degenerate Fermi distribution function), as well

as in the volume of a nucleus V . The integration of the Fermi distributions over
the phase space gives the relations between pf and the densities of nucleons:

pfn =
(
3π2
)1/3~ρ1/3

n , ρn =
A− Z
A

ρ,

pfp =
(
3π2
)1/3~ρ1/3

p , ρp =
Z

A
ρ

(11)

The Fermi surface radius (Fermi momentum) is connected with the Fermi
energy Ef :

Efp =
p2
fp

2mp
=

(
3π2
)2/3~2

2mp
ρ2/3
p , Efn =

p2
fn

2mn
=

(
3π2
)2/3~2

2mn
ρ2/3
n . (12)

The kinetic energy Wkin (A,Z) of the ensemble of nucleons in a nucleus
with volume V is determined by their Fermi energy:

Wkin (A,Z) = 2
V

(2π~)
3

∫ (
p2

2Mnuc

)(
fp
(
p,Efp

)
+ fn (p,Efn)

)
d3p

=
V

5π2~3

(
p3
fnEfn + p3

fpEfp
)

=
3

5
((A− Z) Efn + Z Efp)

=
3

5

(
3π2~3

)2/3
2mn

ρ2/3
nuc

((
1− Z

A

)5/3

+
mn

mp

(
Z

A

)5/3
)
A. (13)
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The expansion of Wkin (A,Z) in the small parameter ε =

(
1

2
− Z

A

)
leads

to the expression

Wkin (A,Z, ρnuc) ≈
(
3π2~3

)2/3
2mn

ρ2/3
nuc

21/3

4

(
1 +

mn

mp

)(
3

5
+

1

3

(
1− 2Z

A

)2
)
A

= WkinBulk +WkinSym,

where

WkinBulk =
3

5

(
3π2~3

)2/3
2mn

ρ2/3
nuc

21/3

4

(
1 +

mn

mp

)
A,

WkinSym =
1

3

(
3π2~3

)2/3
2mn

ρ2/3
nuc

21/3

4

(
1 +

mn

mp

)(
1− 2Z

A

)2

A.

(14)

Thus, the formula for the kinetic energy contains the bulk term WkinBulk

proportional to A and the term WkinSym, which is proportional to

(
1− 2Z

A

)2

and determines the coefficient c3 in the Bethe–Weizsäcker formula (1).
It is clear now that the coefficient c0 in (1) consists of two terms:

c0 ≈ Ueff − kvirWkinBulk

≈ Ueff −
3

5
kvir

(
3π2~3

)2/3
2mn

21/3

4

(
1 +

mn

mp

)
ρ2/3
nuc.

(15)

Here, Ueff is the depth of the potential well of the strong interaction of
nucleons in a nucleus, kvir is the virial coefficient determining the share of the
kinetic energy that contributes to the binding energy. The value of Ueff can be
calculated in the Fermi-fluid approximation, Ueff ≈ 58 MeV (see, e.g., [10]).
In this case, the coefficient c3 reads

c3 =
1

3
kvir

(
3π2~3

)2/3
2mn

21/3

4

(
1 +

mn

mp

)
ρ2/3
nuc. (16)

It is seen that the negative contributions to the binding energy decrease,
as the mean density of the nuclear substance ≈ ρnuc

2/3 decreases. Therefore,
the appearance of fractal structures in the nuclear matter (related to the en-
hancement of correlations) decreases its mean density and, hence, increases the
binding energy of a nuclear structure. We choose kvir so that the binding en-
ergy of the known “drop-like” nuclei is maximally exactly approximated. With
regard for the geometrical properties of fractals (see relation (3) for the density
of nuclear clusters), the above-presented relations yield finally the contribution
of the strong interaction in the form

BStrong ≈

(
c0 − c3

(
1− 2Z

A

)2
)
A, (17)

c0 ≈

58.4− 42.6

(
A

Astr

)−2

(
1

Df
−

1

3

) , c3 ≈ 23.7

(
A

Astr

)−2

(
1

Df
−

1

3

)
.
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It follows from (17) that, indeed, the appearance of fractal structures in
the nuclear matter (related to the enhancement of correlations and to Df < 3)
decreases its mean density (in correspondence with (3)) and, hence, increases
the bulk contribution of the strong interaction to the binding energy of a nuclear
structure. As Df → 3, the contribution of the strong interaction tends to the
bulk contribution in the ordinary Weizsäcker formula (1).

