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STOCHASTIC MODELS OF TUMOUR DEVELOPMENT AND
RELATED MESOSCOPIC EQUATIONS

D. Finkelshtein', M. Friesen®, H. Hatzikirou®,
Yu. Kondratiev*, T. Kriiger®, O. Kutouviy®

Abstract. We consider different mathematical models inspired by the
problems of medicine, in particular, the tumour growth and the related
topics. We demonstrate how to starting from an individual-based (mi-
croscopic) description, which characterizes cells’ behaviour, derive the so-
called kinetic (mesoscopic) equations, which describe the approximate sys-
tem density. Properties of the solutions to the mesoscopic equations (in
particular, their long-time behaviour) reflect statistical characteristics of
the whole system and demonstrate the corresponding dependence on the
system parameters.

1 Introduction

1.1 Mathematical description

Within the microscopic description of cells, the framework of interacting par-
ticle systems in continuum and their possibility of deriving rigorously a kinetic
description, also called mesoscopic description, in terms of non-local and in gen-
eral non-linear equations plays a crucial role. Here we start from some (simple)
stochastic microscopic (heuristic) description of a cell model and derive from
that rigorously the kinetic equations for the density of this system. Such ap-
proach can be interpreted similarly to the mean field limit in Physics, where
one scales the dynamics in a proper way and obtains from that in the limit a
deterministic equation for the density of the system. We assume in general,
that each cell is determined uniquely by its position and no other properties
will be tracked. Note that it is also possible to introduce marks within such de-
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scriptions and extend the microscopic stochastic dynamics to a situation, where
more complicated effects may be covered. For instance one can introduce age-
dependence of cells, i.e. each cell has an individual age, which influences the
microscopic interactions. Here we always assume that the number of cell-types
is small compared to the number of cells within each type. Therefore such
stochastic treatment is adequate.

The main difference to other cell biological models is, that we start with a
stochastic description, which incorporates individual cell behaviour stochasti-
cally. The choice of the individual stochastic behaviour incorporates cell intern
effects and can be used to model a wide class of cells. Ignoring the inter-
nal structure necessary leads to randomness, but also leads to new methods
describing such large interacting systems.

Heuristically the evolution of a system is described via its elementary
Markov events like birth, death and jumps of cells. In this framework the
evolution is assumed to be Markovian, which is a reasonable approximation
of reality. Note, that this approach could also be extended to non-Markovian
structures in order to include dependencies on cell intern processes like aging
or may lead to some sort of cell-memory. Nevertheless assuming Markovian
behaviour already leads to many non-trivial examples and effects, which have
to be studied more intensively.

The microscopic description and its analysis can answer questions about
asymptotic clustering of the system, invariant states and ergodicity of the sys-
tem. The precise formulation of clustering will be explained more extended in
the next part of the article. Usually it is not possible to measure the microscopic
quantities to full extend, so in order to have a practically useful description it is
necessary to describe the system also via mesoscopic or even macroscopic quan-
tities. Thus it is reasonable to seek for an effective description with practically
measurable quantities. Similar to Thermodynamic limits, one tries to rescale
the system and obtain another description, here for the density of the system.
As a consequence the new description will not contain all information about
the microscopic behaviour, for instance it does not contain information about
asymptotic clustering, which will be explained lateron, and individual trajecto-
ries of the Markov process. Such Mesoscopic, i.e. kinetic description, describes
instead of microscopic quantities the density of the system via a closed system
of equations. Typical for such systems of equations is their non-linear structure
and the appearance of convolutions of the density with the potentials involved
in the interactions of cells. The analysis of such equations is a topic of applied
mathematics and is studied intensively since the last 30 years, c.f. [10, 12, 20].

This kinetic description can give information about the long-time be-
haviour, invariant and stationary states, asymptotic speed of growth, front
wave propagation and several other effects. Its analysis should be realized sep-
arately for each model. Let us outline the general approach and motivate the
scaling used to derive the kinetic description. In general one suppresses the in-
teractions of cells via a factor ¢ > 0. In the same way the density of the system
is increased. Such attempt will suppress all correlations between the cells within
the system and therefore a kinetic description will not contain this information.
In the last step we will seek for a limiting description of this system and will
arrive in a reduced description of the microscopic model. This reduced descrip-
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tion will have not Markovian structure but is still a linear stochastic description
involving infinitely many correlation functions. To get a closed equation for the
density of the system, remember that all correlations between the cells are sup-
pressed. Thus it is not surprisingly that starting from poissonan statistics, the
evolution of the system will preserve this statistics. This property is know as
the Chaos preservation principle.

In the following we will first outline a more detailed description of both
approaches, introduce all necessary quantities and afterwards state the results
for several biological important models of tumour growth, cell division, mortal-
ity etc. The last section contains all mathematical details, which are necessary
for the analysis of such models.

The aim of this section is to motivate and explain this approach to scien-
tists working in biological or medical research fields. The precise mathematical
description will be given and proved afterwards separately.

1.2 One-component models

Let us first outline the necessary structures in the simpler case, where we
consider only one type of cells. Since the cells are distinguished only by their
positions, we will denote their positions by 1, ..., Zn, - € R or more simple
as a collection of positions v = {1,...,2y,...} C R% In reality it is clear, that
each organism has only a finite but very large number of cells. For such finite
microscopic systems the existence of a Markov process is known. Moreover
in [2], [3] asymptotic properties and conditions for explosions respectively non-
explosion can be stated. Nevertheless it is still not understood how to derive
rigorously, i.e. in the sense of convergence of the corresponding densities, the
mesoscopic description. In contrast to infinite systems, i.e. v C R? contains
infinitely many points, behave from the analytical point of view quite different.
Here for many models it is already known that the density of the rescaled
system will converge to the solution of the kinetic description. In this work
we will mainly focus on infinite systems having in mind, that in the kinetic
description the initial density should in addition be chosen to be integrable,
and hence represents a system consisting only of finitely many cells.

Similar to limits from thermodynamics, some effects like asymptotic clus-
tering or pattern formation can be captured simpler in the limit of infinite par-
ticles. Simulations suggest and for some dynamical systems it can be shown,
that finite systems with a large number of cells behave in their interior like in-
finite systems. Finite systems can describe the growth of the system, whereas
infinite systems capture the properties of the interior behaviour of cell patterns
and their properties. Since we deal with a very large number of cells (=~ 1019)
it is justified to allow the cell number to be even infinity, so we will use a
description which includes both finite and infinite systems.

In this case we have to assume, that locally the number of cells is still
finite, i.e. for every bounded volume A C R? the number of cells within A is fi-
nite: |[yNA| < oo. This assumption implies, that the local density of the system
(also other observables) are locally finite and thus can be measured/observed
on each finite volume. Altogether our phase space (configuration space) is

F={ycR?: |yNnA|<oo, VA CR?bounded}.
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Clearly the space of finite configurations
To={nCR’: [y <oo}

is a subspace of I', i.e. Iy C I". Heuristically, starting from some configuration
v € T we would like to describe a Markov process X; € I starting at -y, which
incorporates all microscopic phenomena we would like to describe. For finite
configurations such problem is well understood, c.f. [11] and references therein.
The (Markov) dynamics is described via elementary events as birth, death and
jumps of cells. A cell located at x € R? can die, i.e. the configuration changes
as v — Y\z, a cell can jump from = to y € R? i.e. v — y\z Uy and finally
a new cell at location y € R? may appear, i.e. v — v Uy. All such events
have certain intensities, which will depend on the positions z,y and on the
configuration of cells 7. The probability of the new location y € R? is usually
described via a probability distribution.

Mathematically a Markov process X, starting from a configuration of
cells v € T" can be described completely in terms of the corresponding Markov
generator L, c.f [18], which acts on functions F' called observables. Therefore
in order to describe the model it is enough to write down the expression for
this Markov operator. For our models all terms contained in the operator have
a simple interpretation, e.g. the general form of such generator is simply

Zd x,Y\z)(F(y\z) — /b (v, V(F(yUy) — F(v))dy

rey

3 / (3, \a) (F(1\& Uy) — F())dy. (1)

zEVRd

Here 0 < d(x,v\z) is the intensity of death of a cell z € R? depending on all
other cells v\z, 0 < b(y, ) is the intensity, that a cell is born at position y € R?
and 0 < ¢(x,y,v\z) is the intensity that a cell jumps from position x to the
new position y € R?. Let us stress, that since we will deal with infinite systems
the study of the operator L is extremely hard and was carried out only for a
few models, e.g. [16]. In the framework of cell biology typically new cells can
only be born due to proliferation and hence we can specify the intensity b(z, )

to be of the form
7)::§:lw(xdh7\x)

yeY
This means that each cell at y € v may split and therefore create a new cell at
location x € R%. The intensity of such events is given by by(z,y,y\x). Put in
other words, if v € I'g then heuristically

P(X)

ten = X U{a}XY) = bz, 7)h + o(h)

as h — 0. Similar statements hold for d(z,v\z) and c¢(z,y,v\z). In the case
of || = oo such description can be interpreted only heuristically, since in each
interval [t,¢ + h], h > 0 infinitely many microscopic events will take place.
Hence the notion of first time of a change of a system state if not meaningful,
whereas in finite systems an explicit construction of the Markov process deeply
uses this fact.
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Within this framework we will study distributions P(X;)~! =: y, called
states of the system, instead of the process itself. From cell-biological point
of view it is not necessary and realistic to know all positions of cells, but one
can observe and model statistics respectively their distribution p:, which is
probability measure on I'. One simple example is the poissonian statistics.
There the probability of finding n-cells within the volume A C R? is given by

Pud) = ([ p@ar) e~ [ pwraz).

A A

where 0 < p is locally integrable and describes the cell-density. Let us denote
the Poisson measure on I' by 7, and the collection of all probability measures
on I' by &. The Poisson measure plays the role of a chaotic, i.e. free state,
where all cells are not correlated. Starting from a state y € &2, the description
of the microscopic evolution will consist of describing the evolution of states
t— pp € P. Compared to the description via a process X|' the evolution of
statistics p; is connected via the equality

[ Feomtan = [ Foxpar. Fir—
T Q

where € is the probability space and P the probability measure for the process
X}' starting with initial distribution 442. The study of the evolution p; can be
done via studying its moments, which are functions of arbitrary large number
of variables. The definition of this functions, if they exist, is given as follows,
c.f. [13]

> M, ze)du(y)
T {z1,..., Tn }Cy

1
= / F (2, )R (2, an)dey L de, (2)

n!

(Rd)n

for symmetric functions f(™, which are measurable and have compact support.
The left-hand side is the mean of the observable f(™ ie. we sum over all

possible n-point configurations {x1,...,2,} C v and afterwards integrate over
all possible configurations v. We assume that this mean can be represented

1
via a density k(™ and the factor o is a combinatorial factor describing the

n)
number of all possible choices to order the positions x1,...,%,. Let us denote
the collection of all correlation functions by (k)22 = k, where 0 < k = k()
is a function of finite configurations n C R? (|n| < oo).

Example 1.

e In the case n = 0 one has

L= u(r) = [ dul) = KO
T
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e For n =1 take a Borel set A C R¢ and

A
- fy 254

Then we obtain

[1analdue) = [ X 5@t = [ K0 @)ds
A

T T rey

and the left-hand side is the expected number of particles within the
volume A, whereas the right-hand side is a measure in A. Therefore k(1)
is the particle density of the system.

e The same procedure with

1, z,ye A

ﬂW%MZ{

0, otherwise

leads to

1 1
§/Wmm%mw—§/Wmmww>
I T

-/ ('“;A')dum:; [ [ K@iz
A A

T

//HW%MM@
A A

is the Variance of the cell number operator with kernel 0 < k() (z,y).
Similarly &™) describe higher order moments of the system.

and we see that

e The correlation functions for the Poisson measure 7, are
E™ (x1,. .. 20) = p(x1) - pan).

