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On preservation of singularity, absolute
continuity and discreteness under

transformation of probability spaces
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Abstract. The paper is devoted to the study of conditions for the preser-
vation of mutual singularity resp. absolute continuity, and discreteness
of probability measures under measurable mappings of probability spaces.
Under very general assumptions we have found such conditions for the
preservations. At the same time a series of important counterexamples are
presented. The results obtained can simplified essentially the study the
Lebesgue structure (i.e., finding necessary and sufficient conditions for the
singular continuity, absolute continuity and discreteness of a wide spectra
of probability measures with independent digits of symbolic expansions of
real numbers and their multidimensional generalizations.
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1 Introduction

It is well known that there exist only three types of pure probability
distributions: discrete, absolutely continuous, and singularly continuous.

Discrete and absolutely continuous distributions are the most studied;
however, in many textbooks the class of continuous distributions is often in-
correctly identified with the class of absolutely continuous ones. Singularly
continuous distributions, which gained interest in the early 20th century af-
ter the development of Lebesgue measure theory, have experienced periods of
growth and decline in scientific attention. The development of the theory of
singular measures was stimulated, in particular, by its connections with the
problems of harmonic analysis (especially with the theory of trigonometric se-
ries), the theory of dynamical systems, and spectral theory. At the end of the
20th century, with the advent of fractal theory, a new toolkit for the study
of singular measures appeared, which gave a new impetus to the development
of this direction. Despite a rather long history of research, the problem of
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finding necessary and sufficient conditions for singular continuity resp. abso-
lute continuity remains open for many classes of probability distributions (see,
e.g., [11, 12, 15, 16]). After the proving singularity, the issues of studying the
fractal properties of the corresponding measures become important. The paper
is devoted to the study of conditions for the preservation of mutual singularity
resp. absolute continuity, and discreteness of probability measures under mea-
surable mappings of probability spaces. Under very general assumptions we
have found such conditions for the preservations. At the same time a series of
important counterexamples are presented. The results obtained can simplified
essentially the study the Lebesgue structure (i.e., finding necessary and suffi-
cient conditions for the singular continuity, absolute continuity and discreteness
of a wide spectra of probability measures with independent digits of symbolic
expansions of real numbers (see, e.g., [1, 1–6, 6, 14, 17, 18, 22] and references
therein) and their multidimensional generalizations.

2 On preservation of singularity, absolute continuity and
discreteness under transformation of probability
spaces

Let (Ω1,A1) and (Ω2,A2) be measurable spaces, and let µ1, ν1 be prob-
ability measures on A1.

Let f be a measurable mapping:

(Ω1,A1, µ1)
f→ (Ω2,A2, µ2),

(Ω1,A1, ν1)
f→ (Ω2,A2, ν2),

where the measures µ2 and ν2 are image measures of the measures µ1 and ν1
under the mapping f :

µ2(E2) := µ1(f
−1(E2)),∀E2 ∈ A2,

ν2(E2) := ν1(f
−1(E2)),∀E2 ∈ A2.

Theorem 1. If µ1 ≪ ν1, then µ2 ≪ ν2.

Proof. Let us assume that ν2(E2) = 0 for some subset E2 ∈ A2. Then

ν1(f
−1(E2)) = ν2(E2) = 0.

Since µ1 ≪ ν1, we deduce that µ1(f
−1(E2)) = µ2(E2) = 0. So, the

measure µ2 is absolutely continuous w.r.t. the measure ν2.

Remark 1. The implication µ2 ≪ ν2 ⇒ µ1 ≪ ν1 is false.

Example 1. Let
Ω1 = {0, 1, 2},A1 = 2Ω1 ,

Ω2 = {a, b},A2 = 2Ω2 ,

f(0) = f(1) = a, f(2) = b.
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Let us define measures µ1 and ν1 as follows:

µ1({0}) = 0, µ1({1}) =
1

2
, µ1({2}) =

1

2
;

ν1({0}) =
1

2
, ν1({1}) = 0, ν1({2}) =

1

2
.