Since the nuclei are finite systems, there exists also the contribution of
the strong interaction related to a great inhomogeneity of a distribution of the
nuclear matter near the boundary of the system (surface energy of a liquid drop
Wsurf (A, ρnuc)) [10]:

Wsurf (A, ρnuc) =

∫
λN (ρnuc)(∇ρnuc)2

d3r.

For a step-like distribution, this contribution has naturally the form pro-
portional to the surface area: Wsurf (A) = σ S (A) ≈ c1A

2/3. Here, the ex-
perimental value of the coefficient of surface tension σ amounts to about 1
MeV/fm2. The fractal structure of a nucleus causes, naturally, a change of the
surface of a nuclear structure in agreement with formula (6) for the area of a
cluster. With the use of the properties of the fractal geometry, we obtain

Bsurf (A;Astr, Df ) = −σ S (A;Astr, Df ) ≈ −c1 (A;Astr, Df )A2/3,

c1 (A;Astr, Df ) ≈ 18.56

(
A

Astr

)2

(
1

Df
−

1

3

)
.

(18)

Relations (18) imply that the fractality of a nuclear structure leads to an
increase of the surface area (increase of the negative contribution to the binding
energy) and, hence, to a decrease of the total binding energy of a cluster.

It is natural that the Coulomb energy of protons in a nucleus is ex-
pressed in terms of the nucleon distribution density and the Coulomb potential

UQ (r, Z) =
Ze

r
. For the drop model, the calculations are trivial:

WQ (A,Z, ρnuc) =
1

2

∫
UQ (r − r1, Z)

Ze

A
ρnuc (r1) d3r1

=
3

5
Z (Z − 1)

e2

RA
≈ c2

Z2

A1/3
.

It is obvious that the influence of the fractal geometry on this contribu-
tion is manifested in its decrease due to an increase of the size of a nucleus.
With regard for the dependence of the radius of a fractal cluster on its fractal
dimension, we obtain the relation

BQ (A,Z;Astr, Df ) = −WQ = −3

5

e2Z (Z − 1)

RA (A;Z,Df )
≈ −c2

Z (Z − 1)

A1/3
,

c2 (A,Astr, Df ) ≈ 0.71

(
A

Astr

)−( 1

Df
−

1

3

)
.

(19)
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The fractality of the structure causes the increase of its external radius, the
decrease of the modulus of the negative contribution of the Coulomb energy to
the binding energy of a cluster, and, hence, the increase of the total binding
energy.

Finally, we arrive at the modified Weizsäcker formula for the binding
energy of a nuclear cluster with the mass number A, charge Z, and fractal
dimension Df , which is built of nuclei with the mass number Astr, as the
ordinary Weizsäcker formula (1), but with the coefficients c0,c1,c2, and c3,
which are functions given by relations (17)–(19), rather than constants. Thus,
a variation of the structure of a nuclear cluster leads to a change of the binding
energy and the conditions for the stability of nuclear structures.