The evolution of states ¢ —— p; is determined as the solution to the
Fokker-Planck equation for measures

o [ F@ne) = [ER @) 3)

with initial distribution p:|;=¢o = po. Let us assume that for each state u; the

correlation function of arbitrary order n € N exists, then the evolution p; can

be described by the collection of all such correlation functions k; = (kt("));;ozo.

Similar to equation (3), this collection will satisfy the Fokker—Planck hierarchy
Ok

?%<:LAQ (4)



Stochastic models of tumour development and related mesoscopic equations 11

or written in components

k")
ot

(21,...,20) = (L) ™ (21,...,2,), n €N,

where the operator L” acts on the whole vector k; = (kgn));l“;o, i.e. on each
correlation function and can be seen as an infinite matrix. Therefore above
equation is a vector equation with the matrix operator L®. We have therefore
transformed the equation for the evolution of states p; to an equation for its
moments (k;t(n))ffzo. As a consequence the system of equations for (kin))ff’zo
will be coupled, hence it is not possible to obtain directly a closed equation
for kﬁ"), where only kt(n) enters. Attempts to derive from such system a closed
equation are known as moment closure techniques. In our approach scaling of
the system yields a closed equation for the density of the system. Let us show
for a special choice of L how to derive this equation for kt(l). The general case,
will be postponed to the second part of the article.

As a simple example let us look at a free branching process, where each
cell has a random exponentially distributed lifetime with parameter m > 0
and can proliferate with intensity A > 0, i.e the time to create a new cell is
also exponentially distributed with parameter A > 0. The position of the new
cell born from = € ~ will be distributed due to the probability distribution
a(z —y)dy, where y € R? is the position of the new cell. The heuristic Markov

generator will have the form

=mYy (F(y\z) - F(7))

xEY

Y [ate - y)(FG U - FO)d, (5)

zG’de
Let us take in (3) the special choice F(7) = Y ¢(x) with a measurable,

xTeEY
bounded function ¢ with compact support. For this choice the left-hand side

of (3) will become, c.f. example 2,

/Z‘p Ydpe(y gt/w(x)kt“’(x)dx.

rey Rd

A short combinatorial computation shows the equality

(LF)(7) = -m Y _o(z) + AZ/G(% —y)e(y)dy

rey xEde
and thus
JEp@au) = -n / S @) + 3 [ Sar p)@idulo)
T Trey T ey

_ _m/ ) + )\/(a v o))k (2)da.

Rd
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For the second integral we use Fubini and a(xz — y) = a(y — x) to get

/ (a % ) (2)kD (z)dz = / / a(z — y)p(y)k™ (z)dydz

= [ ([ aty =@yt ) t)a

Rd Rd

Altogether this gives

1)
[ @2 @e = [ o) (<mk ) + Mo s k) (@) do
R4 R4

for each function ¢ and thus

okt
ot

() = —mk" + Ma * k) (2).

Note, that this is a closed equation, in general it not the case, e.g. the equation
for k:?)

ok @ (2)
5 (z,y) = —2mk,” (z,y) + )\/a(x —2)k, " (x, 2)dz
R4
2 [ aly = 2 )iz + ol - ) (K ) + K )

Rd

does depend on the functions of order 1 and 2.

Let us now turn to scaling and outline the general approach. The first step
is to scale the intensities of the interaction of the system, usually one dumps
the potentials by a factor e > 0, e.g. for (5) this means a — €a. In general let
us assume we scaled the intensities in a proper way, i.e. have expressions d., b.
and ¢, within expression (1). The exact scaling will be carried out for each
model separately. To get a limit, we have also accelerate birth by putting a

factor — in front of it, so in the case of (5) this will mean that L is not changed,

€
which is a direct consequence of the independence of the stochastic evolution
of each cell. Finally the resulting generator has the form

(LF)0) = Y e \o)(FO\a) = F ) + £ [ bulys)(F v U) — F)dy

xrey Rd
3 / ee(, 9, \2)(F(\a Uy) — F(3))dy.
xG’de

The second step is to increase the density of the system, i.e. we consider initial
conditions k(()f?, which satisfy
(n)

5”/{8? —ry , €—=0
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with a symmetric function r(()n) and n € Ny. Clearly, this implies that the initial

condition két? has a singularity at € > 0, which can be interpreted as a growth
of the initial densities in € > 0. The functions rén) are a subject of choice for
concrete models. The important case is

r(()n)(xlﬁ""xn)ZPO(xl)"'pO(xn)v (6)

which represents the poissonian statistics. Denote by LEA the operator corre-
sponding to L. and by k; . the collection of correlation functions, defined as
the solutions of the equation

Ok o

ot - L?kt,sa kt,alt:O = ko,g. (7)

In the final step we will seek for a limiting correlation function, describing the
scaled system, i.e. we want

E"k‘g? -1y, £€—0 (8)
(n)

for each n € Ny. Again the collection r = (r;7)22, will satisfy some system
of equations similar to (4), i.e.

8T‘t A
— = Lyry, Ttli=0 = T10.
ot VTt Ttlt=0 0
This limiting description is known as the Vlasov hierarchy containing less in-
formation as the original model, but is simpler to analyse. Starting from initial
function 7y as he correlation function of the Poisson measure 7,,, c.f. (6), one
finds that the solution r; will be of the form

i @) = pe(a1) - pe(n)
and so r; is again the correlation function of a Poisson measure with the new
density p;. This density is determined by the mesoscopic equation, which we
will also call kinetic description,

%(m) — v(p)(@)s prlemo = po (9)

and this property is known as the Chaos preservation principle. All previous
steps can be computed for many models explicitly, which will be realized later
for each model. The function p; is the approximate density of this system,
i.e. plays the same role as kt(l), whereas it is determined in general by a non-
linear and non-local equation. For the special case (5) the equation for p; is
the same as for k:gl), which again is the consequence of the independence of
each cell. Given a microscopic model through its (formal) Markov generator
L, we will say that (9) is the kinetic description of the microscopic model.
This description is produced by taking the formal limit within (7). Without
further investigation it is not known, whether also the corresponding solutions
converge, i.e. (8) holds. We will say that the kinetic description (9) corresponds
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to the microscopic model if (8) holds. In particular this implies that for given
initial condition pp and p; the solution to (9) one has

. 1
Ehj% 5’%55) = Pt

The precise notion of the convergence might depend on the particular model
and shall be checked for each model separately. In many cases one knows that
p+ will be bounded and hence the limit is uniformly in all spatial variables.

1.3 Clusterization and pattern formation

From an intuitive point of view many scientists understand under the terminus
of clusterization that with increased probability we will observe cells aggregat-
ing in some bounded regions. For mathematical analysis such understanding
has to be reformulated in terms of mathematical objects. In applications bi-
ologists often observe the density of the system, and find regions with peaks
and at the same time regions with rather small density. Such phenomena is
also often called clusterization. In this work we will call such phenomena pat-
tern formation. One example for pattern formation would be the density, for
simplicity one-dimensional,

a, x€[2k2k+1)
p(z) = ;
b, xe€[2k+1,2(k+1))

where 0 < a < b and k € Z. Such density is periodic, and if b is compared to
a much larger we will observe macroscopically in the regions [2k + 1,2(k + 1))
an aggregation of cells or molecules. One could think about the density for the
description of periodic crystal structures, whereas we do not relate such density
to any specific model, since we have not it derived from any microscopic model.

The notion of clusters will be used in this work to relate to higher cor-
relations of an interacting cell system, whereas pattern formation is connected
only to the first correlation function, i.e. the density of the system. Having in
mind that the sequence of correlation functions k(™ describe the densities of
the moments of a state of the system, i.e. a probability measure on I', we would
like to fix in the next step a reference measure, which shall be regarded as com-
pletely uncorrelated. In Physics it is know that for a completely uncorrelated
system the correlation functions will have product structure, i.e.

E™(zy, .. en) = plzy) - plzn), @1,...,2, € R?

for each n € N. Here 0 < p is the density. Therefore we regard the Poisson
measure 7, as the reference measure to measure correlations and clusterization
of the system. One important special case is the choice p(z) = z, where z > 0
is constant. In such case the system is distributed uniformly in all R? and due
to the product structure all cells are independent. Such cases were already
analysed in physics for the free gas. We will call a systems non-clustering, if
its correlation functions satisfy

E™ (xy,. . 20) < p(x1) - p(zn)C, x1,... 2, € RY (10)
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for all n € Ny and some constant C' > 0. In the case, where
E™ (zy, .. xn) < plxy) - plzn)nt®, x1,... 2, € RY (11)

for all n € Ny and some § > 0, we will say that the system admits clusterization.
Note that, this does not mean that the system will be really clustering. In
general one should also have a bound from below. We will say the system is
clustering, if the following bounds hold for all n € Ny, z1,...,z, € R?¢

po(x1) - po(zn) () Co < k™ (21,...,20) < pr@1) - p1(wn)(n)* Ch,

where pg, p1 are non-negative locally integrable functions, Cy, C1, dg, 01 > 0 are
constants. The evolution of a system will be clustering if for each fixed time
t > 0, the correlation functions k:t(n) admits above estimations.

Let us now turn to the interpretation of this conditions. In the case of
(10), we observe that the moments of the system are bounded from above by
the moments of the Poisson measure. For instance the probability density of
finding n cells at positions z1, . . ., z,, is given by k(™ (z1,...,2n). In the case of
(11) this density is fast growing with respect to n and hence it is more likely to
find configurations which consist of a higher number of cells. Therefore we see
that in contrast to pattern formation, here we incorporate also the microscopic
description of the system via its configurations. In the next section we will see,
that a free branching process will always be clustering. In order to prevent
clusterization it is therefore necessary to introduce microscopic interactions,
which will regulate the system. Two examples are given by either increasing
the death of cells, in such a way that in dense regions cells will have an increased
intensity to kill each other, or dumping down the intensity for the branching
of cells, which means that in dense regions cells will have only a small chance
to proliferate.

2 Results

2.1 One-component models

Free branching process

The first model we start with is a toy model in the sense that mathematically
all corresponding equations can be solved explicitly. This model consists of the
two elementary events birth and death of a cell. First of all each cell have an
exponentially distributed lifetime with parameter m > 0, so the time each cell
will survive is given by an exponentially distributed random variable and the

mean lifetime is —. After the death of a cell located at position z € R? the

m
configuration of all cells changes 7 — ~v\x. Written in terms of the heuristic
Markov generator this part has the form

(LaF)(7) =Y m(F(y\x) = F()).

Moreover, each cell located at position z € v can divide into two new cells
located at the positions y1,y2. Thus the configuration changes in the following
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way 7 — v\z Uy1 Uys. The probability of finding cells in the volume element
dy1dyo, is given by

a(z —y1, = — yo)dy1dyz,
and the intensity of the event of cell-division is given by A > 0. We assume
that 0 < a is a probability density, hence is normalized to 1 and assume that
this kernel is symmetric in both arguments, so

a(l},—y) :a(xay)7 a(_xay) :a(I,y), z,y ERd'

In terms of the heuristic Markov generator this leads to

@) =AY [ [ ate - e - ) (FO\e U Up) — FODdsndye

:rG’de Rd

Incorporating both effects independently of each other in one process, the over-
all Markov generator will have the form L = Ly + L. Clearly this description
shows, that each cell is independent of all other cells. Thus this description
really reflects the effects of free proliferation of cells within some region. If the
kernel a is a product of two probability distributions, i.e. a(z,y) = b(z)c(y),
then the positions y; and yo will be distributed independent of each other. In
some applications the positions y1,ys are not independent of each other, i.e.
choosing position y; influences the position of y. In the special case, where the
position ys would be determined completely by the position y; one would take
e.g. a(x,y) = b(x)d(z + y) with a non-negative integrable function b, which is
normalized to 1. Therefore the position ys is given by y2 = z+(x—y1) = 20—y1,
meaning that cells prefer to proliferate in opposite directions, such that the dis-
tance |y; — y2| is maximal.

