Statistical approach for stochastic evolutions of complex systems in the continuum
DOI:
https://doi.org/10.31392/2307-4515/2012-1.2Анотація
We present a general background for the study of complex systems in the continuum and explain the mathematical tools to deal with stochastic evolutions in the continuum. The statistical description of Markov dynamics of complex systems in the continuum is described in details. The review of recent developments for birth-and-death evolutions is given.Посилання
S. Albeverio, Y. Kondratiev, and M. R?ockner. Analysis and geometry on configuration spaces. J. Funct. Anal., 154(2):444–500, 1998.
S. Albeverio, Y. Kondratiev, and M. R?ockner. Analysis and geometry on configuration spaces: the Gibbsian case. J. Funct. Anal., 57(1):242–291, 1998.
W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander, and U. Schlotterbeck. One-parameter semi- groups of positive operators, volume 1184 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. ISBN 3-540-16454-5. x+460 pp.
L. Bertini, N. Cancrini, and F. Cesi. The spectral gap for a Glauber-type dynamics in a continuous gas. Ann. Inst. H. Poincar?e Probab. Statist., 38 (1):91–108, 2002.
N. N. Bogoliubov. Problems of a dynamical theory in statistical physics. In Studies in Statistical Mechanics, Vol. I, pages 1–118. North-Holland, Amsterdam, 1962.
B. Bolker and S. W. Pacala. Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor. Popul. Biol., 52(3):179–197, 1997.
B. Bolker and S. W. Pacala. Spatial moment equations for plant com- petitions: Understanding spatial strategies and the advantages of short dispersal. American Naturalist, 153:575–602, 1999.
N. R. Campbell. The study of discontinuous problem. Proc. Cambridge Philos. Soc., 15:117–136, 1909.
N. R. Campbell. Discontinuities in light emission. Proc. Cambridge Philos. Soc., 15:310–328, 1910.
U. Dieckmann and R. Law. Relaxation projections and the method of moments. In The Geometry of Ecological Interactions, pages 412–455. Cambridge University Press, Cambridge, UK, 2000.
R. L. Dobrushin, Y. G. Sinai, and Y. M. Sukhov. Dynamical systems of statistical mechanics. In Y. G. Sinai, editor, Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics, volume II of Encyclopaedia Math. Sci., Berlin, Heidelberg, 1989. Springer.
D. Filonenko, D. Finkelshtein, and Y. Kondratiev. On two-component contact model in continuum with one independent component. Methods Funct. Anal. Topology, 14(3):209–228, 2008.
D. Finkelshtein. Measures on two-component configuration spaces. Condensed Matter Physics, 12(1):5–18, 2009.
D. Finkelshtein and Y. Kondratiev. Measures on configuration spaces defined by relative energies. Methods Funct. Anal. Topology, 11(2):126– 155, 2005.
D. Finkelshtein, Y. Kondratiev, and Y. Kozitsky. Glauber dynamics in continuum: a constructive approach to evolution of states. Discrete and Cont. Dynam. Syst. - Ser A., 33(4):1431–1450, 4 2013.
D. Finkelshtein, Y. Kondratiev, and O. Kutoviy. Individual based model with competition in spatial ecology. SIAM J. Math. Anal., 41(1):297–317, 2009.
D. Finkelshtein, Y. Kondratiev, and O. Kutoviy. Correlation functions evolution for the Glauber dynamics in continuum. Semigroup Forum, 85: 289–306, 2012.
D. Finkelshtein, Y. Kondratiev, and O. Kutoviy. Semigroup approach to non-equilibrium birth-and-death stochastic dynamics in continuum. J. of Funct. Anal., 262(3):1274–1308, 2012.
D. Finkelshtein, Y. Kondratiev, and O. Kutoviy. Establishment and fecundity in spatial ecological models: statistical approach and kinetic equations. ArXiv: 1112.1973. To appear: Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2013.
D. Finkelshtein, Y. Kondratiev, O. Kutoviy, and E. Zhizhina. An approx- imative approach for construction of the Glauber dynamics in continuum. Math. Nachr., 285(2–3):223–235, 2012.
D. Finkelshtein, Y. Kondratiev, and M. J. Oliveira. Glauber dynamics in the continuum via generating functionals evolution. Complex Analysis and Operator Theory, 6(4):923–945, 2012.
D. Finkelshtein, Y. Kondratiev, and M. J. Oliveira. Kawasaki dynamics in the continuum via generating functionals evolution. Methods Funct. Anal. Topology, 18(1):55–67, 2012.
D. Finkelshtein, Y. Kondratiev, and M. J. Oliveira. Markov evolutions and hierarchical equations in the continuum. II. Multicomponent systems. ArXiv: 1106.4946. To appear: Reports Math. Phys., 2013.