Since ν1({1}) = 0, but µ1({1}) > 0, we see that the measure µ1 is not
absolutely continuous w.r.t. the measure ν1.

It is clear that

µ2({a}) = µ1(f
−1{a}) = µ1({0, 1}) =

1

2
,

µ2({b}) = µ1(f
−1{b}) = µ1({2}) =

1

2
.

ν2({a}) = ν1(f
−1{a}) = ν1({0, 1}) =

1

2
,

ν2({b}) = ν1(f
−1{b}) = ν1({2}) =

1

2
.

Therefore, µ2 ≪ ν2 (moreover. µ2 ≡ ν2). At the same time the measure
µ1 is not absolutely continuous w.r.t. the measure ν1.

Remark 2. There exists mutual singular probability measures µ1 and ν1, and
a bimeasurable mapping f such that their image measures µ2 and ν2 coincide.

Example 2. Let

Ω1 = {0, 1, 2, 3}, A1 = 2Ω1 ,

Ω2 = {0, 1}, A2 = 2Ω2 ,

f(0) = f(1) = 0, f(2) = f(3) = 1.

Let us define measures µ1 and ν1 as follows:

µ1({0}) = µ1({2}) =
1

2
;

ν1({1}) = ν1({3}) =
1

2
.

Then ν1({0, 2}) = 0, µ1({0, 2}) = 1 and µ1({1, 3}) = 0, ν1({1, 3}) = 1. So,
µ1⊥ν1.

From the definition of measures µ2 and ν2 it follows that

µ2({0}) = µ1(f
−1({0})) = µ1({0, 1}) =

1

2
,

µ2({1}) = µ1(f
−1({1})) = µ1({2, 3}) =

1

2
,

ν2({0}) = ν1(f
−1({0})) = ν1({0, 1}) =

1

2
,

ν2({1}) = ν1(f
−1({1})) = ν1({2, 3}) =

1

2
.

So, µ1⊥ν1, but the corresponding measures µ2 and ν2 coincide.
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Theorem 2. If µ2⊥ν2, then µ1⊥ν1.

Proof. If µ2⊥ν2, then there exists a subset E2 ∈ A2 such that ν2(E2) = 0
and µ2(Ω2 \ E2) = 0. From the definition of the measures µ2 and ν2 we have
µ1(f

−1(E2)) = µ2(E2) = 0 and ν(f−1(Ω2 \ E2)) = ν2(Ω2 \ E2) = 0. It is clear
that f−1(Ω2 \ E2)) ∩ f−1(E2) = ∅. So, µ1⊥ν1.

Remark 3. The inverse implication is false even under additional assumption
on bijectivity of f .

Example 3. Let Ω1 = Ω2 = {0, 1, 2, 3}, A1 = 2Ω1 , A2 = {Ω2, ∅, {0, 1}, {2, 3}}.
Let µ1({0}) = µ1({2}) =

1

2
, ν1({1}) = ν1({3}) =

1

2
and f(i) = i, i ∈

{0, 1, 2, 3}.
Since ν1({0, 2}) = 0 and µ1({0, 2}) = 1, we get µ1⊥ν1.
At the same time

µ2({0, 1}) = µ1({0, 1}) =
1

2
,

µ2({2, 3}) = µ1({2, 3}) =
1

2
,

ν2({0, 1}) = ν1({0, 1}) =
1

2
,

ν2({2, 3}) = ν1({2, 3}) =
1

2
.

Therefore, µ1⊥ν1, the mapping f is measurable and bijective, but µ2 ≡ ν2.

Theorem 3. Let f be a measurable and bijective mapping. Then

µ1 ≪ ν1 ⇔ µ2 ≪ ν2,

µ1⊥ν1 ⇔ µ2⊥ν2.

Proof. If f is a measurable and bijective mapping, then A = f−1(f(A)) and
µ1(A) = µ2(f(A)).