Here we will investigate the general case and analyse some properties of
the system. The first observation shows, that if the birth kernel a is such that
new cells may appear arbitrary close to the mother cell located at position =z,
then the dynamics will admit asymptotic clustering.

Theorem 2.1. Assume that a is continuous such that a(0) > 0, then starting
from poissonian statistics, i.e. correlation functions k(n) = cl| the evolu-
tion of correlation functions k; will satisfy for each n such that all points are
sufficiently close to each other

™ (21, .. xy) > Bre (M= Nniy)

for some constant B > 0 depending on A\,a and C. Moreover there exists
C(t) > 0 non-decreasing such that

K" (21, .. ) < C)™n!
for alln € Ny and x1,...,x, € R?,

Above estimate implies due to the presence of the factor n!, that inde-
pendent of 3,m and A with high probability many cells can be observed in a
small region, which reflects the effect of clustering. The second estimate shows,
that factorial growth of correlation functions k; is the worst case we can ob-
serve. This estimate remains true without any conditions on the birth kernel
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a. The next Theorem formulates the result concerning the kinetic description
of this model.

Theorem 2.2. For each initial distribution of cells po(x) > 0, which is essen-
tially bounded, there exist a unique solution pi(x) > 0 to the kinetic equation

%(x) = —(m+Npe(r) + X / b(z —y)p:(y)dy (12)

R4

with initial condition pili—=0 = po. Such solution is also essentially bounded
and corresponds to the rescaled system, i.e. the Viasov hierarchy. The function
0 < b is given by

b(x) = /a(%y)dy—l—/a(y,x)dy.
R4 R4

The absence of non-linearities is due to the absence of interactions of cells.
For m > X all cells will die, whereas for m < A the number of cells will grow
exponentially. In the critical case m = A the total number of cells is conserved
and the equation describes a random walk in continuous time. The general
solution to (12) is given by

—(m —(m = At)" *n
pe(x) = po(a)e MV 4 7MY (n!) (0" po) ().
n=1

The same Mesoscopic equation and the same results about asymptotic cluster-
ing of the system can be achieved, if we simplify the birth by setting

a(z,y) = (x)b(y),

which means that each cell will create a new cell located at position y € R?
without disappearing from the system. Mathematically such situation is due
to less computational work simpler to analyse. Results concerning invariant
states, existence of a Markov process etc. can be found in [15]. In the following
we will always restrict ourselves to this case, called Contact model. Its heuristic
Markov generator has the form

(LemF)(v) =m Y (F(\z) = F(v))

rey

Y [ale—pFOUY - Fa)y (13)

mEWRd

Spatial logistic model

As already discussed in the Contact model all cells are independent of each
other. For a wide class of biologically relevant models such behaviour is not
adequate, so one has to introduce additional microscopic mechanisms, which
regularize the overall dynamics in such a way that all correlation functions
become sub-poissonian. This can be achieved if one includes either additional
density dependent mortality or one introduces density dependent birth in such
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a way, that in regions of high density cells will have a small probability to
proliferate. Here we will state some results about the model with additional
density dependent mortality.

Let us start with with the usual Contact model, so Loy given in (13)
and introduce additional death. Each cell z € v may cause death of another
cell y € y\z with rate A=a~(x — y). The overall rate of death caused by the

cell z is simply A~ > a~ (z —y) and describes some sort of competition of
yeY\z

cells for resources within the body. Therefore the complete heuristic Markov

generator will have the form

(LE)(y) = (LemF)(y) + A7) > a (@ = y)(F(\2) = F(7)).  (14)

€Y yey\z

This model was analysed in several articles, c.f. [5, 7]. It is known, c.f. [21] that
if m > 0 is arbitrary small and there is # > 0 such that a= — fa is a stable
potential, then there exists an evolution of states, such that its correlation
functions satisfy k§”) < C™ for some constant C' > 0. Moreover, it can be
shown, that in the regime of high mortality the only invariant state is the one
representing the empty configuration. Namely if

Aa< A a”

then the unique invariant distribution is pjn, = 5{@}, i.e. kfsi =0forn >1and
k)

iny = 1. Here we will only summarize the result for the kinetic description, [6]

Theorem 2.3. Assume a,a” > 0 are symmeltric, integrable and normalized to
1. Then for each initial measurable density po(z) < C for a.a. x € R? there
exists a unique solution p; to the kinetic equation

O
ot

with pili=0 = po. Moreover the function ki(n) = ex(pe;n) is a solution to the
Viasov hierarchy

(2) = —mpi(@) — A pu(@)(a * p)(@) + Aaxp)(@)  (15)

37}

ot
with ro(n) = ex(po;n). This solution p; will again be bounded by the same
constant C, i.e. py(x) < C for a.a. x € R Moreover equation (15) is the
kinetic description, and if A"a”™ — Aa is stable, then also (8) holds.

(n) = L@H(n), 7"t|t:0 =70

A—m

Clearly there are two stationary solutions to (15) given by 0 and =

Such solutions are biologically relevant if they are positive, so m < A. Let

us now assume, that a™ is strongly localized. Then we can approximate the

convolution by a multiplication, which leads to a™ * p; &= p;. In this case the
kinetic equation simplifies to

O
ot

This equation was analysed in several articles in the one-dimensional case. A
function p:(z) is called a traveling wave solution with monotone profile and

(x) = —mpr(x) = A" pe(2)* + Aa* pr) (@).
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speed ¢, if pi(x) = (x — ct) for some monotone function ¢ € C1(R). E.g.
in [20] it was shown that if a is exponentially integrable, i.e. there exist a > 0
such that

/e_aya(y)dy < 00
R

then there exists ¢, > 0 such that for each ¢ > ¢, there exist a traveling wave
solution with monotone profile and speed c. A For each ¢ < ¢, there exist no
periodic traveling wave solution of speed c¢. The constant c, is called spreading
speed. For the time-inhomogeneous case A = A(t) in [12] a similar result was
shown and a formula for ¢, has been derived. In contrast if a do not satisfy the
exponential integrability condition, then the speed of propagation will be not
constant, c.f. [10]. Therefore modelling complex cell systems one has also to
distinguish between different classes of kernels a™, a. For example taking for a
a gaussian distribution, one gets a constant spreading speed, whereas taking a
as the Cauchy distribution one gets an accelerated spreading speed.

Branching with fecundity

Instead of density dependent mortality here we will summarize the case of
density dependent birth. So each cell have again an exponentially distributed
lifetime with parameter m > 0 and each cell at position x € v can create a new
cell with intensity e~ #(®7\#) The relative energy F(z,v\z) is given by

E(z,y\z) = Y plz—y)>0.

yey\z

The potential ¢ > 0 is assumed to be symmetric and integrable. In dense
regions around a cell z the energy will be large and thus the exponential
e~ E@\?) will dump the intensity of creating a new cell at some position.
Such kind of self-regulation can be interpreted as a lack of energy, material or
resources for the cell at position x. If now x creates a new cell, then again the
probability of finding the new cell within the region dy is given by a(z — y)dy.
The generator is given for functions ' : I' — R by

(LF)(7) =my_(F(\a) = F(3))

rey

AT N [ale )Pl UY) - FO). (10

dSie' R4
Such model was discussed in [8] and it was shown, that under some conditions
on the potentials a and ¢ such self-regulation will prevent asymptotic clustering
of the system. More precisely, if there is a constant 8 > 0 such that for a.a.
x € R? the conditions



20 D. Finkelshtein, M. Friesen, H. Hatzikirou, Yu. Kondratiev, T. Kriiger, O. Kutoviy

hold, then there is 0 < C’ < C such that for ko(n) < C'Il there exist a unique
classical solution k; to (4) such that k;(n) < C!"l. Here the dispersion kernel a
should be dominated by the interaction kernel suppressing the intensity of birth
and in the second condition one assumes that the constant mortality is high
enough. Pattern formations might still appear, such effects are of mesoscopic
nature and thus should by studied within the kinetic description. So let us
state the general result for the mesoscopic limit.

Theorem 2.4. Assume that
a(z) < Op(x)e#7)

0
2eC(#) <1 + —)
e A 667 <m

/\<1+ 9<@>) < m,

e
where (p) = [ (z)dz denotes the mean of the potential w. Then there is

Rd
ap € (0,1) such that for all a € (ap, 1) and each initial condition 0 < py < aC
there exists a unique solution 0 < p; < aC' to the kinetic equation

%(z) = —mpg(z) + A (a* pre” ) (z) (17)

and the function r, = ex(p:) solves the Viasov-hierarchy.

The property p; < aC means, that the density of the system will be
bounded and so no explosions of the cell population may appear. The main
difference to the Contact model is the presence of the additional term e~ ¥*/t
which suppresses the growth of the density. The first condition states that the
interaction should dominate the proliferation The other two conditions require
high mortality and are sufficient to prevent the growth of the density of the
system. Without these two conditions we expect that the density will grow
exponentially, but still will not admit clusterization.

Contact model with motion

Last we would like to draw the attention to another self-regulation mechanism.
The usual Contact model described by the heuristic Markov generator L¢jy,
as mentioned before, consists of asymptotic clusters. To avoid this effect, let us
assume that each cell have the additional possibility to move within the system.
Similar to previous model let us assume that there are two main contributions
to the intensity of the motion. On the one hand-side a cell at position = € ~
will try to move outside a dense area of cells and on the other hand-side the
destination point will be chosen in such way, that it is less dense. All in one
cells will try to jump from dense areas to less dense areas. Such heuristic
description can be summarized in the following Markov generator

(LF)(v) = (Lem F) ()

£y ePelene) /@—Ew(%”)c(x —Y)(F(\zUy) — F(y)dy. (18)

ey Rd
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As before, the energies have the form Ey(z, v\z) = Z\ o(z—y) and Ey(y,v) =
YyeEY\T

S~ (y — z), where the potentials ¢,70 > 0 are symmetric and integrable.

zey

The probability of finding the new cell within dy is approximately

1
NefE”’(y”)c(x —y)dy

with a normalization constant N = N(v) and a probability distribution 0 <
c(x) = ¢(—=z). To this time such model was never analysed in this generality
and therefore it is not clear how the microscopic behaviour will look like. Nev-
ertheless, simulations suggest that such mechanism can lead to less asymptotic
clustering of the evolution, but due to the motion of the system, started from a
compactly supported density, will spread out faster then in the Contact model.
We also expect that the local density p; within the kinetic description will be
growing at most sub-exponential. Within this work we derive the kinetic de-
scription for this model. Questions concerned about front wave propagation
and bounds on the density should be studied in detail afterwards.

Theorem 2.5. The kinetic description corresponding to the microscopic de-
scription of the Contact model in the presence of density dependent jumps is
given by a density p > 0, which solves the Mesoscopic equation

O (4) = ) + M )0

+ (c % (pteaﬁ*pt)) (x)e—(w*mw:) — e(¢*pz)(l‘)(c x e VP (2) py ().

Already here, we can observe how complicated the mesoscopic description
might become. Of course one could simplify the situation by only investigating
the case, where only one of the potentials ¢, is non-vanishing. So let us
assume ¢ = 0. Then the equation becomes

O
ot

The first two terms describe the free proliferation, whereas the last two terms
describe the impact of motion on p;. The total number of particles is not

0

a(p,:} = (A= m){pt). The local number of

cells, [ pi(x)dz, within some volume A C R? might have a drastically different
A

(2) = =mp(a) + Ma™ % p0)(@) + (e (pue?*)) (2) = ()el ) py(a).

affected by this two terms, i.e.

behaviour.