M. E. Fisher and D. Ruelle. The stability of many-particle systems. J. Math. Phys., 7:260–270, 1966.
N. Fournier and S. Meleard. A microscopic probabilistic description of a locally regulated population and macroscopic approximations. The Annals of Applied Probability, 14(4):1880–1919, 2004.
N. L. Garcia. Birth and death processes as projections of higher dimen- sional poisson processes. Adv. in Appl. Probab., 27:911–930., 1995.
N. L. Garcia and T. G. Kurtz. Spatial birth and death processes as solu- tions of stochastic equations. ALEA Lat. Am. J. Probab. Math. Stat., 1: 281–303 (electronic), 2006.
H.-O. Georgii. Canonical and grand canonical Gibbs states for continuum systems. Comm. Math. Phys., 48(1):31–51, 1976.
R. A. Holley and D. W. Stroock. Nearest neighbor birth and death pro- cesses on the real line. Acta Math., 140(1-2):103–154, 1978.
D. G. Kendall. Stochastic Geometry, chapter Foundations of a theory of random sets, pages 322–376. New York: Wiley,, 1974.
Y. Kondratiev and T. Kuna. Harmonic analysis on configuration space. I. General theory. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5(2): 201–233, 2002.
Y. Kondratiev and O. Kutoviy. On the metrical properties of the config- uration space. Math. Nachr., 279(7):774–783, 2006.
Y. Kondratiev, O. Kutoviy, and E. Zhizhina. Nonequilibrium Glauber- type dynamics in continuum. J. Math. Phys., 47(11):113501, 17, 2006.
Y. Kondratiev and E. Lytvynov. Glauber dynamics of continuous particle systems. Ann. Inst. H. Poincare Probab. Statist., 41(4):685–702, 2005.
Y. Kondratiev, R. Minlos, and E. Zhizhina. One-particle subspace of the Glauber dynamics generator for continuous particle systems. Rev. Math. Phys., 16(9):1073–1114, 2004.
T. Kuna. Studies in configuration space analysis and applications. Bonner Mathematische Schriften [Bonn Mathematical Publications], 324. Univer- sita?t Bonn Mathematisches Institut, Bonn, 1999. ii+187 pp. Dissertation, Rheinische Friedrich-Wilhelms-Universita?t Bonn, Bonn, 1999.
A. Lenard. Correlation functions and the uniqueness of the state in clas- sical statistical mechanics. Comm. Math. Phys., 30:35–44, 1973.
A. Lenard. States of classical statistical mechanical systems of infinitely many particles. I. Arch. Rational Mech. Anal., 59(3):219–239, 1975.
A. Lenard. States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures. Arch. Rational Mech. Anal., 59(3):241–256, 1975.
S. A. Levin. Complex adaptive systems: exploring the known, the unknown and the unknowable. Bulletin of the AMS, 40(1):3–19, 2002.
T. M. Liggett. Interacting particle systems, volume 276 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1985. ISBN 0-387-96069-4. xv+488 pp.
T. M. Liggett. Stochastic interacting systems: contact, voter and exclusion processes, volume 324 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer- Verlag, Berlin, 1999. ISBN 3-540-65995-1. xii+332 pp.
H. P. Lotz. Uniform convergence of operators on L? and similar spaces. Math. Z., 190(2):207–220, 1985.
J. Mecke. Eine charakteristische Eigenschaft der doppelt stochastischen Poissonschen Prozesse. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 11:74–81, 1968.
D. J. Murrell, U. Dieckmann, and R. Law. On moment closures for popu- lation dynamics in continuous space. Journal of Theoretical Biology, 229 (3):421 – 432, 2004.
X.-X. Nguyen and H. Zessin. Integral and differential characterizations of the Gibbs process. Math. Nachr., 88:105–115, 1979.
O. Ovaskainen and S. Cornell. Space and stochasticity in population dy- namics. Proc. Nat. Acad. Sci. USA, 103:12781–12786, 2006.
L. V. Ovsjannikov. Singular operator in the scale of Banach spaces. Dokl. Akad. Nauk SSSR, 163:819–822, 1965.
M. D. Penrose. Existence and spatial limit theorems for lattice and con- tinuum particle systems. Prob. Surveys, 5:1–36, 2008.
R. S. Phillips. The adjoint semi-group. Pacific J. Math., 5:269–283, 1955.
C. Preston. Spatial birth-and-death processes. Bull. Inst. Internat. Statist., 46(2):371–391, 405–408, 1975.
A. Renyi. Remarks on the Poisson process. Studia Sci. Math. Hungar., 2: 119–123, 1970.
D. Ruelle. Statistical mechanics: Rigorous results. W. A. Benjamin, Inc., New York-Amsterdam, 1969. xi+219 pp.
D. Ruelle. Superstable interactions in classical statistical mechanics. Comm. Math. Phys., 18:127–159, 1970.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).