Fast traveling-wave reactor of the channel type
DOI:
https://doi.org/10.31392/2307-4515/2017-9.3Анотація
The main aim of this paper is to solve the technological problems of the TWR based on the technical concept described in our priority of invention reference [1], which makes it impossible, in particular, for the fuel claddings damaging doses of fast neutrons to excess the 200 dpa limit. Thus the essence of the technical concept is to provide a given neutron flux at the fuel claddings by setting the appropriate speed of the fuel motion relative to the nuclear burning wave.
The basic design of the fast uranium-plutonium nuclear traveling-wave reactor with a softened neutron spectrum is developed, which solves the problem of the radiation resistance of the fuel claddings material.
Посилання
V.A. Tarasov, V.D. Rusov, and V.M. Vaschenko. Nuclear power reactor and method for operating the reactor, 2013. 2nd Life Nuclear Solutions GmbH , HOEFER&PARTNER.
V. D. Rusov, V. A. Tarasov, I. V. Sharph, V. M. Vashchenko, E. P. Lin-nik, T. N.
Zelentsova, M. E. Beglaryan, S. A. Chernegenko, S. I. Kosenko,P. A.
Molchinikolov, V. P. Smolyar, and E. V. Grechan. On some fundamental peculiarities of the traveling wave reactor operation, 2012. URL arXiv:1207.3695v1[nucl-th].
E. Teller, M. Ishikawa, and L. Wood. Completely automated nuclear power reactors for long-term operation. In Proceedings of the Frontiers in Physics Symposium. American Physical Society and American Association of Physics Teachers Texas Meeting, 1995.
E. Teller, M. Ishikawa, L. Wood, R. Hyde, and J. Nuckolls. Completely automated nuclear reactors for long-term operation II: Toward a concept-level point-design of a high-temperature, gas-cooled central power station system, part II. In Proceedings of the International Conference on Emerging Nuclear Energy Systems, ICENES’96, Obninsk, Russian Federation, pages 123–127, Obninsk, Russian Federation, 1996. Obninsk, Russian Federation. also available from Lawrence Livermore National Laboratory, Cal-ifornia, publication UCRL-JC-122708-RT2.
V. Goldin and D. Anistratov. Fast breeder reactor in the self-regulating neutron-nuclear mode. Mat. Modeling, 7(10):12–31, 1995.
V. Goldin, N. Sosnin, and Y. Troshchiev. Fast breeder reactor in self-regulating regime of the 2nd kind. Dokl. Akad. Nauk, Mathematical Physics, 358(6):747–748, 1998.
N. Takaki and H. Sekimoto. Potential of CANDLE reactor on sustainable development and strengthened proliferation resistance. Prog. Nucl. Energy, 50:114–118, 2008a.
J. Gilleland, C. Ahlfeld, D. Dadiomov, R. Hyde, Y. Ishikawa, D. McAlees,
J. McWhirter, N. Myhrvold, J. Nuckolls, A. Odedra, K. Weaver, C. Whit-mer, L. Wood, and G. Zimmerman. Novel reactor designs to burn non-fissile fuels. In Proceedings of the 2008 International Congress on Advances in Nuclear Power Plants (ICAPP 2008), Anaheim, CA, 2008. American Nuclear Society. Paper No. 8319.
R. L. Garwin. Fast reactors when? In Presented at Erice, Sicily International Seminars on Planetary Emergencies and Associated Meetings — 43rd Session, August 21 2010.
Kevan D. Weaver, J. Gilleland, C. Ahlfeld, C. Whitmer, and G. Zimmer-man. A once-through fuel cycle for fast reactors. Journal of Engineering for Gas Turbines and Power, 132:1–6, April 2010a.
R. A. Hyde et al. Automated nuclear power reactor for long-term operation, May 29 2008.
R. A. Hyde et al. Method and system for providing fuel in nuclear reactor, July 9 2009.
C. E. Ahlfeld et al. System and method for operating a modular nuclear fission deflagration wave reactor, September 10 2009.