4 Stability of nuclear systems with different
structures

The energy of a nuclear system depends usually only on the number of protons
and neutrons in the system. The stable states of nuclei satisfy the conditions
of positivity of the binding energy B, In this case, the condition of connectivity
of neutrons and protons holds automatically, i.e., the relations

µn =

(
∂W

∂N

)
Z

< 0, µp =

(
∂W

∂Z

)
N

< 0, (20)

where µn and µp are the corresponding chemical potentials of the nuclear sys-
tem, are valid. These conditions ensure the existence of a potential “well” by
the parameters of the system, so that the most stable states are on the bottom
of the potential “well” and are determined by the conditions for the appropri-
ate potentials to be zero (derivatives of the binding energy with respect to the
relevant parameters). For nuclear fractal clusters, the fractal dimension turns
out to be a thermodynamical parameter. Therefore, the most stable nuclear
structures are determined by two drip lines:

∂B (A,Z,Df )/∂Z = 0, ∂B (A,Z,Df )/∂Df = 0. (21)

The first equation yields the analytic formula for the drip line (which corre-
sponds to the equilibrium relative to β-processes):

Zst (A,Df ) = A

2 + 0.015A2/3

(
A

Astr

)( 1

Df
−

1

3

)
−1

. (22)

To find the analytic solution of the second equation in (21) is a very
difficult problem. Therefore, we find its solution numerically on the drip line
(22) and obtain approximately:

Dfst (A) = 2.306(lg(A))
0.0415

. (23)

The drip line (23) indicates the increase of the degree of saturation of sta-
ble nuclei by neutrons due to the appearance of spatial structures in a nucleus
(and a decrease of the mean density of the nucleus for those structures).
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In Fig. 3, we present the dependence of the fractal dimension of a nuclear
cluster on its mass number on the drip line, and Fig. 4 shows the dependence
of the mean density of the nuclear matter on the mass number on the same
line.

Fig. 3: Dependence of the fractal
dimension on the mass number of
a nuclear cluster on the drip line.
Points are obtained by the numeri-
cal solution of the system of equa-

tions (21)

Fig. 4: Dependence of the mean
density of the nuclear matter on the

mass number on the drip line.

With the use of the drip line (23), relation (22) yields the dependence of
Z/A for a stable nuclear structure on its mass number. This dependence is
shown in Fig. 5.

Fig. 5: Dependence of the rela-
tive charge of a nucleus on its mass
number (upper curve corresponds
to a nucleus in the form of a liq-
uid drop; lower curve—to a fractal

cluster).

Fig. 6: Specific binding energy
of fractal nuclear structures on the
drip line. The lower curve corre-
sponds to nuclei in the form of liq-

uid drops.

Substituting the modified line of β-stability (22) and relation (23) in (1)
with regard for (17)-(19) for the binding energy, we obtain the dependence of
the specific binding energy on the mass number. This dependence is shown in
Fig. 6. It is seen that the binding energy of stable fractal structures is, firstly,
always higher than that of stable structures in the form of liquid drops, and,
secondly, the region of stability of nuclear structures becomes wider.

It is necessary to consider the stability of nuclear systems not only rela-
tive to the balance of neutrons and protons in a nucleus, but relative to the
processes of fission of nuclei. The process of spontaneous fission of a nucleus
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is hampered by the presence of a potential barrier in the space of parameters
which characterize a deformation of a nucleus; the fragments must pass through
this barrier prior to their full separation [8].

In the model of a liquid drop, the fission of a nucleus should be preceded
by some deformation. Firstly, an increase of the deformation is accompanied
by an increase of the energy of a nucleus. At a deformation of the surface
(proportional to a small parameter ε), the Coulomb energy tends to further
increase the deformation (by pushing apart the perturbed sections), whereas
the surface tension of the drop, which is defined as the derivative of the surface
energy, tries to return the spherical shape to the drop. In this case, the energy
of a deformation ∆W ≈ (1/5)

(
2c1A

2/3 − c2Z2A−1/3
)
ε2. The condition for

the absence of decays on the drip line (positivity of the deformation energy)

can be presented in the form
2c1
c2

>
Z2

A
and gives the following relation for the

limiting value of the mass number Ab:

Ab

2 + 0.015A
2/3
b

(
Ab
Astr

)( 1

Df
−

1

3

)
−2

= 50. (24)

The stable nuclei can be observed in the region of mass numbers A <
Ab. The appearance of a structure in the nuclear matter increases sharply its
stability. Large nuclear structures with a sufficiently low density become stable
also relative to decays, which is well seen from Fig. 7.