In a similar way we get ν1(A) = ν2(f(A)), ∀A ∈ A1.
Taking into account Theorem 1, to prove the first statement of the theorem

it sufficient to show that from the condition µ2 ≪ ν2 it follows that µ1 ≪ ν1.
Let us assume that ν1(A) = 0 for some measurable subset A ⊂ Ω1. Then

ν2(f(A)) = ν1(A) = 0. Since µ2 ≪ ν2, we get µ2(f(A)) = µ1(A) = 0, Which
proves the absolute continuity of the measure µ1 w.r.t. the measure ν1.

Taking into account Theorem 2, to prove the second statement of the
theorem it sufficient to show that from µ1⊥ν1, it follows that µ2⊥ν2.

From µ1⊥ν1, it follows that there exists a subset A ∈ A1 such that
ν1(A) = 0, µ1(A) = 1. Then ν1(A) = ν2(f(A)) = 0. Let f(A) =: A′. From
bimeasurability of f it follows that A′ ∈ A2, µ2(A

′) = µ2(f(A)) = µ1(A) = 1.
Therefore, µ2⊥ν2.

In many important cases the corresponding mapping f is not bijective.
Such cases were studied partially in papers [5, 10]. The following theorem gives
a rather general conditions for the preservation of relations “to be mutually
singular” and “to be absolutely continuous” for probability measures under
bimeasurable mappings.
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Theorem 4. Let µ1 and ν1 be probability measures on a measurable space
(Ω1,A1). Let (Ω2,A2) be a measurable space and let f be a bimeasurable map-
ping from (Ω1,A1) into (Ω2,A2).

Let µ2 and ν2 be image measures of µ1 and ν1 under f , i.e.,

µ2(E2) := µ1(f
−1(E2)),∀E2 ∈ A2,

ν2(E2) := ν1(f
−1(E2)),∀E2 ∈ A2.

Assume that there exists a subset Ω0 ∈ A1, such that ν2(f(Ω0)) = 0, and
the mapping f from (Ω1 \ Ω0) into Ω2 is bijective.

Then
µ1 ≪ ν1 ⇔ µ2 ≪ ν2,

µ1⊥ν2 ⇔ µ2⊥ν2.

Proof. 1. Firstly let us prove that

µ1 ≪ ν1 ⇔ µ2 ≪ ν2.

1a. Assume that µ2 ≪ ν2, and show that µ1 ≪ ν1.
Let E1 be an arbitrary subset from A1 with ν1(E1) = 0. Let us prove that

µ1(E1) = 0.
Define E10 := E1 ∩ Ω0, E11 := E1 ∩ Ω0.
Let E2 := f(E1), E21 := f(E11), E20 := f(E10).
Since E1 ∈ A1 and Ω0 ∈ A1, we get E10 ∈ A1 and E11 ∈ A1.
From bimeasurability of f− it follows that E2 ∈ A2, E20 ∈ A2, E21 ∈ A2.

It can happen that E20 ∩ E21 ̸= ∅.

ν2(E2) = ν2(E20 ∪ E21) ≤ ν2(E20) + ν2(E21).

Since the mapping f from Ω1 \ Ω0 into Ω2 is bijective, we get

f−1(E21) ∩ (Ω1 \ Ω0) = E11.

Therefore,

f−1(E21) = E11 ∪ E∗
11, E

∗
11 ⊂ Ω0, E

∗
11 ∈ A1.

Then

ν2(E21) = ν1(f
−1(E21)) = ν1(E11 ∪ E∗

11) = ν1(E11) + ν1(E
∗
11).

ν1(E11) = 0, because E11 ⊂ E1 and ν1(E1) = 0.
From E∗

11 ⊂ Ω0 it follows f(E∗
11) ⊂ f(Ω0). So, f−1(f(E∗

11)) ⊂ f−1(f(Ω0)).
Therefore,

ν1(f
−1(f(E∗

11))) ≤ ν1(f
−1(f(Ω0))).