V. Goldin et al. Active zone of fast U-Pu reactor and operation method, ensures working of the reactor in self-neutron-nuclear mode without reactivity margin, August 20 2010.
S. M. Feinberg. Discussion comment. In Record of Proceedings Session B-10, International Conference on the Peaceful Uses for Atomic Energy, Geneva, Switzerland, 1958. United Nations.
L. P. Feoktistov. Neutron-fission wave. Dokl. Akad. Nauk, 309:864–867, 1989.
L. P. Feoktistov. Safety - the key moment of revival of nuclear power. Successes of physical sciences, 163(8):89–102, 1993.
L. P. Feoktistov. From past towards the future: from the hopes about bomb to safe reactor. In RFNC-ANRISPh, Snezhinsk, Russia, 1998.
H. Van Dam. The self-stabilizing criticality wave reactor. In Proceedings of the Tenth International Conference on Emerging Nuclear Energy Systems 2000, pages 188–197, NRG, Petten, The Netherlands, 2000.
A. I. Akhiezer, D. P. Belozorov, F. S. Rofe-Beketov, L. N. Davydov, and Spolnik Z. A. On the theory of propagation of chain nuclear reaction in diffusion approximation. Yad. Fiz., 62:1567–1575, 1999.
A.I. Akhiezer, D. P. Belozorov, F. S. Rofe-Beketov, L. N. Davydov, and
Z. A. Spolnik. The velocity of slow nuclear burning in two-group approximation. Problems of Atomic Science and Technology, (6):276–278, 2001.
V. D. Rusov, V. N. Pavlovich, V. M. Vashchenko, V. A. Tarasov,
T. N. Zelentsova, D. A. Litvinov, S. I. Kosenko, V. N. Bolshakov, and E.N. Khotyaintseva. Geoantineutrino spectrum and slow nuclear burning on the boundary of the liquid and solid phases of the Earth’s core, 2004. URL http://arxiv.org/abs/hep-ph/0402039v1.
V. Rusov, V. Pavlovich, V. Vaschenko, V. Tarasov, T. Zelentsova, V. Bol-shakov, D.
Litvinov, S. Kosenko, and O. Byegunova. Geoantineutrino spectrum and slow nuclear burning on the boundary of the liquid and solid phases of the Earth’s core. J. Geophys. Res., 112:B09203, 2007.
V. Rusov, V. Tarasov, and Litvinov D. Reactor Antineutrinos Physics. URSS: Moscow, 2008.
S.P. Fomin, Yu. P. Melnik, V.V. Pilipenko, and N.F. Shulga. Study of self-organizing regime of nuclear burningwave in fast reactor. Problems of atomic science and technology, 45(6):106–113, 2005a.
S.P. Fomin, Yu. P. Melnik, V.V. Pilipenko, and N.F. Shulga. Self-sustained regime of nuclear burning wave in U-Pu fast reactor with Pb-Bi coolant. Probl. At. Sci. Technol., (3):156–163, 2007a.
S.P. Fomin, Yu. P. Melnik, V.V. Pilipenko, and N.F. Shulga. Self-organized regime of nuclear burning wave in safe fast reactor. In Proceedings of the 2007 International Congress on Advances in Nuclear Power Plants (ICAPP 2007), Nice, France, 2007b. Soci´et´e Fran¸cais D’Energie Nucl´eair.
V.D. Rusov, E.P. Linnik, V.A. Tarasov, T.N. Zelentsova, V. N. Vaschenko, S. I. Kosenko, M. E. Beglaryan, S.A. Chernezhenko, P.O. Molchinikolov, S. Saulenko, and O.A. Byegunova. Traveling wave reactor and condition of existence of nuclear burning soliton-like wave in neutron-multiplicating media. Energies, 4:1337–1361, 2011a. doi: 10.3390/en4091337.
H. Sekimoto, K. Ryu, and Y. Yoshimura. CANDLE: The new burnup strategy. Nuclear science and engineering, 139:306–317, 2001a.