If the conditions of positiveness of the binding energy and the energy of
excitation of surface oscillations are satisfied simultaneously, it is possible to
determine the boundaries of stability by mass numbers at the given charge of a
nucleus. The result of calculations is shown in Fig. 8. The value of mass number
for a cluster with the optimum structure and with the maximum binding energy
lies between these curves.

The boundaries of stability by the fractal dimension are shown in Fig. 9
as functions of the mass number of a cluster. On the same figure, we show the
optimum dimension of such giant fractal clusters.

Work [18] reported on the discovery of stable isotopes of Th90 with the
mass number 292, which were interpreted as superheavy elements with a charge
of 122.

The analysis of Figs. 3, 7, and 8 allows us to propose another interpreta-
tion: the observed isotopes are, quite possibly, fractal isomers of nucleus Th90,
whose large mass number is related to the increase of the number of neutrons
in them due to a low mean density of such nuclei, for example, to the formation
of spatial structures with the fractal dimension Df ≈ 2.1 (quasibubble nuclei).

The possibility of the existence of stable nuclear clusters with the mass
composed of tens of thousands of nucleons with a binding energy of about 1
MeV per nucleon and with the sufficiently low stability to the excitation of
their surface (i.e., with the possibility of a decay induced by external physical
actions) allows us to hope that such processes can release significant values of
energy. As a result of the experiments on the self-organizing nucleosynthesis in
solid targets with the use of hard-current diodes with a special construction [19],
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Fig. 7: Dependence of the energy
of a deformation of a nucleus on its
mass number. Lower curve corre-
sponds to a liquid drop, and the

upper one—to a fractal cluster.

Fig. 8: Limiting curves indicat-
ing the dependences of the mini-
mum and maximum mass numbers
of clusters on the charge of a nu-
cleus. Middle curve corresponds to
optimum structures with the max-

imum binding energy.

a number of processes apparently related to the induced decay were registered
in [20, 21].

For example, with the help of track detectors [22] positioned near the
region, where the self-organizing nuclear processes are running, was registered
the system of tracks of 276 nuclei of lithium and 276 nuclei of helium with an
energy of about 1 MeV per nucleon, which escaped from a single center (Fig.
10.).

The appearance of such tracks can be a result of the spontaneous decay
of a giant nuclear cluster of monomers (lithium and α-particles) created in the
coherent nuclear processes:

19000

1580
ADf=2.69 →

16240

200
ADf=2.69 + 276 4

2He+ 276 6
3Li+Wk.

We now clarify the above-used designations. The giant nuclear clusters
are superheavy nuclear structure, whose composition includes two components:
the coherent one in the form of nuclear “threads of a web” with the fractal

Fig. 9: Dependence of the limiting values of fractal dimension of a nuclear cluster on
the mass number. Middle curve corresponds to the dimension of the cluster with the

maximum binding energy.
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Fig. 10: Pattern of the filling of the detector by tracks with a “giant” cluster of
276 tracks (a); an individual fragment of the pattern (b); the diagram of track direc-
tions (c). Mean energy per particle in the cluster (lithium or α-particle) is of the order

of 5 MeV.

dimension Df (its value is given below on the right) formed by monomers
with the nuclear density and the noncoherent component. The latter is a
structureless part in the form of a nuclear fluid with a relatively low density,
where nuclear “threads of a web” are positioned.