2.2 Two-type models

In contrast to previous models here we will present some results about multi-
type models. In reality cells have different tasks and hence should be described
by different microscopic interactions. In contrast to previous modelling here
we will consider two type of configurations v+ = {x1,...,2p,...} and v~ =
{¥1,--,Yn,---}. Both should be locally finite and distinct, so y* Ny~ = 0.
The collection of all such configurations will be denoted by I'2. Not only the
elementary events birth, death and jumping of cells can be treated, we now
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have the possibility of switching cell-type, i.e. a +-cell becomes a —-cell and
vice versa. More important, the densities for all events might also depend on
the cells of other type, so that e.g. +-cells are being affected by —-cells etc.
Within this framework the kinetic description will be a coupled system of two
equations, which describe the rescaled density p* for +-cells and the rescaled
density p~ for —-cells.

Let us now outline how to extend previous considerations to this case.
A state of the system is a probability distribution, i.e. measure u € 2(I'?),
on the two-component phase space I'. For the given p, the corresponding
correlation functions k™) (z1,...,TniY1,...,Ym), if they exist, are defined
via the equation

Z Z f(nvm)(ajl"xn7y1,ym)du(7+377)

2 {11,~~~’wn}C’Y+ {y1,-ym}Cy~

n|m| / / f(nm 1'1,.. xnayl,“'?ym)

(Rd m

x ) (T1 5 Tni Y1, - Ym)d zd ™y

for all symmetric functions f(™™) which are integrable with compact support.
Again k(™) describe the moments of the state p of the system and in the
special case n = 1 = m the function k1) is the density of the system, whereas
k(™9 and k(™) correspond to the boundary distributions.

As before the correlation functional k; will satisfy the equation

o) = (k) (), (19)

which has to be studied for a rigorous mathematical analysis.

Similar to the one-component case, the kinetic scaling starts with dumping
the potentials by multipliying them by a factor € > 0. Therefore we get a scaled
version of the equation (19), i.e. L2 instead of L. Let us assume for the initial
conditions k(” ™)

(n,m)

et kg™ 5 ™ e 50

with a symmetric function r(()n’m) and n, m € Ny. The important case is to take

+

PN @y, Ty Ym) = 8 (1) - ot (@n)pg (1) - oy (). (20)

Denote by k(" ™) the solutions to equation (19) with L2 instead of L® and
assume that this solutions preserve the order of singularity, namely

R (21)

for each n,m € NO. This is equivalent to investigate the Cauchy problem for
the operators L2 = RELEARgfl, where

g, ren

(Rk) (it ) = el I ()
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and seek for a limit Lémn — L%. Using the initial condition ro as given in
(20), the solution to
aTt

A
5 =Lyre, Teli=o =10

will again have the form

(n,m)

N @ eyt ym) = 01 (1) - o () pr (1) -y (Ym)

and p;, p; is determined by the kinetic equations

op; _
87; = v+(pj_7pt )7
(22)

op; _ _
87; =v (P?apt )

Then similarly to the one-component case the solutions p;” and p; to (22) will
be called kinetic description of the microscopic model. If in addition (21) holds,
then we will say that the kinetic description corresponds to the microscopic
model. In such case one has

. (1,1) _ .+ -
;1_% ki (z,y) = pi (@)py (v),

where p;, p; are the solutions to (22) with initial condition p§ and p,. Let
us explain the details and state the results for several important models in the
last part of this section. Since these models were not investigated mathemat-
ically, we will give only some simple preliminary results and state the kinetic
description. Its analysis and properties of the description should be analyzed
for each model separately.

Necrosis model

Looking at a cell system, with free branching and constant mortality m > 0,
i.e the Contact model, one possible extension to more realistic situations is
to modify the death of cells. After the death of a cell, it triggers several
biological mechanisms which effect surrounding cells. If the number of deaths
will exceed some critical value, then the surrounding cells will have an increased
intensity of death. Such effects will cause cascades of dying cells infecting
neighbouring cells. To model this effect we will introduce to types of cells.
The +-cells will be the usual cells with constant mortality and free proliferation,
i.e. the generator is similar to the generator Lgjps from the Contact model.
The —-cells will represent the dead cells, which exceeded the critical value and
therefore will cause death of +-cells. These dead cells will disappear due to
some exponentially distributed time with parameter m; > 0. The affect of —-
cells on +-cells will be described similar to the spatial logistic model, c.f. (14).
To summarize this explanation we will write down the form of the heuristic
Markov generator, i.e.

(LF)(y",77) = (AF)(y )+ (BE)Y (Y A7)+ (VE)(v 7). (23)
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The first operator A is similar to the Contact model for the normal cells and
has the form

(AR)(y' ) =mo Y (F(y"\z,v~ Uz) — F(vF,77))

reyt

00 Y [at @) (FGT Upa) - Foto )y,
$67+Rd

The operator B describes the evolution of — cells, which can only disappear
from our system, so it is simply

(BE)(vh 7)) =mu ) (F(y", 7 \a) = F(y", 7).

TEYT

The last part describes the interaction of both types and is assumed to be of
the form

VR ) =3 Y (X el ) (P Ua) - Flot,v0))

zeyt yey~

The potentials a™, ¢ > 0 are assumed to be symmetric, integrable, normalized
to 1, and the constants mg, m1, AT, A~ are strictly positive. Ignoring the effects
caused by changing the types + to — and vice versa, the overall evolution should
be similar to the dynamics of the spatial logistic model with constant mortality
mg + my, dispersion ATaT and competition kernel a~ = ¢. Effects caused by
changing the type may cause waves of dying cells and by this regulate the
local density, which will prevent the explosion of the local number of cells. A
rigorous mathematical analysis and simulations are the first steps for a better
understanding of this system.
Finally let us give the kinetic description of this model.

Theorem 2.6. Let pg > 0 be essentially bounded and p; a non-negative solution
to the system of mesoscopic equations

opf I e
W(ﬁv) =—(mo+ A (pxp; )(@)py () + X" (a™ * p;")(z) (24)
85%(96) = —myp; () + A pf (2)(0* p; ) (x) + mop] (). (25)

Go-and-grow models

Here we will assume that tumour cells have two possible states. On the one
side the cells can be in a proliferating state, which we call —-state. This state
is responsible for the growth of the tumour. In the second state, called +-state,
a cell will be moving and so contribute to additional spreading of the tumour,
where the length of the distance should be large compared with the spreading
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size of the proliferation. We have the freedom to take several different types of
interactions and intensities for proliferation, movement, and changing the type
of state. Let us first summarize briefly all common effects and afterwards give
an extended description for each choice of intensities.

In principal all proliferating cells have their own development and will
spread within the system due to either the Contact model or the Contact
model with fecundity. Moreover, they will have the possibility to change their
type to moving cells by random. Such switching can be either spontaneously
or triggered by surrounding cells in dense areas. This moving cell will start to
randomly hop inside the tumour, essentially with high probability this jumps
will be far compared to the distance of proliferation. After a certain time
this moving cell will reach a substantially less dense region and will start to
proliferate again. Such microscopic dynamics may cause the creation of new
tumour patters where the distance to the old pattern is large compared to
proliferation length.

A medical difficulty is to observe such moving cells, therefore a treatment
of a tumour is essentially restricted to the treatment of proliferating cells. One
goal is to determine the front wave propagation, derive reasonable extremal
statistics, and consequently predict the size and possible locations of a signifi-
cantly wider amount of tumour cells. We expect that this kind of insights will
lead to a better understanding of the microscopic structure of the tumours and
hence to new therapeutical treatments of tumour and cancer.

In the following we will give 4 examples with concrete types of intensities
and derive their kinetic description. The moving cells will always evolve as a
free jumping process, meaning each moving cell will independent of all other
cells randomly hop within the system. In addition each moving cell will have a
density independent death of parameter d > 0. The heuristic Markov generator
for the moving cells is simply

(LhopF) (T 77 ) =d > (F(yN\a,v7) = F(v,77)

zevyt

- / o(z — y)(F(rH\z Uy, 1) — Fivh, v ))dy.

we'Y+Rd

Each model will either have different rates at which the cells will change their
state or the type of proliferation is varying.

First model

Let us assume that the proliferating cells will be described by the Contact
model, c.f. (13) and that within dense areas the proliferating cells have an in-
creased intensity to change their state to moving cells. For simplicity we assume
first, that cells within the moving state will stay an exponential distributed time
with parameter ¢ > 0 in this state and afterwards start to proliferate again.
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Changing the state is the described by the heuristic Markov generator

(VE)(" ) =a ) (FOM\e,y~ Uy) = F(v7,97))
£ (0t X el ) (FGF Uz A\~ PG ).
TEY~ yeY~\z

Here p,q > 0 are the intensities to change the type independent of all other
cells and 0 < ¢ € LY(R?) N L>®(R?) is a symmetric potential. The overall
dynamics is a superposition of all three type of dynamics and has the form
L= Loy + Lpop + V.

The kinetic description for this model is given by:

.
P o) =

ot —({e) +d+ q)pf (x) + (¢ * p ) (@) + pp; () + py (2) (@ * p; ) (x)

%_(x) = —(m+p)p; () = py (@)(* py )(x) + Aa* py ) () + gy (2).

Despite the presence of motion, this example is similar to previous one. Here
the spreading speed should be due to the motion increased, whereas in the
previous model the spreading speed is constant for exponentially integrable
dispersion kernels. The local cell number may be dumped by the motion, but
the overall particle number will still grow asymptotically as eA="=Dtp,  with
po the initial distribution of cells.

Second model

Let us include density dependent changes from moving to proliferating cells,
so the moving cell will have a small probability to change its type if it is still
in a dense area of proliferating cells. Such changes could be achieved by the
following change of the operator V'

(VE)(vF 7~ —qZ@m(—Zwﬂc— ) F(yN\z,y~"Uy) = F(v",77))

£ (o Z\ —)) (P U \e) — P y0)).

Here p, q, ¢ are the same as before and 0 < ¢ € L' (R?)NL>(R?) is a symmetric,
non-negative potential. This model will lead to the following pair of equations
describing the local densities p;", p;°

opf | _ —(prp; ) () ,F +
W(%)——(<C>+d+qe PN p () + (e % py7) ()
+ppy () + py (@) py )(2)

Ot () = — (m+ p)py (2) — pi (@) (0 % 7 ) (&) + Aa x 7 ) (@)

ot
+ qu(x)ef(w*pt (@)
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Here the cells will stay a not exponentially distributed lifetime in the moving
state. With high probability they will move until they reach an area with
less proliferating cells and start to proliferate again. Thus we expect, that the
motion outside of a pattern is higher and therefore the speed of growth of the
boundary of the tumour is increased compared to previous model.

Third model

Let us assume constant intensities p,q > 0 for changing from proliferation to
motion and vice versa, i.e. ¢ =% = 0 from the previous model, so

(VE)v 7)) =q Y (F(y"\z,y~ Uz) = F(v*,77)) (26)
+p Y (F(y" Uz, \2) = F(v",77)).

Instead, we introduce additional density dependent death of proliferating cells,
so they are self-regulating themselves, c.f. spatial logistic model. The generator
for the — cells is given in such case by

(L_F)(7) = > m(F(y", 7y \z) = F(y))

A e

+ 3 Y a@-yEFERT A \) - F(y)

TEYT yey~\=

T Z /a+($_y)(F(7+,’7_Uy)—F(v))dy

xE’YJr]Rd

and the overall generator by L = L_ 4 Lo, + V. A proliferating cell will have
an increased rate for death and will start moving according to an exponentially
distributed time with parameter p > 0. This cell will continue to move for an
another exponentially distributed time with parameter ¢ > 0 and afterwards
start to proliferate again. Such behaviour will cause a diffusion like movement
of the cells where the speed of growth of the patterns should be less then in
the previous models. Instead, here the local regulation mechanism will bound
the local density in time. Altogether this will lead to the following kinetic
description for the local densities p", p;

ap, + + =
5 (@) = —(&) +a+d)p; (2) + (cx ) (@) + ppy (2)
%(x) = —(m+p)p; (z) = p; (@)(a” % p; ) (@) + Aax p, ) (@) +gp/ ().