Since ν1(f
−1(f(Ω0))) = 0, we have ν1(E

∗
11) = 0. So, ν2(E21) = 0.

From E10 ⊂ Ω0, it follows that E20 ⊂ f(Ω0) and f−1(E20) ⊂ f−1(f(Ω0)).
Therefore, ν2(E20) = ν1(f

−1(E20)) ≤ ν1(f
−1(f(Ω0)). So, ν2(E20) = 0.

Hence,

ν2(E2) = ν2(E20 ∪ E21) ≤ ν2(E20) + ν2(E21) = 0 + 0 = 0.
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From µ2 ≪ ν2 it follows that µ2(E2) = 0.
Since µ2(E2) = µ1(f

−1(E2)) = 0 and E1 ⊂ f−1(f(E1)) = f−1(E2), we
deduce that µ1(E1) ≤ µ2(E2) = 0. So, µ1 ≪ ν1.
1b. The implication

µ1 ≪ ν1 ⇒ µ2 ≪ ν2

follows directly from Theorem 1.
2. Let us prove that µ1⊥ν1 ⇔ µ2⊥ν2.
2a. The implication µ2⊥ν2 ⇒ µ1⊥ν1 follows directly from Theorem 2.
2b. Let us prove the implication µ1⊥ν1 ⇒ µ2⊥ν2

From the definition of singularity µ1⊥ν1 it follows that there exists a
subset E1 ∈ A1 such that ν1(E1) = 0, µ1(E1) = 1. Let us show that there
exists a subset E2 ∈ A2 such that ν2(E2) = 0, and µ2(E2) = 1.

Let E10 := E1 ∩ Ω0, E11 := E1 ∩ Ω0, f(E1) =: E2, f(E11) =: E21,
f(E10) =: E20.

ν2(E2) = ν2(E20 ∪ E21) ≤ ν2(E20) + ν2(E21).

From the definition of the measure ν2 it follows that

ν2(E21) = ν1(f
−1(E21)),

where f−1(E21) = E11 ∪ E∗
11, E

∗
11 ⊂ Ω0.

Then
ν2(E21) = ν1(E11 ∪ E∗

11) = ν1(E11) + ν1(E
∗
11).

Since E11 ⊂ E1, ν1(E1) = 0, we have ν1(E11) = 0.
Since E∗

11 ⊂ Ω0, we deduce that f−1(f(E∗
11)) ⊂ f−1(f(Ω0)). From as-

sumptions of the theorem it follows that ν1(f
−1(f(Ω0))) = 0. Therefore,

ν1(E
∗
11) = 0. So,

ν2(E21) = ν1(E11) + ν1(E
∗
11) = 0 + 0 = 0.

Let us determine ν2(E20).
ν2(E20) = ν1(f

−1(E20)). Since E2 ⊂ f(Ω0), we have

f−1(E20) ⊂ f−1(f(Ω0)).

Then
ν1(f

−1(E20)) ≤ ν1(f
−1(f(Ω0))) = 0.

Therefore,
ν2(E20) = ν1(f

−1(E20)) = 0.

So,
ν2(E2) ≤ ν2(E20) + ν2(E21) = 0 + 0 = 0.

Let us show that µ(E2) = 1. From the definition of the measure µ2 it
follows that

µ2(E2) = µ1(f
−1(E2)).

Since f−1(E2) = f−1(f(E1)), and E1 ⊂ f−1(f(E1)), we get µ1(f
−1(E2)) ≥

µ1(E1) = 1. So, µ2(E2) = 1 and therefore µ2⊥ν2.
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Remark 4. The assumption ν1(f
−1f(Ω0)) = 0 is important and can not be

replaced by the assumption ν1(Ω0) = 0.

Example 4. Let
Ω1 = {0, 1, 2},A1 = 2Ω1 ,

Ω2 = {a, b},A2 = 2Ω1 ,

f(0) = f(1) = a, f(2) = b.