The nuclei of lithium and α- particles registered in a track detector are
monomers, from which the coherent component (276 4

2He + 276 6
3Li) is con-

structed. Together with the nuclear fluid, the nuclear cluster is the structure
with the mass number Acl ≈19000, Zcl ≈ 1380, and Df ≈ 2.69, which is de-

noted by
19000

1580
ADf=2.69. It has a radius of about 45 fm and the stability reserve

∆W 60.5 MeV/nucleon. The kinetic energy released due to the decay, Wk,
ensures an energy of the order of 1 MeV per nucleon for outgoing fragments.
The cluster

16240

200
ADf=2.69 formed after the decay has a higher specific binding

energy per nucleon, than the initial structure
19000

1580
ADf=2.69 due to the optimum

density of protons in the cluster (see relations (22)–(23)).
The experiments performed much more earlier revealed some anomalies

of tracks in nuclear emulsions (see, e.g., [30]), which can be considered as the
registration of fractal isomers in the form of quasibubble nuclei with Df ≈
2.01, A ≈ 60, radius of about 10 fm, and the stability reserve of about 4
MeV/nucleon.

It follows from our studies that there exist the stable nuclei with a high
concentration of neutrons and a high binding energy. Therefore, we need to
consider the possibilities and the means of creation of stable nuclear structures
different from nuclear drops and the set of types of the evolution of multiparticle
systems to their equilibrium states.

The solution of this problem is difficult and is far from the completion.
However, it is quite obvious that the creation of such superheavy nuclei by the
fusion of low-mass nuclei moving with ultra-high energies in direct collisions is a
low-efficiency improbable process due to a great excitation of the intermediate
nuclear system formed in such collisions.

Works [21, 23–24] proposed a new class of nuclear processes, namely the
collective coherent nuclear reactions, which do not require high energies for
their realization and occur due to the appearance of long-range correlations in
dynamical systems of nuclei with a variable structure. The new synergetic ap-
proach to nuclear processes comprehensively presented in [21] is based on such
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synthetic sciences as the theory of control, self-organization, nonequilibrium
thermodynamics of open systems [25-27], and the theory of fractals [17].

The conception of self-organizing synthesis is based on the quite general
ideas of a structure of systems and on the comprehension of the fact that the dy-
namical systems of any nature are not solidified, but “alive” formations reveal-
ing the target “behavior”. Moreover, their existence is continuously connected
with their evolution. According to the conception, the whole observed variety
of dynamical systems with various structures is a product of the evolution of
the sets of interacting particles on the way of seeking such optimum structure
of the system, which would correspond the highest stability and, hence, the
largest chances to survive under dominating (i.e., most regular and/or most
intense) external actions due to the improvement of the own internal structure.

The conception of self-organizing synthesis, like the scheme of inertial
synthesis, considers a nonlinear wave propagating in a medium. In this case,
the leading edge of the wave separates naturally the regions of a “fuel” entering
into the wave and products of the combustion remaining behind the trailing
edge. It is shown in [20, 21] that the analysis of a dynamical system formed
by particles of the substance involved in a nonlinear wave leads to the general
conclusion about the existence of a possibility to initiate the processes of self-
organization in this system, which result in the synthesis of elements due to
the “life activity” of the evolving system on the way from its creation to the
decay.

By this conception, the realization of any scenario of the synthesis of ele-
ments is a collective process or a coherent nuclear reaction, in which a macro-
scopically large number of nucleons takes participation. A great number of
“participants” of such a process corresponds to a huge amount of possibilities
to realize the synthesis in the region of stable nuclei (it is proportional to the
number of partitions of a very large integer into integer parts) with a minimum
number of particles of a “superfluous” building material.

Book [21] contains a comprehensive description of base positions of the
conception of self-organizing synthesis of nuclei and the great array of experi-
mental results obtained as a result of the implementation of one of the scenarios
of realization of the conception.

One of the most descriptive models of coherent nuclear reactions is the
model of the filtration of a flux of initial nuclei through the growing macro-
scopic nuclear fractal cluster in the form of a moving and evolving shell of the
electron—nucleus plasma.

The shell originates, when the correlations attain a critical level at some
optimum density, which increases in the course of the evolution of the shell. The
growth of the shell density occurs, because a part of the substance of a medium
(through which the shell moves) enters the shell structure on its leading edge,
whereas a part of the shell evaporates from the trailing edge (relative to its
motion; see Fig. 11.).