Fourth model

Instead of looking at density dependent mortality for self-regulation of the
proliferating cells, we could also take density dependent birth, i.e. branching
with fecundity, c.f. [8]. Here the generator is given by L = L_ + Lpo, + V,
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where L_ is given in (16) and V in (26). Using the same notations we will get
the kinetic description

o0!
ot
o0;
ot

(x) = =((e) + q + d)p () + (c* pi" ) (@) + ppy (2) (27)

(@) = —(m+p)p; (@) + A(axp;e ) (2) +qp (z).  (28)

3 General Markov evolutions on configuration
spaces

In this section we are going to summarize all necessary definitions and results,
so that we can prove the given statements of previous section. First we briefly
outline our approach for one-component systems and afterwards point out the
steps for a natural extension to two-component systems. The last part deals
with the mesoscopic scaling, here all machinery needed to derive the kinetic
description for a wide class of models is introduced.

3.1 One-component models

The phase space of the evolutions is described by locally finite configurations
vyel, ie.

F={ycR?: |ynK|<oo VK CR?bounded}.

The topology on I is defined as the smallest, such that all maps

I's~y— (f,7) :Zf(z)a feC.RY

rey

are continuous and I" equipped with this topology has the structure of a polish
space, c.f. [14], [1]. Here C.(R9) is the space of all continuous functions f on
R? with compact support. Denote by %(T") the corresponding Borel o —algebra
and remember that the space of all probability measurses on I'; i.e. states of
the system, is denoted by &. The Poisson measure 7, € & on I is defined via
the Laplace transform, c.f. [1]

70 = exp( [0 = Dp(ayn). f e CrY,

Rd

where 0 < p € L}OC(Rd). It is also possible to construct m, directly using the
projective structure of I'. Since we are not going to use this construction, we

will refer to [1]. The space of finite configurations n € I'g is

To={nCR?: |p| <oo}=||T§" (29)
neN

with I‘é") = {n C R%: |n| = n}. Also this space can be equipped with a natural
topology and the Borel o—algebra is denoted by #(Ty), c.f. [13]. Denote the
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bijective symmetrization map by

sym,, : (i—%d\); — an), (1y.oyxn) — {21, ., 20}

with (z1,...,2,) € (RY)" if and only if z; # x; for all j # k. The Lebesgue-
poisson measure on I'y is defined by

> dz(™

n=1

where dz(™) is the image measure of the Lebesgue measure dz®" on (R%)"
under the symmetrization map sym,,. Functions on I'g, will be written by
G,k : Ty — R, whereas functions on I' are denoted by F : ' — R. From
(29) we conclude that each function k respectively G : T'y — R has a de-
composition to a sequence of symmetric functions k = (k("))%‘;o respectively
G = (GM)22 ;. There is a combinatorial operator similar to Fourier transform
translating functions G : I'g — R to functions F' : I' — R. This Transforma-
tion is called K-transform, see [13], and is defined by

7 =Y G). (30)

Here the symbol € means, that the summation is taken only about all finite
configurations n C . The inverse map K ~! has the form

(K@) () = (-nI"elae).
£Cn

Expression (30) is well-defined for instance for bounded functions G having
bounded support, i.e. there is A € R? compact, N € N and C > 0 such that
|G(n)] < C, and for all n € T'y with |§| > N or n ¢ A one has G() = 0. In
such case K G is a cylindrical function on I', for details see [13].

Next introduce a convolution for measurable functions G, H : 'y — R
via

(GxH)(m) =) > GOHEUQ). (31)

£Cn (CE

This convolution will satisfy a similar property to the Fourier transform of
functions, namely

(KG)(KH) = K(G+H), (32)

provided G, H € L*(T'g,d)). This transformation allows us to associate to each
probability measure p € Z(T") with finite local moments, i.e.

/ Iy VAP (dy) < oo
I

for all compacts A C R?, a locally finite measure pu on I'g via an extension of
the relation

pu(A) = / (K1a)()u(dy), A e BTy).
I
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Let us assume, that p,, is absolutely continuous with respect to the Lebesgue-
d
Poisson measure A. then the Radon-Nikodym derivative k, = LPu is the

dA

correlation function defined in (2) (corresponding to the measure u). Con-
versely given a function k£ : I'g — R the following inverse statement for the
construction of a measure p € & from k holds. The proof can be found in [13].

Theorem 3.1. Assume that k is positive definite in the sense that

[ cnkmarm =0 (33)

T'o

for all G bounded with bounded support, such that KG > 0. Then there exists
a probability measure p on I' with correlation function k.

The Lebesgue-Poisson exponential ex(f;n) := [ f(x) satisfy the combi-
reEN

natorial formula Key(f) =ex(f + 1), i.e

Do ea(pié) =ealp+1m).

§Cn

The following equality will be useful for several computations

/ ex(pym)dA(n) = eXp( / p(x)dx)

To R4

Let us take f € C.(R%) and compute on the one-hand-side

[ et an,) = exp( [ = otz ) = [ exte! = eatoian

T Rd o

thus

/f7d7r /KeA Yea(p)dA,

r

which shows that the correlation measure for 7, is given by ex(p)dA. Finally
we will explain the approach to describe statistical dynamics on this spaces,
i.e. the approach to analyse the evolution ¢ — u;. So let us start with a
heuristic Markov generator L, e.g. (1) or (13). In the general framework of
Markov processes one would study the evolution of observables, i.e. solutions
to the equation

OF;

ot
Its solution can give the possibility to construct under certain conditions a
Markov process (X;');>0 such that

= LF;, Fili—o = Fo.

Fi(y) = E7(Fo(X4))-
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Alternatively we can try to investigate the equation for measures ug, c.f. (3).
But since we are dealing with infinite configurations, both approaches are very
difficult and it was possible to realize them only in a few examples, c.f. [16].
Instead one tries to rewrite the equation using the K —transform to an equation
for functions on I'g and investigate this equation. This approach should be
interpreted as a change of variables, so we define the operator L = K~'LK,
which acts now on functions G : ' — R and try to solve the Cauchy problem
% = LG, Gili=o = Go.
In this article we will investigate this equation in one of the following Banach
spaces
Bo = L'(Tg, e®'ldN)

with € R and the norm given by

||G||C_/|G el dA(n) Zn,/ Gz, an)|dar .. dan.

Rd)n

An evolution ¢t — Gy € B, determines a dual evolution t — kP by

/ G ko(m)dA(n) = / Go(m)kP (m)dA (1)

Fo l—‘O
and since G; € B, this dual evolution will obey the Ruelle bound
kP ()| < Ce, neTy

and hence be sub-poissonian. As already mentioned such an evolution describes
a system, which is not asymptotically clustering, but still could include some
pattern formation. It is also possible to study the equation for k; directly,
therefore using duality it is possible to compute the expression for L? directly
via

[Eermrmarm = [ cmwsnmanm

Lo To
for each function G bounded with bounded support and k locally integrable.
One special case was computed already for the first and second correlation
functions. Finally one would seek for a solution to

% = L%, kili—o = ko

and construct if possible the evolution of states ¢ — ;. This sketch has to be
realized for each model separately, like all operators L, L L have to be defined
on a proper set of functions, which is large enough to determine the evolution
of states. Note that even if we have solved the equation (4) it is not clear,
whether the evolution ¢t — k; really determines an evolution of states t — p,
and therefore is of biological interest. Such task has to be carefully proved and
was realized for several important models, c.f. [15]. The main problem is that
the evolution has to be positive definite, c.f. (33).
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3.2 Two-component models

Let us now outline the major differences of two-component models. Afterwards
it will be clear how to extend all considerations to models with any number of
components n € N. First of all let us denote by + respectively — the types of
cells and by v and v~ their (locally finite) configurations. Since no cells of
different type can be located at the same position we will assume vy Ny~ = 0,
therefore
2={(y*77): ATy el TNy =0}

Similarly the space of finite configurations I'3 and the topologies on these spaces
are defined. Since for each & € T'g the set

{nely: nne&#0}

is a set of measure zero with respect to A we can define the Lebesgue Poisson
measure A2 on I'Z as the product measure A ® A and calculate as in the one-
component case. Similarly the Poisson measure will be the product measure
of two copies of w. The K-transform is a composition of two K-transforms for
each type of cells, i.e.

(KG)(vy =Y > ¢

nteytn-ey-

and K~ is just

(K)ot )= > Y (—)IT -\ et e,

EXCnté-Cn-

The Lebesgue-Poisson exponential will be the product of the Lebesgue-Poisson
exponentials for each type of cells and the correlation functions become a dou-
ble indexed vector, i.e. k(™™ (zy,...,Zn;91,...Ym). The heuristic Markov
generator L now acts on functions F' : T2 — R and L® on collections of

correlation functions k = (k(” m))n “m=0-

3.3 Mesoscopic scaling

As before the approach to derive the kinetic description, respectively the meso-
scopic equation, can be described within three steps. In the first step one
rescales the potentials, and thus the generator L. The outcome is a new sys-
tem with smaller interactions, with generator denoted by L.. In the second
step we will choose some admissible class of initial states ko . = (k:(n)) 2o such
that

5|n|k0,e(n) - 7"0(77)7 e—=0

for each n € I'g. Finally let k¢ . be the solution of

akt,e
ot

(1) = L2kee (), (34)

where L2 is the adjoint operator to Zs = K 'L.K. We will seek for a limit

Elnlk’t’g(n) —=1(n), e—=0
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for each n € I'g and ¢t. Such limit implies that

5”kt(g)(x1,...,xn) = pe(x1) - pe(xy), =0 (35)
if ré") (1,...,2n) = po(x1) -+ pn(zy) for all n € N. This is equivalent to solve
the equations

8kren
at; = LsA,renk:,esnv kz,esn - REkO,E

and seek for the limits

lim k7" = 7, (36)
where r; solves the equation
or
87; = L@rt, Tt|lt=0 = T0- (37)
Here
L, =RLERT — Ly (38)

and (R.k)(n) = /" k(n). Summarizing this approach, we first rescale the sys-
tem and arrive at an expression for the operator Lﬁren. Form this one computes
the expression for L$. Finally putting ro = e (po) in equation (37) one deduces

the kinetic description

0
% =v(pt);, ptli=0 = po- (39)

The analysis of (36) is quite hard and needs several technical tool and such
problem should be solved for each model separately. Nevertheless it is im-
portant, since it relates the mesoscopic evolution as the limiting evolution
of the microscopic evolution. This means for instance, that starting with
ro(z1,...,2,) = po(z1)---po(x,), and denoting by p; the solution to (39),
we get for all n € N (35). The precise notion of convergence should be cho-
sen adequately to the model. In this work we will focus on (38) and compute
equations (37) and (39) for several models. However, convergence of equations
(38) does not imply convergence of solutions, i.e. (36), thus it is important to
determine conditions which imply k%" — r;. If such convergence happens to
be false in some case, then we know that this kinetic description, also if it is
well analysed, will not describe the original model and hence has no biological
significance.

4 One-component systems

Within this section we will prove the results stated in the previous section and
derive for many possible individual based interactions their related operators on
quasi-observables, correlation functions and the kinetic description. The main
technical tools introduced in the last section will be applied for each model
directly.
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We will work in scales of Banach spaces defined for « € R by B, =
LY(Ty, e*l'ld)), i.e. equivalence classes of measurable functions G : Ty — R
satisfying

1Glla = / Gl dA(n)

Fo
(]Rd)n

The dual space is given by B} = LOO(FO@*O‘Hd)\), so measurable functions
k :T'9 — R such that

||k||o = esssup |k:(n)|e_a|"| < 00. (41)
n€ly

The duality pairing is simply

(G k) = / G(n)E(n)dA(n) (42)

and satisfies |(G, k)| < ||G|lallk|lo- Let Le L(B,,B,) for each o/ < a and LA
the dual operator with respect to (42). Then

”L”aa/ = ||LAH0/04 (43)

where the norms are determined by (40) and (41). Consequently for several

aspects it is enough to analyse only the operator L. It is possible to assign to
each L a measurable function M, : I'g — R such that

1261 = [ 1EG)eaxm) / (GO Ma()e N D) = MGl
T'o
The operator (ﬂ D(M,)) is well-defined on
D(M,) ={G €B,: M, G € By} (44)

and if M, (n) < Pa(|n))e’ with some polynomial P, and § > 0, then the
estimate

kel < (1) (45)

implies L € L(Bg,By) for all @ —a’ > 6. From (43) the same estimate is
valid for L?. Practically we have only to determine the expression for M, and
analyse its growth. Concerning the construction of microscopic dynamics via
semigroups on the scale of Banach spaces B, one would compute the function
D, : Ty — R, given by

/(EG)( eI d\(n /G n)e!MdA(n).