H. Sekimoto and K. Ryu. A new reactor burnup concept ”CANDLE”. In PHYSOR 2000, Pittsburgh, May 7-11 2000a.
H. Sekimoto and K. Ryu. Feasibility study on the CANDLE new burnup strategy. Trans. American Nuclear Society, 82:207–208, 2000b.
H. Sekimoto and K. Ryu. A long life lead-bismuth cooled reactor with CANDLE burnup. In ICENES 2000, pages 198–206, Petten, The Nether-lands, September 24-28 2000c.
H. Sekimoto and K. Ryu. Demonstrating the feasibility of the CANDLE burnup scheme for fast reactors. Trans. American Nuclear Society, 83(45), 2000d.
H. Sekimoto, K. Ryu, and Y. Yoshimura. CANDLE: The new burnup strategy. Nucl. Sci. Engin., 139:306–317, 2001b.
H. Sekimoto, V. Toshinsky, and K. Ryu. Natural uranium utilization without enrichment and reprocessing. In GLOBAL 2001, Paris, France, September 9-13 2001c.
H. Sekimoto. Applications of ”CANDLE” burnup strategy to several reactors. In ARWIF-2001, Chester, UK, October 22-24 2001.
H. Sekimoto and K. Tanaka. CANDLE burnup for different core designs. In PHYSOR2002, Seoul, Korea, October 7-10 2002a.
H. Sekimoto and K. Tanaka. Application of CANDLE burnup strategy to small reactors. Trans. American Nuclear Society, 87, 2002b.
Y. Ohoka and H. Sekimoto. Application of CANDLE burnup to block-type high temperature gas cooled reactor. In ICONE11, Tokyo, Japan, April 20-23 2008.
H. Sekimoto and Y. Ohoka. Application of CANDLE burnup to block-fuel high temperature gas reactor. In ICAPP’03, Cordoba, Spain, May 4-7 2003a.
H. Sekimoto and Y. Ohoka. Application of CANDLE burnup to block-type high temperature gas cooled reactor for incinerating weapon grade plutonium. In GENES4/ANP2003, Kyoto, JAPAN, September 15-19 2003b.
T. Takada, Y. Udagawa, and H. Sekimoto. Simulation study on CANDLE burnup applied to an LBE-cooled metallic fuel fast reactor. In GENES4/ANP2003, Kyoto, JAPAN, September 15-19 2003.
E. Greenspan, P. Hejzlar, H. Sekimoto, G. Toshinsky, and Wade D.C. New fuel cycle and fuel management options in heavy liquid metal cooled reactors. In ANFM 2003, Hilton Head Island, South Carolina, USA, October 5-8 2003a.
H. Sekimoto. Contribution of CANDLE burnup to future equilibrium nuclear energy utilization. In GLOBAL 2003, November 16-20 2003.
E. Greenspan, P. Hejzlar, H. Sekimoto, G. Toshinsky, and Wade D. New fuel cycle and fuel management options in heavy liquid metal-cooled reactors. Nucl. Technol., 151:177–191, 2003b.
Y. Ohoka and H. Sekimoto. Application of CANDLE burnup to block-type high temperature gas cooled reactor. Nucl. Engin. and Design, 229: 15–23, 2004a.
Y. Ohoka and H. Sekimoto. Burnup and temperature effects on CANDLE burnup of block-type high temperature gas cooled reactor. In ICONE12, Arlington, Virginia, April 25-29 2004b.
H. Sekimoto. Application of ”CANDLE” burnup to small fast reactor. In 5th Int. Conf. on Nuclear Option in Countries with Small and Medium Electricity Grids, Dubrovnik, Croatia, May 16-20 2004a.
Y. Ohoka, Ismail, and H. Sekimoto. Effects of burnup and temperature distributions to CANDLE burnup of block-type high temperature gas cooled reactor. In ICAPP’04,, Pittsburgh, PA, June 13-17 2004.
Y. Ohoka and H. Sekimoto. Simulation study on CANDLE burnup of high temperature gas reactor. Trans. American Nuclear Society, 92, 2004c.