The growth of the shell density is accompanied by a variation of its internal
structure, the approaching of the fractal dimension to 3, and a decrease of the
stability reserve up to the destruction of the shell and the formation of its
fragments with various masses, i.e., up to the synthesis of a spectrum of nuclei.
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Fig. 11: Moving fractal shell in the form of a nuclear fractal membrane which filters
the medium substance with the formation of new nuclei on the trailing edge of the

wave-shell.

It is worth noting that the values of fractal dimension of a nuclear clus-
ter (2.46 ± 0.05) presented in Fig. 3 correspond to the typical values of the
dimension of clusters growing in the three-dimensional space, which are shown
in Fig. 2.

If a cluster is created by the successive attachment of individual particles,
its fractal dimension can be determined by the minimization of the free energy
of the cluster within a simple model [28]:

Df =
4Dω + d (2Dω − 4) + 5d2

5Dω − 4 + 5d
. (25)

Here, Dω is the fractal dimension of the trajectories of particles, and d is the
space dimensionality. For a Brownian trajectory with the dimension Dω = 2
in the three-dimensional space, we obtain Df = 2.5, which is close to the
dimension of nuclear clusters obtained by us from the condition for the binding
energy to be maximum (see Fig. 3).

5 Fractal dipole resonance

The variation of the surfaces of giant charged nuclear clusters (their oscillations)
leads, naturally, to the emission. For ordinary nuclei, the emission (giant dipole
resonance) can be easily estimated in the approximation of drops of a charged
fluid [7, 8]. Let us use this drop model for the estimation of the emission of
fractal clusters. We denote a displacement of the surface of a cluster along
the radius at a point (ϑ, ϕ) by ξ (ϑ, ϕ) = ξ0 (ϑ, ϕ) sin (ω t). The density of the
nuclear fluid can be considered constant, ρ0, and let only the form of a nuclear
cluster vary. Let the x-axis coincide with the polar axis ϑ = 0. The quadrupole
moment

e dxy =
eZ

Vδ

∫
dϑdϕ sin (ϑ)

R+ξ0(ϑ,ϕ)∫
R−δ

dr r2r2 cos (ϑ) sin (ϑ) cos (ϕ) . (26)

The dependence of a displacement of the surface on the angles ξ0 (ϑ, ϕ)
is described by the expansion in spherical modes (in spherical functions). The
lowest nonzero mode is described by the expression

ξ0 (ϑ, ϕ) = b cos (ϑ) sin (ϑ) cos (ϕ) .
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Therefore, the quadrupole moment (26) can be written as follows:

dxy =
Z R2

4πδ
b

2π∫
0

dϕcos2 (ϕ)

π∫
0

dϑcos2 (ϑ) sin3 (ϑ) =
Z R2

15 δ
b. (27)

The conservation of the sum of the potential and kinetic energies of sur-
face oscillations implies that the dispersion law of oscillations for the minimum

frequency is given by the relation ω2 = 8

(
1

R

)3(
σ (A,Df )

ρ

)
. In the first ap-

proximation (without a consideration of the distributions of protons and neu-
trons separately), the main contribution to the emission of surface oscillations
is made by the quadrupole emission, whose intensity

I = e2

(
ω6

4c5

)
d2
xy. (28)

The emission line width Γγ is equal to the product of ~ by the number of
emitted quanta:

Γγ = ~
I

~ω
= e2 1

4

(ω
c

)5

d2
xy. (29)

Using the dependences of the geometrical parameters of clusters on their dimen-
sion and the density, we can obtain the following dependence of the emission
frequency of nuclear systems on the mass number, and the fractal dimension:

ω = k3/2

(
σs (ρA, δ)

ρA

(
A

Astr

)γ−2/3
)1/2

≈
√

8

R3/2

√
σs (ρA, δ)

ρA

(
A

Astr

)γ−2/3

.

