On preservation of singularity, absolute continuity and discreteness under transformation of probability spaces

Автор(и)

Ключові слова:

probability measures, singularity, absolute continuity, discreteness, measurable mapping, bimeasurable mapping, probability spaces, image measure

Анотація

The paper is devoted to the study of conditions for the preservation of mutual singularity resp. absolute continuity, and discreteness of probability measures under measurable mappings of probability spaces.
Under very general assumptions we have found such conditions for the preservations. At the same time a series of important counterexamples are presented.
The results obtained can simplified essentially the study the Lebesgue structure (i.e., finding necessary and sucient conditions for the singular continuity, absolute continuity and discreteness of a wide spectra of probability measures with independent digits of symbolic expansions of real numbers and their multidimensional generalizations.

Посилання

S. Albeverio, V. Koshmanenko, M. Pratsiovytyi, G. Torbin. 2011. On {nestructure of singularly continuous probability measures and random variables with independent Q˜-symbols. Methods of Functional Analysis and Topology 17(1). P. 97–111. http://mfat.imath.kiev.ua/article/?id=570

S. Albeverio, G. Torbin. 2005. Fractal properties of singularly continuous probability distributions with independent Q∗-digits. Bull. Sci. Math. 129(4). P. 356–367. https://doi.org/10.1016/j.bulsci.2004.12.001

S. Albeverio, V. Koshmanenko, G. Torbin. 2003. Fine structure of the singular continuous spectrum. Methods of Functional Analysis and Topology 9(2). P. 101–119. http://mfat.imath.kiev.ua/article/?id=236

S. Albeverio, Ya. Gontcharenko, M. Pratsiovytyi, G. Torbin. 2006. Jessen—Wintner type random variables and fractal properties of their distributions. Mathematische Nachrichten 279(15). P. 1619–1633. https://doi.org/10.1002/mana.200310441

S. Albeverio, G. Torbin. 2004. Image measures of in{nite product measures and generalized Bernoulli convolutions. Transactions of the National Pedagogical University (Phys.-Math. Sci.) 5. P. 248–264.

S. Albeverio, G. Torbin. 2008. On {ne fractal properties of generalized in{nite Bernoulli convolutions. Bull. Sci. Math. 132(8). P. 711–727. https://doi.org/10.1016/j.bulsci.2008.03.002

S. Albeverio, O. Baranovskyi, M. Pratsiovytyi, G. Torbin. 2007. The Ostrogradsky series and related Cantor-like sets. Acta Arithm. 130(3). P. 215–230. http://eudml.org/doc/278451

S. Albeverio, Yu. Kondratiev, R. Nikiforov, G. Torbin. 2017. On new fractal phenomena connected with in{nite linear IFS. Mathematische Nachrichten 290(8–9). P. 1163–1176. https://doi.org/10.1002/mana.201500471

S. Albeverio, M. Pratsiovytyi, G. Torbin. 2008. Transformations preserving the Hausdor"–Besicovitch dimension. Central European Journal of Mathematics 6(1). P. 119–128. https://doi.org/10.2478/s11533-008-0007-y

G. Ivanenko, R. Nikiforov, G. Torbin. 2006. Ergodic approach to investigations of singular probability measures. Transactions of the National Pedagogical University (Phys.-Math. Sci.) 7. P. 126–142.

B. Jessen, A. Wintner. 1935. Distribution function and Rieman Zetafunction. Trans.Amer.Math.Soc. 38. P. 48–88. https://doi.org/10.1090/S0002-9947-1935-1501802-5

S. Kakutani. 1948.Equivalence of in{nite product measures. Ann. of Math. 49(1). P. 214–224. https://doi.org/10.2307/1969123

M. Lupain, G. Torbin. 2014. On new fractal phenomena related to distributions of random variables with independent GLS-symbols. Transactions of the National Pedagogical University (Phys.-Math. Sci.) 16(2). P. 25–39.

R. Nikiforov, G. Torbin. 2013. Fractal properties of random variables with independent Q∞-digits. Theory Probab. Math. Stat. 86. P. 169–182. https://doi.org/10.1090/S0094-9000-2013-00896-5

Y. Peres, B. Solomyak. 1996. Absolute continuity of Bernoulli convolutions, a simple proof. Math. Res. Lett. 3(2). P. 231–239. https://dx.doi.org/10.4310/MRL.1996.v3.n2.a8

B. Solomyak. 1995. On the random series 趸 ±λn (an Erdцs problem). Ann. of Math. 142(3). P. 611–625. https://doi.org/10.2307/2118556

G. Torbin. 2002. Fractal properties of the distributions of random variables with independent Q-symbols. Transactions of the National Pedagogical University (Phys.-Math. Sci.) 3. P. 241–252.

G. Torbin, M. Pratsiovytyi. 1992. Random variables with independent Q∗-symbols, Institute for Mathematics of NASU: Random evolutions: theoretical and applied problems. P. 95–104.

##submission.downloads##

Опубліковано

2025-05-24

Номер

Розділ

Математика та її застосування