To
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By (42) it means (L%ey(e®))(n) = Dq(n), and analyse its properties. In many
cases both functions M, and D, have a simple relation, but M, is not unique.
Similarly define Da(M,) C B, as the set of all k& € B, such that M,k € BY.
Then LA is well-defined on Da(M,,).

__ Within the mesoscopic scaling we will consider the rescaled operators
L¢ ren and 2 Denote by N, the function determined by

g, ren*

/|L€ renG(1) €M dN(n) /N NG(n) e dA(n).

Note, that in general such function does not need to exist, it will be necessary to
show that for all reasonable models under some general assumptions we can find
the function N,,. As before the operators (LE reny D(Ng )) and (L2,.,., Da(Na))

I 'ren’
are well-defined. The limiting operator LV given by LE ren — LV ase — 0
determines another function IV, V via

/\LVG (n)]e“Mdx(n) /NV NG () e dX (7).

So we define (Ly, D(NY)) and (LS, DA(NY)).

«@
Theorem 4.1. For all subsequent interactions, the following holds.

1. For any G € D(N,) N D(NY) the convergence
L8 renG = LyG, €—0

holds. If in addition there is a polynomial P and 6 > 0 such that
No(n), NY(n) < P(In)e?!, then L, L. yen and Ly act as bounded lin-
ear operators in L(B,,B,/) for any o — o' > 8 and

”Ls,ren - LV”OéCY/ —0, €—=0.

2. For any k € Da(Ny) N DA(NV) the convergence

k— L8k, =0

8 Ten

holds. And if in addition there is a polynomial P and § > 0 such that
No(n), NV (n) < P(|n))el, then LA, L2, ., and L% act as bounded linear

g, ren
operators in L(B*,, B}) for any o — o' > § and

|L2,., — LY]la'a =0, —0.

g,ren

8. If p is a solution to the corresponding kinetic description determined by
L%, c.f. (39), then ex(p:) is a solution to the Cauchy problem associated
to L%, i.e. solves the Cauchy problem (37).

In the following denote by E(z,v\z) = . ¢(z—y) the relative energy of
yev\z
the cell z with respect to the rest of the configuration v\z. Here 0 < ¢ € L}(R?)
is assumed to be symmetric. For infinite configurations such sum will be infinite
in general, but e.g. for the Poisson measure it is possible to define E(x,~\x)
for almost all v € T', such that this sum is convergent.
We will use also the following well-known result.
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Lemma 4.2. Let H : RxTg — R and G : Ty x 'y x Ty — R be measurable,
then the following formulas hold, provided one side of the corresponding equality
exists

/ZHmnd)\ //H:cnU;vdxd)\()

zEn To R4

and

[ menenann = [ [ aEnnuganeam.

Iy €7 Ty To

4.1 Death dynamics
Let us investigate here the dynamics of the microscopic event death.

Example 2 (constant mortality). The Markov generator has here the form

= m(x)(F(y\z) — F(7)),

TEY

where 0 <m € Lj}, (Rd) Each cell located in position 2 € R? has an exponen-
tial distributed hftetlme with parameter m(x). In the case when m(x) = 0, the
cell will not die due to this mechanism. The operator L on quasi-observables
has the form

xen

and likewise L? is given by the same expression. Moreover we see that it is

possible to take M, (n) = No(n) = NY(n) = 3 m(z). Since here no scaling
xen

is necessary we obtain Ly = L and L‘A, = Ly. Consequently the kinetic

description is simply

ﬁpt o
(@) = ~m(z)p(o).

Example 3 (quadratic mortality). The Markov generator is given by

= E(,7\2)(F(y\z) — F(7)).

ey

Here each cell located at position € R? may die, where the intensity of death

is given by the intensity Y ¢(z — y), i.e. the death of the cell is caused
yeY\z

by interaction with another cell located at position y € y\z. The case where

y = x is already included in the constant mortality m = m(z). The operator

for quasi-observables is now given by

== E(x,n\z)G(n) = > E(z,n\x)G(n\z)

xen ren
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and the operator on correlation functions by

(L2k)(n ZEmn\x Z/¢x— k(nUy)dy.
xen Tean
Similarly we can choose M (n) = Na(n) = . E(z,n\z) + (a)e*|n|. Within
xren

the scaling and after renormalization we arrive at new operators, where only
the multiplicative part will be multiplied by € > 0. Hence after limit transition
€ — 0 we obtain the operators for the Vlasov hierarchy given by

Lv&)m=-3 > a" G(n\z)
zE€N yen\z

and likewise

(L8R = -3 / o~ (z - y)k(n U y)dy

wEan
so that NY (1) = e*(a~)|n|. Finally the kinetic description is given by
ap _
P (@) = —pla)fa » po) (o).

Example 4. Let us look at the stronger death intensity described by the
Markov generator

=Y PN (F(\e) - F(v)),

xrey

Here each particle located at position 2 € R? may die, whereas the intensity
of such microscopic event is given by eZ@\*) "in the case of E(z,v\z) = oo
one can think of immediate death. The corresponding operator on quasi-
observables is given by

- _ Z G(€) Z eE@E\2) o (e2@=) _1:9\€)
&Cn e
and on correlation functions by

(E2R) ) = = 3B [ eree=) — 1 g)k( U ar(e).

xeEN To

We can choose the function M, (1) = Bi(a) 3 eP@M2) where
xen

Bila) = exp(eo‘ /(eqb(m) _ l)da:).

Rd

For the mesoscopic scaling let us rescale the potential as ¢ — ¢ and after
renormalization we arrive at

- dla—) _
(LerenG)(n) = = Y G(&) Y eP=E\ ey ( 777\5)

§Cn z€€
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and

ep(z—-) _
(LsA'r‘en (77) = Z eaE(m,n\z) /GA (6817 5) k(n U g)d)‘(g)

xen To

After limit transition € — 0 we arrive at
(LvG)(n) ==Y G exld(x —)in\€)
£Cn z€

and

LR =-3 / ex(6(z — ); E)k(n U £)AN(E).

atET]FO

Here we can take N, (1) = 8(a) 3 eZ@"\?) where we have to assume that
xen

«
B(a) = sup exp(e— / |es¢(@) 1|dac> < 0.
€€(0,1] € e

Finally, NY () = exp(e®{¢))|n| and for the kinetic description

0
%6t (2) = —pu(a)eté )

4.2 Birth dynamics

Here we will describe the microscopic event responsible for the appearance of
new cells.

Example 5 (Sourgailis birth). The most simple form of birth, is where in each
region A C R? the intensity that a new cell appear in A is given by [ z(z)dz
A

where 0 < z € L}, .(R?) is the intensity. Each such event is independent of the
other and describes thus free growth of the system. In this case the Markov
generator is given by

(LF)) = [ 2@)(F6 V) - FG)da

and on quasi-observables by

EG)0) = [ =0)Gl ).
Rd
For correlation functions the adjoint operator is given by

(L2k)(n) = Y 2(2)k(n\2).

xen

Take M, (n) = Na(n) = NY(n) = e=® 3 z(z). Since scaling will not affect
xTEN
this operators, we immediately arrive at the kinetic description given by

8pt
S (2) = 2(a).
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Example 6 (Gibbs-type birth). Let us assume that L is of the form
(LF)) =2 [ BN E G Ua) - F)e,
Rd

where z > 0. The creation of cells in some volume A C R? is given by the
intensity [ ze=F(®dx < z|A|, where |A| denotes the Lebesgue volume of A.
A

The operator for quasi-observables is given by
m=z) / ex(e™ @) — Lim\Qe PEOG(E Ur)da
fcan
and for correlation functions by

(L2R) () = 2 3 e Flan\e) / A€~ LR\ UEAA(E).

xen To

Here we can take M, (n) = B(a) 3 e F@N\2) where
xeEN

— exp| e _ (@)
B(a) ep(eR[H e |dx)

and N,(n) = exp(e®{¢)) ; e B@n\e) = After scaling and renormalization we
2€n
will arrive at

o—cbla—) _
(L.G)(n) = zZ/eA ( 1,77\5) e FEOGEUT)da
fcan

which tends in the limit € — 0 to

(LvG) ) ==Y / ex (6(z — ):1\6) G(€ U z)da

gcan
In the same way we obtain
—ep(z—) _ 1
LAk — Z e—cE(zn\z) / (eg; 5) k(n\z U &)dA(€)
xen To

and hence when ¢ — 0

TR =23 [ exole =) O(a\r LY.

xGnF

The function NY can be chosen as NY (1) = z exp(e®(¢))e~%|n|. Therefore the
kinetic description is given by

%(x) _ Lo @)
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Example 7 (free branching). In the simplest way free branching is described
by
w0 =Y [at @ FEnUY) - F)dy,
z€RIpy

where 0 < at € L'(R?) is symmetric. Here each cell located at position x € v

may create a new cell located at position y € R?. The intensity of such event

is given by (a*) = [ a™(2)dz and the new particle is distributed according to
Rd

the probability measure a™(z — y)dy. On the level of quasi-observables

1

(at)

this effect is described via
Z/ (x—y \nydy+Z/ (z —y)G(nUy)dy.

rEan zEan

Likewise on correlation functions it is given by

(LAk)(n)=Z/ Ha— ke Undy+ 3 S at @ — y)kna).

acEan zEN yeEN\T
It is sufficient to take M,(n) = Nao(n) = e > > Y at(z —y) + (at)|n].
TEN yEN\z

Here we can explicitly compute the correlation functions, which will be done
later on. After scaling and renormalization we observe that only the second
summands will be multiplied by € > 0. Hence in the limit we arrive at

(EvG)m =3 / a* (z — )G(n\z Uy)dy

xGT]Rd

and likewise for correlation functions L2k is given by the same expression,
namely we can chose N () = (a*)|n|. For the kinetic description we obtain

Opt
G (@) = @ p)(@).

Similarly we can also consider the case, where each cell at = € v may split into
two new cells at positions yq,y2. The intensity of such transition would be,
for simplicity, again constant (a¥). The probability distribution is given by

< +>a+(a: — 1,2 — y2)dy1dys, where 0 < at € L'(R? x RY) is symmetric in
a

both variables. The Markov generator is of the form
@) =Y [ [at @ - ) FG\ U Vi) - FO)dudse
ze'de Rd
For quasi-observables this yields

EOm = [ [t e -G o Uiy,
rEan RY

+Z/ (G(n\zUy) — G(n))dy + (a*)n|G(n),

mGan
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where b(z) = [ a(z,y)dy + [ a(y,z)dy. Likewise we can compute the adjoint
R4 R4
operator, which is given by

ABIOED DY / (@ =y, = y2)k (U z\y1 \y2)dar

Y1EM Y2€N\Y1Ra

+Z/ k(n\z Uy) — k(n))dy + (a*)k(n).

wEan
Similarly we can choose
My(n) = No(n) =€ ¢ Z Z /a(x — Y1,z — yo)dz + 3(a™)|n)|.
Y1EN y2EN\Y1pa

Within the scaling we have to multiply a* by e and afterwards rescale the
operators. Effectively it will consist only of multiplying the first term by ¢, and
after limit transition we arrive at

(LvG)(n) =" / b(z — y)(G(n\x Uy) — G(n))dy + (a™)|n|G(n)
wEan
and

(Lyk)(n) = / b(x — y)(k(n\z Uy) — k(n)dy + (a ™) Inlk(n),

xGan

so that NY (n) = 3(a™)|n|. Therefore the kinetic description is simply given by

%(m) = —(a®)pi(x) + (b* pe)(z) = ((b * py)(x) — <b+>pt(x)) + (M) pe ().