(30)
In Fig. 12, we present the dependences of the emission frequency of nuclei

due to the excitation of their surface on the mass number for ordinary nuclei
and nuclei with the fractal structure.

Fig. 12: Dependences of the emission frequency of nuclei due to the excitation of
their surface on the mass number for ordinary nuclei (upper curve) and nuclei with

the fractal structure (lower curve).

Since fractal structures are larger than liquid drops with the same mass,
the emission frequencies of the former are significantly less, and the depen-
dences of the emission frequency on the mass number are different. The exper-
imental observation of the dipole resonance of fractal structures will allow one
to determine the fractal dimension of nuclei and to classify structural nuclear
isomers of the fractal type.
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6 Fractal Thomson atoms

In the Nature, the charged nuclei capture the corresponding number of electrons
and become the electrically neutral atoms. It is clear that the formed atoms
can be stable (in the assumption of their planetary structure), if the radii of
the electron orbits closest to the nucleus are larger than the nucleus radius
R (AM ;Astr, Df ):

a0

Z (AM , Astr, Df )
> Rstr(AM/Astr)

−Df . (31)

This relation between the radii determines, in fact, the boundary of the
Periodic Mendeleev table for the mass numbers of elements AM . Relation (31)
yields easily the estimate of the parameters of the limiting fractal nucleus:AM ≈
52000, the charge ZM ≈ 1180, fractal dimension Df = 2.46, specific binding
energy per nucleon is of about 30 MeV, and size R ≈ 90 fm.

For nuclear systems with large mass numbers (A > AM ), the quasista-
tionary electroneutral formations will have the form of stable structures of the
electron – nucleus plasma, rather than the planetary atoms. In other words,
we may say that they will have the form of fractal Thomson atoms.

For the large values of mass numbers, A > AmaxM , the fractal elec-
troneutral formations of the electron—nucleus plasma contain obligatorily the
contribution of electrons. Their contribution to the energy of the degenerate
electron Fermi-fluid can be presented with regard for the quasineutrality as a
function of the density nuclear matter as follows:

Wel (A,Z;Df ) =
3

4
aε x

4/3
ρ (A;Df )

(
Z

A

)4/3

. (32)

The binding energy of such formations differs from the binding energy
of nuclei by the contribution of the electron Fermi-fluid. The density of the
energy of such formations takes the form

Wnuclei (A,Z, xρ)

ρstr
= xρ

(
(Mn + c3 − c0)− (Mn −Mp + 4c3)

Z

A

+ c1
1

A1/3
+ c2

Z2

A4/3
+ 4c3

Z2

A2

)
+
Wel

ρstr
.

(33)

The limiting Fermi energy of electrons increases with the substance den-
sity. Starting from the density which satisfies the condition

Zεe > (Amn −M (A,Z)) c2,

we obtain the possibility for the generation of stable free neutrons under condi-
tions of thermodynamic equilibrium in the reactions (A,Z) +Ze→ An+Zνe.

The requirement of a minimum of the internal energy w (ρ, ρn, A, Z) of the
nuclear matter with the mean density ρ, density of free neutrons ρn, and density

of free electrons ρe under the condition of quasineutrality ρe =
Z

A
(ρ− ρn)

yields the equations(
∂w

∂ρn

)
ρ,A,Z

= 0;

(
∂w

∂Z

)
ρ,ρn,A

= 0. (34)
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With regard for (25) after the differentiation with respect to Z and A, the
conditions of equilibrium (34) yield the equations

yβ =
Z

A
=

(
c1
2c2

)1/2
1√
A

; (35)

xp =

(
(Mn −Mp + 4c3)

(
2c2
c1
A

)1/6

−2

(
c1
2c2

)1/3(
4c3

1

A1/3
+ c2A

1/3

))3
1

a3
ε

.

Thus, every density of nucleons corresponds to a single stable nucleus
with A (ρ) and Z (ρ). It follows from the solution of Eqs. (35) that the mass
number of a stable nucleus tends to the limit A = 56, as the density decreases.