Define the measure µ1 and ν1 in the following way:

µ1({0}) =
1

2
, µ1({1}) = 0, µ1({2}) =

1

2
;

ν1({0}) = 0, ν1({1}) =
1

2
, ν1({2}) =

1

2
.

Since ν1({0}) = 0, and µ1({0}) > 0, we deduce that the measure µ1 is not
absolutely continuous w.r.t. the measure ν1.

Let Ω0 = {0}. Then Ω1 \Ω0 = {1, 2}, and the mapping f : Ω1 \Ω0 −→ Ω2

is bijective and bimeasurable.
At the same time

µ2({a}) = µ1(f
−1{a}) = µ1({0, 1}) =

1

2
,

µ2({b}) = µ1(f
−1{b}) = µ1({2}) =

1

2
.

Similarly

ν2({a}) = ν1(f
−1{a}) = ν1({0, 1}) =

1

2
,

ν2({b}) = ν1(f
−1{b}) = ν1({2}) =

1

2
.

So, µ2 ≪ ν2 (µ2 ≡ ν2), but the measure µ1 is not absolutely continuous
w.r.t. the measure ν1.

Theorem 5. Let µ1 and ν1 be probability measures on a measurable space
(Ω1,A1). Let (Ω2,A2) be a measurable space and let f be a bimeasurable map-
ping from (Ω1,A1) into (Ω2,A2).

Let µ2 and ν2 be image measures of µ1 and ν1 under f , i.e.,

µ2(E2) := µ1(f
−1(E2)),∀E2 ∈ A2,

ν2(E2) := ν1(f
−1(E2)),∀E2 ∈ A2.

Assume that there exists a subset Ω0 ∈ A1, such that

µ1(Ω0) = 0, ν1(Ω0) = 0,

and the mapping f from (Ω1 \ Ω0) into Ω2 is bijective.
Then

µ1 ≪ ν1 ⇔ µ2 ≪ ν2,

µ1⊥ν2 ⇔ µ2⊥ν2.
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Proof. To prove the first statement of the theorem we must prove the implica-
tion

µ2 ≪ ν2 ⇒ µ1 ≪ ν1.

Assume that the measure µ1 is not absolutely continuous w.r.t. ν1. Then
there exists a subset E1 ∈ A1 such that ν1(E1) = 0 and µ1(E1) > 0.

Let us split the set E1 into two parts E1 = E∗
1 ∪E0, where E∗

1 = E1 ∩Ω′,
E0 ⊂ Ω0, Ω

′ = Ω1 \ Ω0.
From our assumptions it follows that ν1(E1) = 0 and E∗

1 ⊂ E1. Hence,
ν1(E

∗
1 ) = 0.
Similarly, taking into account that µ1(E1) > 0 and µ1(E0) = 0, we get

µ1(E
∗
1 ) > 0.
Let E∗

2 := f(E∗
1 ). From the definition of the measure ν2:

ν2(E
∗
2 ) = ν1(f

−1f(E∗
1 )).

Since the mapping f from Ω′ into Ω2 is bijective, we have

f−1(E∗
2 ) = E∗

1 ∪ E′
1,

where E1 ⊂ Ω0.
Then ν1(E

′
1) ≤ ν1(Ω0) = 0. Therefore, ν1(E′

1) = 0. So,

ν2(E
∗
2 ) = ν1(E

∗
1 ) + ν1(E

′
1) = 0 + 0 = 0.

Let us determine µ2(E
∗
2 ).

µ2(E
∗
2 ) = µ1(E

∗
1 ) + µ1(E

′
1).

Since µ1(E
′
1) ≤ µ1(Ω0) = 0 and µ1(E

∗
1 ) > 0, we get µ2(E

∗
2 ) > 0 which contra-

dicts the absolute continuity of the measure µ2 w.r.t. ν2.
To prove the second statement of the theorem we must prove the impli-

cation
µ1⊥ν1 ⇒ µ2⊥ν2.