Note that the solution is increasing, e.g. if py is integrable, then the solution
pt will be integrable as well and satisfy

o (pe) = (o),

which yields (p;) = e<a+>t<p0>.

Example 8 (establishment). Let us take a look on the birth dynamics with
establishment. Here each cell located at position x € + will have a dumped
probability to produce a new cell at position y € R?, if there are many cells
around y. The Markov generator is given by

(P =Y / BNt (g — y)(F(y Uy) — F(y))dy,

wEWRd

where 0 < a™ € LY(R?) is symmetric. Each cell at position = € v will create
a new cell at position y, but the intensity of this effect is dumped by the
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relative energy in the exponential. Calculations yield the following form for
the generator on quasi-observables

(LG)(n)
_ZZ/ (EUy)ex(e” Ply=) _ 1, im\E)e” B a*(x —y)dy

§Cn I€§Rd

+ Z Z / (EUye (yyé)ek(e*ﬂy—-) —1; n\{\:c)aJr(x _ y)e—¢(zfy)dy.

ECnzen\éga

Likewise we obtain for L2 on correlation functions

(L2k) ()
=30 Y et @ —y) / ex(e™* ) — 1;€)k(n U E\2)AN(E)
€N yen\z
£y e n\ac>//eA =)~ 1;8)at (@ — y)e TV k(n U g\z U y)dydA(€).

To R4

Hence M,, is given by

Ma(n) =eB@)Y > af E(z,n\z)

TEN yen\z

+ B(a){aTe?) Z e~ Blmo)

z€n
with S(a) = exp (eo‘ J 11— e‘¢(z)|dx>. Rescaling the interactions, i.e. a™ —
Rd
ea™, ¢ — ¢, putting L — éLE and rescaling both operators we arrive at
(LerenG)(m)

—eo(y—) _
==Y [Gleuye (eygl,nw) ~<BOg* (¢ — y)dy

£Cn EGERd

+ Z/ (EUy)e (y’g)ex<e

£Cn we"'l\ng

—epy—) _ {
;n\é\w> at(z —y)e W dy.

and
= 52 3 e B T L) kU awar
= e a*(z—y) [ ex faé‘ (nU&\z)dA(§)
zE€N yeEn\z To
e—sP(z—) _ 1
+ Ze—EE z,m\x) //eA ,g a+(x _ y)e—ad’(x_y)
xEN T R4

k(nU&\z Uy)dydA(E),
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which shows
Na(n) = e “exp(e Z Z
TE€N yen\z

+ exp(e®(#)){a™)|n).

The limiting operators as € — 0 are given by

e =3 Y [Gleupe-ot—mewa -y

ECnzen\Ega

and

@m0 =Y [ [ ex-ote = 500 (@~ )k U €\ U )gaNE)

TENP, Ra

and so NY (1) = (a™) exp(e®(#))|n|. Therefore the kinetic description is given
by

ap:

ot
Example 9. (fecundity) Let us take a look on the birth dynamics with fecun-
dity. Here each cell at x € v will produce new cells according to the distri-
bution a™(z — y)dy, whereas the intensity is dumped by a factor e~ Bl@\o),
The Markov generator is given by

(P = Y e Ben [at = y)(F G Uy) - Fo))dy,

xey

(z) = (at % p;)(x)e” (Pr)(@)

Rd

where 0 < o™ € L'(R?) is symmetric. Calculations yield the following form for
the generator on quasi-observables

—Y Y e EEey (e 1 \e\a) / G(§ Uy)a*(z — y)dy

ECnazen\g Rd
FY T e P, () 1) / G(EUy)at(z — y)dy.
ECn xel

Likewise we obtain for L2 on correlation functions

(LK) (n)
= [ [ e Eea Nt = yeate ) — 1k U\ Uy)dydr(©
xEnFO Rd
+y Y ¢ FEII et g —y) / ex(e @) — Ln)k(n U E\y)dA(E)
zeEN yen\z o
and hence

M, (n) = e “B(a Z Z (z—y) o= E(z,n\z)

zeN yen\z

+B(a)(ate?)n].
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1
Rescaling the interactions, i.e. a™ — ea’, ¢ — ¢, putting L — ~L. and
€

rescaling both operators we arrive at

(Ee,renG)(n)
5) —ep(z—-) _
=Y e (e /Gwy (o - y)dy
ECnzen\&
(z §\x e sple—) +
+e) Y eeF f;n\f G(EUy)a®(z —y)dy.
ECn xzEE Rd
Likewise we obtain for L2 on correlation functions
e—sPly—) _ 1
=>. / / TEWEAD G (2 — ey ( 5) k(U €\a Uy)dydA(E)
TEIN, Rd :
+e Z Z e eE@MD) 20 (2=1) o F (1 — )
zEN yen\z
e—sP(z—) _ 1
< [ e () K uewane
To
SO
No(n) = e exp(e™(#)) D D a¥(w—y)e? ™ + (a*) exp(e”(9))lnl.

z€N yen\z
The limiting operators as € — 0 are given by
LVG Z Z ex(—¢(z — ~);77\f\x)/G(§ Uy)a™(z —y)dy
£Cn 13677\5 R4
and
@0 =Y [ [ @@ - per-0— ROk Uydyare)
anFO Rd

Therefore the kinetic description is given by

apt —P*pe
o (@) = (@ (7 py)) ().

4.3 Moving cells

Here let us describe possible microscopic events, which lead to a motion of cells.
The first model describes the most simple possibility.

Example 10 (free jumps). The Markov generator of a system of free jumping
cells is given by

(P =Y / e(z — y)(F(1\z Uy) — F(2))dy,

wE’YRd
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where 0 < ¢ € L}(R?) is symmetric. Here each cell jumps independently of the
1
others according to a jump rate (¢) and a probability distribution — c¢(z—y)dy,

()

where € 7. The mechanism can be described on quasi-observables via

EIOEDSY / c(z —y)(Gn\z Uy) — G(n))dy

wEan

and L is given by the same formula. Since after scaling nothing is changed
we obtain immediately for the kinetic description

%(x) = (c*p)(z) — pe(x) = /c(a; — ) (pe(y) — pe(x))d,

Rd
which is the equation describing a random walk in continuous time. Then

functions M,, N, and N can be chosen as (c)|n|.

Another possibility of describing the free motion of particles is given by
the next example.

Example 11 (free diffusion). Let the Markov generator be given by
(LF)(7) = Y (AsF) (7).
zel

Here each cell undergoes a free diffusion independent of all other cells. Rewrit-
ing this operators to quasi-observables we arrive at

(L&) () = (AG)(n)

and likewise the expression for L? is given by the same formula. Since scaling
will not change the operators we arrive at the kinetic description
e

L (@) = Api(e).

Example 12 (jumps with additive intensity). The Markov generator for jump-
ing cells, with density dependent intensity is given by

(LE)7) = > blz— y)/C(I —2)(F(W\z U 2) — F(v))dz,

€Y yey\z Rd

where 0 < ¢,b € L'(R?) are symmetric. Each cell at € v will jump with

intensity (¢) Y. b(x —y) and the position is determined by the distribution
yey\z

—c(z — z)dz. The description via quasi-observables will give

©
EG)) =3 3 ba—y) [ el - )G\ U2) - Gtz

TEN yen\w Rd

D) by / c(x = 2)(G(n\z U 2) — G(n))dz

zTEN yen\z R
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and similarly for correlation functions

ZE / / e — y)bly — 2)(k(n\e Uy U ) — k(U 2))dydz

TENRA R
PIPILLEL [ ale = )kt v 2) - k)
TEN yEN\T R4

The rigorous derivation of the kinetic description was already done in [4]. Scal-
ing the potential as b — €b and rescaling, we see that only the last terms in L
and L? will be multiplied by e. Hence after limit transition € — 0 we arrive at

v =3 3 ba—y) [ el =GO U) - Gz

zeN yen\z R

and

(L8R =Y / / e — y)bly — 2)(k(\z Uy U 2) — k(5 U 2))dydz,
T€MNRa Rd

which yields the kinetic description

D01 (2) = e+ (b 1) - p0)(@) = (e (0% p) @) ()

Example 13 (density dependent jumps). Let 0 < ¢, ¢, c € L'(R?) symmetric

with ¢ € L®(RY), set Ey(z,v\z) = 3. é(z —y) and likewise Ey(y,7) =
yEY\@

S>> ¢(z —y) > 0. Define the formal Markov generator

TEY

(y) = ZBE¢(£,’Y\I) /e—Ew(y,v)c(x —y)(F(y\z Uy) — F(v))dy.

ey Rd

Here each cell located at = € « will have a high intensity to jump, if there are
many other cells around and due to e~ % ¥ it will prefer to jump in regions,
which have a small density of cells. Let us compute the the operator L. For
G € Bys(I'y), € v and y € v we obtain

(KG)(v\zUy) — (KG)(7)

> G- G

nEvy\zUy n€y
= Y G+ > Guy — >, G- Y, Gux)
nev\z nevy\z nev\z nev\z

> (Guy) - G(nua)).

nev\z
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Therefore using (31) and (32) we get

Z oEol\a) /ewa WD) e =¥(@=4) (1 — y) Z (G(nuy) —G(nuz))

rey a neY\z
_ Z/ @ VDe(z — y)Kea(f(z,9)(N\a) Y. (GnUy) — GnUa))dy
xE’YRd ne€\z

=Y Y [ e ()= (G Uy) - GEum)me *EVee - y)dy

TEY NEY\TRa

=33 [ er () * (G Uy) — GE U Aol — )y

ney mGn]Rd

with f(z,y;w) = e?@=®)=¥(u=®) _ 1 Again using the definition (31) we get

-3 / ex (f(.9)) % (G(-Uy) — G(- U ) (\z)e ™ @ Ve(z — y)dy

z€NR
_ Z ZeE¢(x JE\x) /e—Ew(y,ﬁ)C(x _ y)ek (f(aj’ y)’ 'r,\f) (G(f @) y) — G(g U ac))dy
§CnzeEn Rd

This yields the following formula
DD e / e Se(a —ylex (f(2.y):\E) (G(E\x Uy) — G(6) dy.
£Cn zeg Rd

Let us show that the function M, can be chosen by

p) = e n 3 e Ev@ne) / o — 1)o@ — b =1) Eo () gy

xeEN

R4
+ eea,.c ZeEd,(z,n\z) /C(.’L‘ _ y)e—Ew(ym)d%
TEN Rd

where x = ell?llz= (). So let G € D(M,,) and note that

/f(x,y;w)dw = / (e¢(f_w)—’/’(y—w) _ 1) dw < ell?llz= () = .
R4 Rd

Now using the formulas from Lemma 4.2 we arrive at
e [ [ [ et B ta ey (5w ki)
Iz R¢ R4
x |G(& Uy)|e*levdydadA(n, €)
e [ [ [ertlerBrnein et eta — y)[Ge U y)ldadydr(€)

o Rd R4
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/|G )3 e Bul 5\y)/ o — y)e—PE—0)=0E=1)  Eo (2.0 01€] 424\ (¢)

yEE

and for the second part of L at

/dA2 n,£)el “'£'Z/dyc y)ePe @D e Evw ey (| f(z,y)|;n) |G|

F2 xean

<e” / D> elels / cw — >*Ew(y@dy)|G<s>|ea‘€‘dx<s>.

rel

Since My(n) < 2(c)e " |nlellle=Inl we get for o — o/ > ||¢||L~ that L €
L(By, B, ) and

2(c)ec” ®
ela—a —¢fl=)

Turning now to correlation functions, the action of the operator L? is given by

”E”aa’ <

Z / dA(¢ /dxc — y)elormwle=EBelume\vle, (f(z,y);€) k(nUE\y U z)

yenr,

- Z/d)\ /dyc (z — y)efewn\We=EuWwmey (f(z,y);n) k(nUg)

yeny,

and similarly L* is a bounded linear operator in L(B?,,B) for each a — o’ >
l|¢||Lee. In order to see this let G € Bys(T'g) and k € B, for some « > 0, then

for the first term we get

[N [P B0eta — yhen (1o )im) GlE N Uy)dydA(n)
To

fCﬁweng
= [H0UO Y [ clo = y)eBe e B0, 1z y)in) Gl€\e U y)dydr(r. €
r2 weng

— [ [ [ o gunGie et — g)eteO e B0 e, (4, i) dadyd(n.)