H. Sekimoto. Effect of neutron spectra and fuel burnup on CANDLE calculation. Trans. American Nuclear Society., 92, 2004b.
Y. Ohoka, T. Watanabe, and H. Sekimoto. Neutron characteristics of CANDLE burnup applied to HTTR. In COE-INES - Indonesia International Symposium 2005, Bandung, Indonesia, March 2-4 2005a.
H. Sekimoto. Application of ”CANDLE” burnup to LBE cooled fast reactor. In IAEA-TECDOC-1451, pages 203–212, 2005a.
H. Sekimoto, Y. Udagawa, and Y. Ohoka. Application of ”CANDLE” burnup to fast and thermal reactors. In ICAPP’05, Seoul, KOREA, May 15-19 2005.
Y. Ohoka, H. Sekimoto, T. Watanabe, P H. Liem, Wakana S., and Ismail. Neutronic characteristics of CANDLE burnup applied to block-type high temperature gas cooled reactor. In ICAPP’05, Seoul, KOREA, May 15-19 2005b.
H. Sekimoto and Y. Udagawa. Shut-down and restart simulation of CANDLE fast reactors. Trans. American Nuclear Society, 93, 2005.
S. Sekimoto, H. Miyashita. Startup of ”CANDLE” burnup in fast reactor from enriched uranium core. In ICENES’2005, Brussels, Belgium, August 21–26 2005b.
H. Sekimoto. Application of CANDLE burnup strategy for future nuclear energy utilization. Progress in Nucl. Energy, 47:91–98, 2005c.
H. Sekimoto. CANDLE burnup of fast reactor with depleted uranium. In 9-th Int. Conf. ”Nuclear Safety & Nuclear Education”, Obninsk, Russia, 24-27 October 2005d.
H. Sekimoto and Y. Udagawa. Effects of fuel and coolant temperatures and neutron fluence on CANDLE burnup calculation. J. of Nucl. Sci. Technol., 43:189–197, 2006.
H. Sekimoto and S. Miyashita. Startup of ”CANDLE” burnup in fast reactor from enriched uranium core. Energy Conv. Manag., 47:2772–2780, 2006.
H. Sekimoto. Candle burnup in a fast reactor core and relating nolin-ear problems. In 2nd International Conf. on Quantum Electrodynamics and Statistical Physics (QEDSP2006), Kharkov, Ukraine, 19-23 Septem-ber 2006.
Sekimoto H. A Light of CANDELE. New Burnup Strategy. Tokyo Institute of Technology, 2005.
N. Takaki and H. Sekimoto. Potential of CANDLE reactor on sustainable development and strengthened proliferation resistance. Prog. Nucl. Energy, 50:114–118, 2008b.
H. Sekimoto and K. Ryu. Introduction of MOTTO cycle to CANDLE fast reactor. In Proceedings of PHYSOR 2010 - Advances in Reactor Physics to Power the Nuclear Renaissance, Pittsburgh, Pennsylvania, USA, May 9-14 2010.
V. Pavlovich, V. Khotyaintsev, and E. Khotyaintseva. Nuclear burning wave reactor: wave parameter control. Nuclear Physics and Energetic, 11: 49–56, 2010a.
S.P. Fomin, Y.P. Mel’nik, V.V. Pilipenko, and N.F. Shulga. Self-sustained regime of nuclear burning wave in u-pu fast neutron reactor with pb-ni coolant. Problems of Atom. Sci. and Technology, 3:156–163, 2007c.
S.P. Fomin, Y.P. Mel’nik, V.V. Pilipenko, and N.F. Shulga. Investigation of self-organization of the non-linear nuclear burning regime in fast neutron reactor. Ann. Nucl. Energ., 32:1435–1456, 2005b.
X-N. Chen, W. Maschek, A. Rineiski, and E. Kiefhaber. Solitary burn-up wave solution in multi-group diffusion-burnup coupled system. In ICENES’2007, Istanbul, Turkey, 2007.
K.D. Weaver, J. Gilleland, C. Ahlfeld, C. Whitmer, and G. Zimmerman. A once-through fuel cycle for fast reactors. J. Eng. for Gas Turbines and Power, 132:1–7, 2010b.