Let µ1⊥ν1. Then there exists a subset A1 ∈ A1 such that ν1(A1) = 0 and
µ1(A1) = 1. Let us define B1 := A1 = Ω1 \ A1. Then A1 ∩ B1 = ∅, B1 ∈ A1

and µ1(A1) = 1, ν1(B1) = 1.
Let A∗

1 := A1∩Ω′, B∗
1 := B1∩Ω′, where Ω′ = Ω1 \Ω0. Since A1 \A∗

1 ⊂ Ω0

and µ1(Ω0) = 0, we get µ1(A
∗
1) = 1. Similarly, ν1(B∗

1) = 1.
Let A∗

2 := f(A∗
1). Since f is bimeasurable, we have A∗

2 ∈ A2. From the
definition of the measure µ2 :

µ2(A
∗
2) = µ1(f

−1(A∗
2)).

Since f−1(f(A∗
1)) ⊃ A∗

1 and µ1(A
∗
1) = 1, we deduce that µ2(A

∗
2) = 1. Similarly,

we have ν2(B
∗
2) = 1, where B∗

2 := f(B∗
1).

Since A∗
1∩B∗

1 = ∅ and the mapping f : Ω′ → Ω2 is bijective, and A∗
1 ⊂ Ω′,

B∗
1 ⊂ Ω′, we get A∗

2 ∩B∗
2 = ∅.

From ν2(B
∗
2) = 1 and A∗

2 ∩B∗
2 = ∅, it follows that ν2(A

∗
2) = 0.

Since µ2(A
∗
2) = 1, we get a desirable relation µ2⊥ν2, which proves the

second part of the theorem.
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Theorem 6. Let f be a mapping from (Ω1,A1, µ1) into (Ω2,A2, µ2) , and the
measure µ2 is the image of the measure µ1 under f .

If the mapping f is measurable, then the discreteness of the measure µ1

implies the discreteness of the measure µ2.

Proof. If the measure µ1 is discrete (atomic), then there exists an at most
countable subset Ed ∈ A1 such that µ1(Ed) = 1.

Let E′
d := f(Ed). Since f is a bimeasurable mapping, we deduce that

E′
d ∈ A2 and E′

d is an at most countable set.
To determine µ2(E

′
d) let us consider the set E∗

d := f−1(E′
d) = f−1(f(Ed)).

From the definition of the measure µ2 :

µ2(E
′
d) = µ1(f

−1(E′
d)) = µ1(E

∗
d).

It is clear that E∗
d ⊃ Ed.

Hence, µ1(Ed∗) ≥ µ1(Ed) = 1. So, µ2(E
′
d) = 1, which proves the discrete-

ness of the measure µ2.

Remark 5. The implication “µ2 is discrete ⇒ µ1 is discrete” is false.

Example 5. Let Ω1 = [0, 1], and let A1 = B[0, 1], let µ1 be Lebesgue measure
on [0, 1].

Let Ω2 = [0, 1], A2 = B[0, 1].
Let f(x) =

1

2
,∀x ∈ [0, 1].

It is clear that f is bimeasurable and µ2 is pure discrete with a unique

atom at the point
1

2
.

Theorem 7. If the mapping f is bimeasurable and for any point y ∈ Ω2 the set
f−1(y) is an at most countable, then µ2 is discrete if and only if µ1 is discrete.

Proof. Let µ2 be discrete. Then there exists an at most countable subset
E′

d ∈ A2 such that µ2(E
′
d) = 1. Let Ed := f−1(E′

d).
From the definition of the measure µ2:

µ2(E
′
d) = µ1(f

−1(E′
d)) = µ1(Ed) = 1, Ed ∈ A1.

From the assumption of the theorem for any point y ∈ Ω2 the set f−1(y)
is an at most countable. Therefore, the set Ed is an at most countable. So,
from the discreteness of the measure µ2 we get the discreteness of the measure
µ1, which proves the theorem.
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