In this case,
Z

A
→ 26

56
. The energy density in the electron—nucleus plasma

with regard for neutrons is as follows:

w =
ρ− ρn
A

(
(A− Z)Mn+ZMp −B

(
A,Z

))
+ ρnWn +

3

4
aε

(
Z

A
(ρ− ρn)

)4/3

,

Wn ≈ ρn
(
Mn +

3

5

a2
ε

2Mn
ρ2/3
n

)
. (36)

The conditions of equilibrium take the form(
2Mn

a2
e

)3/2(
(c3 − c0) +

1

2
c1A

−1/3 − 2c1c3
c2

1

A

)3/2

= xn, (37)

1

a3
ε

(
2c2
c1

)1/2(
(Mn −Mp + 4c3)A1/6 −

√
2c1c2A

1/3 − 8c3

√
c1
2c2

A−1/3

)3

+ xn = xρ. (38)

These equations allow one to calculate A and xn for the given value of
density xρ. As the density increases, the nucleus can be broken down. The

threshold value of the ratio yinstab =
Z

A
can be estimated from the requirement

that the binding energy of nuclei be zero (see Fig. 11):

yinstab =
2c3 −

√
4c23 −

(
4c3 + c2A2/3

) (
c3 − c0 + c1A−1/3

)
4c3 + c2A2/3

. (39)

The plot of this function is shown in Fig. 13 together with the plot of

yst =

√
c1
2c2

A−1/2 for the most probable (stable) nucleus. The intersection of

these plots determines the mass number of the most massive stable drop-like
nucleus. In Fig. 14, we show the dependence of the mass number of the most
probable nucleus on the logarithm of the mean density of the nuclear matter.

It is seen that the mass number of the most stable nucleus depends weakly
on the density of the nuclear matter up to high densities and is equal to 56–60,
but then it grows very rapidly.
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Fig. 13: Dependence of the quan-
tity y = Z/A on the mass number.

Fig. 14: Dependence of the mass
number A of the most stable nu-

cleus on the density of nucleons.

Conclusion. Potentialities of the energy release
in nuclear processes.

In the framework of the conception of self-organizing synthesis of nuclei, we have
introduced new important notions and presented some results, which would be
applied in many fields of science and technique.

We have shown the efficiency of the use of such new states of the nuclear
matter as the electron – nucleus plasma with strong correlations and the nuclear
gel (cluster condensate with the fractal structure). As a result of the performed
studies, it becomes clear that the fractal geometry in the Nature is spread onto
the nuclear scale. Together with the mass and charge numbers, the nuclear
structures are characterized by such fundamental parameters as the fractal
dimension, correlation indices, and critical indices.

Based on the geometrical and physical relations involving the fractal ge-
ometry of a cluster structure and the Fermi statistics of nucleons, we have
executed the estimates of the binding energy of fractal nuclear structures, pre-
dicted a high stability of superheavy nuclear clusters and their high binding
energy, and obtained a generalization of the Bethe–Weizsäcker formula for su-
perheavy fractal nuclear structures.

The expansion of the notions of the fractal geometry onto nuclear struc-
tures allows us to understand that the potentialities of nuclear processes and
technologies as sources of energy are significantly greater than those considered
in the modern nuclear physics. The conception of self-organizing synthesis leads
us to the global conclusion that the future nuclear technologies will be based
on multiparticle collective processes of synthesis-fission (coherent nuclear reac-
tions) with a given energy directedness in a dense coherently correlated plasma
(cluster condensate), rather than elementary two-particle collision nuclear re-
actions with overcoming the Coulomb barrier.

In order to develop the efficient technologies of the release and the accu-
mulation of the nuclear energy, it is necessary to master the control over the
self-organization of an internal structure of nuclei and their deformations. The
main laws of the self-organization of nuclear structures and the methods of
control will be considered in our future publications.
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