W. Seifritz. On the burn-up theory of fast soliton reactors. Int. J. Hydrogen Energy, 23:77–82, 1998.
Yu.P. Melnik, V.V. Pilipenko, A.S. Fomin, S.P. Fomin, and N.F. Shulga. Study of a self-regulated nuclear burn wave regime in a fast reactor based on a thorium-uranium cycle. Atomic Energy, 107:49–56, 2009.
Staffan Qvist, Jason Hou, and Ehud Greenspan. Design and performance of 2d and 3d-shuffed breed-and-burn cores. Annals of Nuclear Energy, 85: 93 – 114, 2015. ISSN 0306-4549. doi: http://dx.doi.org/10.1016/j.anucene. 2015.04.007. URL http://www.sciencedirect.com/science/article/ pii/S0306454915001978.
Jason (Jia) Hou, Staffan Qvist, Roger Kellogg, and Ehud Greenspan. 3d in-core fuel management optimization for breed-and-burn reactors. Progress in Nuclear Energy, 88:58 – 74, 2016. ISSN 0149-1970. doi: http://dx.doi. org/10.1016/j.pnucene.2015.12.002. URL http://www.sciencedirect. com/science/article/pii/S0149197015301219.
Hiroshi SEKIMOTO and Yutaka UDAGAWA. Effects of fuel and coolant temperatures and neutron fluence on candle burnup calculation. Journal of Nuclear Science and Technology, 43(2):189–197, 2006. doi: 10.1080/ 18811248.2006.9711081. URL http://www.tandfonline.com/doi/abs/
1080/18811248.2006.9711081.
Vitaliy D. Rusov, Elena P. Linnik, Victor A. Tarasov, Tatiana N. Ze-lentsova, Igor V. Sharph, Vladimir N. Vaschenko, Sergey I. Kosenko, Margarita E. Beglaryan, Sergey A. Chernezhenko, Pavel A. Molchinikolov, Sergey I. Saulenko, and Olga A. Byegunova. Traveling wave reactor and condition of existence of nuclear burning soliton-like wave in neutron-multiplying media. Energies, 4(9):1337–1361, 2011b. ISSN 1996-1073. doi:10.3390/en4091337. URL http://www.mdpi.com/1996-1073/4/9/1337.
V.N. Pavlovich, V.N Khotyaintsev, and E.N. Khotyaintseva. Nuclear burning wave reactor: wave parameter control. Nuclear Physics and Energetics,
(11):49–56, 2010b.
G.G. Bartolomey, G.A. Bat’, V.D. Baibakov, and M.S. Altukhov. Basic theory and methods of nuclear power installations calculation. Energoat-omizdat, Moscow, 1989. in Russian.
S. V. Shirokov. Nuclear Reactor Physics. Naukova Dumka, Kiev, 1992. in Russian.
G. Kessler. Nuclear fission reactors. Potentional role and risks of converters and breeders. Springer-Verlag Wien, 1983.
I.Y. Emelyanov, V.I. Mihan, and V.I. Solonin. The construction of nuclear reactors. Energoizdat, Moscow, 1992. in Russian.
B.A. Dement’ev. Nuclear energetic reactors. Energoatomizdat, 1990. in Russian.
D. Ridiskas, H. Safa, and M.L. Giacri. Conceptual study of neutron irradiator-driven by electron accelerator. In 7 Information Exchange Meeting Jeju (Republic of Korea), 2002.
A.V. Arapov, A.A. Deviatkin, I.Y. Drozdov, and M.V. Mochkaev. The results of physical start-up of the reactor BR-1M. problems of high energy density physics. In XII Khariton Topical Scientific Readings. Reports. Sarov: Publishing House of the Federal State Unitary Enterprise ”RFNC-VNIIEF”, 2010. in Russian.
V.F. Kolesov. Aperiodic pulsed reactors. Vol.1. Sarov: Publishing House of FSUE ”RFNC-VNIIEF”, 2007. in Russian.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).