2 Rd Rd

= [ [ HuUgUa\nG©)cta — y)eBe e B ey (£, y)sn) dadA(n.E).
Fg yeéRd

For the second term we have

JH S [ el = ppetae e B, (12, 4)i\€) GEAIAG)
To

SCTI xefRd

= [Kn0e) S [ et - p)eBee e, 1z, ):0) GlEdyaAn. ).

1"2 wEERd
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Here we have to rescale the potentials ¢ — ¢ and ¢ — 1. Since we are inter-
ested in the limit e — 0, we will restrict the range of € to (0,1]. The rescaled
operator will have the

$OS eholee\a) / =B (g — y)

£Cn z€€ Rd
x ey (5270 _1i\€) (G(E\e Uy) — G(€))dy.

In order to get the normalized expression we have again to consider the com-
position L’"e” =R, L < Re, this leads to the following expression for L””

Y eeBeledn) / B e(z — y)ex (. (@, y)i\E) (G(E\e Uy) — G(E))dy
ECnxel RE
ped(o—w)—ed(y—w) _ |

with fo(z,y;w) = . For each fixed n € 'y this expression
€

converges to

Eva)n) = X [ el —ylen 0le ) = vly = :1\6) (GENe Uy) — GO

£Cn :CEERd

Lemma 4.3. For Ege" the corresponding function N is given by

Nu(n) = ee%z e(z — y)eEe@ndy + (c)e® Kze%(r \x)

€N, TEeN

and NY (n) = 2(c) exp(e*({¢) + ()))|n|. Moreover for each a — o' > ||¢||
the estimate holds:

’

2(c)ec” *
e(la—a —[|¢]L=)’

o

2{cye® *
ela — o —ellg]z~)

2(c) exp (e ({) + (¥)))

e(a—a)

<

~
||L5,ren||aa’ >~

”LV ”oca’

IN

for all & < a.
Proof. For this purpose we have first to estimate f.(z,y) by
| f=(2, y; w)| < el?le> gz — w)
for almost all w € R? and afterwards to use
No(n) < 2(ce®"#)|plellél=Inl. 0
Clearly we have D(M,) C D(N,) C D(NY).
Theorem 4.4. Let G € D(N,) such that |n|?el®lc=G c B, then
L*"G - LyG, €—0

i By. In addition the renormalized operator for quasi-observables converges
in the uniform operator topology of L(By, By ), i.e. the following holds

|ILv — L2l qar — 0, & — 0.
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Proof. Fix o/ < a and G € D(M,/) such that |n|?el?lc=G € B,/. Let us
divide Ly and fge” in two parts according to G(§\zUy) and G(§) and investi-
gate their differences separately. Starting with the term containing G(&\z Uy)
we obtain for the difference

o a’|n| La'|€] _
c F/ R/ R/ (7, €)dzdye 1M Ele(z — 4)|G(E U y)

B < B, (1 (2, y)im) = ex(@lw — ) — ly — ;)|

- / dA(, £)e e €11G(e)| 3 / dee(z —y)

2 yefle
0

EBE DBy e, (f (2, );m) = ex(d(w — ) = wly — Jim)|.

X

X

Using |fe (2, y; w)| < el?le= gz —w),
[fe(2, g3 w) = (92 —w) =Py —w))| < e"[p(x —w) = (y —w)|
where 1 = |6z + ] and
|66E¢(m7£\y) —1< €E¢(z,§\y)ell¢lle\E\y\ < €‘|¢||Lw‘€|6“¢HL°C|§|
the modulus in the integral can be estimated by
e=Po(e W emeBvw WD e, (£ (2, y);n) — ex(d(z — ) — (y — );m)
< e Fa(28\) _q| ‘(eEq/my,s\yUz)eA (fo(z,); n)‘

+ |em =B ey (|, ) i)
+lex (Ifz(2,9)[n) — ex(d(z =) = ¥y — )i n)

< ]|@|| oo |€|eNPNre ey ( 1911z (3 — )
+e(By(y,€\y) + w(m —y))ex (e”¢““’° ¢(:v ~ )
tee” Y lola —w) =y —w)lea(e’|¢(z =) —d(y — )i m\w).
wen

Invoking this in previous estimations one obtains with some generic constant
C > 0 independent of o, «, and ¢

ggceec"“”/ 161 G(e |Z/ oz — y)daleletel=lél g e)

I YERa
e +ry a’
+eCe /e €lG(e) IZ +{c))Ey(y,§\y)
o yeg

b eCe / e'I911G(€) |€1aA(E)
To

<e0e™ ™ [1GE1 (6P 4 14 1¢] + [€) e Flane)
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/

This shows the first part. For the second part take 0 < ¢ < W, then
Loo
B, C D(N,) and for G € B, above integral is bounded by

A P S S 1) 1G]
o€
e(a—a —|[|9[L=)*  e*(a—a)  ela—d)

§€C<

which shows the assertion for the terms containing G(€ U y\z). Similarly the
differences including G(€) can be estimated. O

For correlation functions the rescaled operator has the form

(L2k)(n)
- Z/d)\ /dxc y)eEEqb(xm\y)e—sz(mex\y)
venp,

X ey (ee‘b(m_')_w(ym) — 1;5) k(nugua\y)

- Z dA(§) /dxc(x — y)eEEMyvn\y)e—EEw(w,n)
venp, a

x ey (20w =) _1ie) k(U g).

Again computing the renormalized operator one gets similarly to the case for
quasi-observables

(LA,renk)( )

= Z/d)\ /da:c (x — y)esBo@me=eBuumUa\vley (f (2, y);€) k(nUE Uz \y)

UETIFQ

=3 [ 9 [ dueo - g)eEe e <Ee e, (£, (2,4):€) bn U )

Y<IR, Rd

and for each fixed n € I'y this operator converges to

R =Y [ e / dzc(z = y)ex (9(z ) = ¥y = ;&) k(nUE\y Ua)

yenp,

—Z/d)\ /dmcw—y)e,\@(iy—')—w(m—)f) k(n U ).

yenr,

Lemma 4.5. The renormalized opemtor on correlation functions converges in
the uniform operator topology of L(BL,,B:) to LY, i.e. for all o’ < «

a’
ILG — L2 lara — 0, = 0.
Since L27" is dual to E;e" with respect to (42) the assertion follows from

(45). Finally let us derive the kinetic description for this model. Therefore we
have to compute L&ey(p) for a function 0 < p € L>®(R?). This expression
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is given by

(LSex)(n)
=Y ex(ein\w) [ AN©) [ daeta — g)ptaler(o( — ) — by — % er(si)
yen To R4
=S ealmnlels) [ AN©) [ decla — plesély ) — (o~ Bealpi6)
yen To Rd
= Y exloinw) / daeta = y)pte) exp( [ dw (6 —w) = ply = w) o))
yEn Rd
=Y erlpnule / daef =) exp( [ dw (0l — w) — (o — w)) o))
yen Rd
=Y ealpin\y) (e o Dexp-e?)(y) = ply)el W (cx =0 (y))
and since

Apiim) = el pt,n\y W)

xTEN

we obtain for the contribution of the jumps to the mesoscopic equation the
terms

(c " (pte¢*pf)) (y)ef(w*m)(y) _ e(¢*pt)(y)(c " e’w*”t)(y)pt(y).

4.4 Free branching process

Let us recap shortly the description of the free branching process. Here the
heuristic Markov generator is given by

=mY (F(y\z) - F(v))

rey

+AY //a(x —y1, @ —y2)(F(V\x Uy Uys) — F(7))dy1dy:
xG’de R4

with constant mortality m > 0 and intensity of cell-division A > 0. The poten-
tial 0 < a € LY(R? x RY) is assumed to by symmetric in both coordinates and
the total mass is normalized to 1. This model describes a cell population, where
each cell will die with exponential distributed lifetime of parameter m > 0 and
will divide into two cells after another exponential distributed time of param-
eter A > 0. The position of the new cells is determined by the probability
distribution
a(x —y1, = — yo)dy1dyz,

where = € 7 is the position of the mother cell. The generator L is well defined
for all functions F' = K G, where G € Bps(I'g), i.e. is bounded and has bounded
support, i.e. there exist a compact A C R? and N € N such that G is bounded
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and for any n € T'g with |n| > N or ¢ A on has G(n) = 0. Following the gen-
eral approach of section 3, we are first going to calculate the operators L for
quasi-observables G' and L for correlation functions k.

Theorem 4.6. For G € Bys(Tg) the operator L= EV +Bis given by

(EvG)(n) = —(m+ N NG HZ/ (MaUy)dy  (46)

xean
with B given by
=23 [ [a—po-wGoeun v, @)
TENRI Ra
Here O < b describes the effective proliferation and is given by
o) = [ ate.vdy+ [ aly.2)dy.
Rd Rd
The function My, = MY + MPB is given by MY (n) = (m + 3\)|n| and
Bn)=xe @ Z Z /a(x -y, — y2)dz
Y1EN y2€n\y1pa
If in addition the expression

0= min{ sup /a(m — y,z)dz, sup /a(x, - y)dﬂc} (48)

yeRd a yeR4 o
18 finite, then L acts as a bounded operator from B, to By for each o/ < a.
In this case the estimate

m+3X\ | ANge~
ela —a') e a—a')?’

||E||ao/ < HEVHaa’ + HBHaa’ <

(49)

holds.
Proof. Using the K —transform we obtain for x € ~
(KG)(y\2) = (KG)(7) == > G(nux)
nEY\z
and therefore for the first part

mY (KG)(N\z) — (KG)(y)=-mY > Gnuz)

ey TEY nEY\x

= —m 33 Gl = —mK( - [G)().

neyxen
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Applying the inverse K —transform we arrive at the expression —m|n|G(n) re-
flecting the natural death of each cell. For the cell-division we first note that
for x € v and y1,y1 € ¥

(KG)(Y\x Uy Uyr) — (KG)(v)
= ) (GOuy) +GnUys) +G(nUy Uys) — G(nuz)).

ney\z
Therefore the birth-part is given by

Z//a(m—yhﬂf—yz)

TENR4 Rd

x (Gn\z Uy1) + G(n\z Uyz) + G(n\z Uy1 Uyz) — G(n)) dy1dys.

In the first two terms of the second part the integration over y; respectively ys
can be carried out, which gives together with the substitution y1,y. — ¥

Syl / oz — 1,7 — 1) (GN\& Usn) + Gn\z U ) dyndys
T€NRa Rd

—AZ/ G(n\z Uy)dy.

JcEan

Altogether we obtain formulas (46) and (47). Let us now compute M,, so let
G € D(M,,) defined in (44), then

[ 1Ecmleria < [ Evaumleiasm + [ 1BGmemaxm)

o To To

and for the ZV we get
/ LGl ax()

/ (m + Ml |Gl dA(y) + A / 3 / )G\ U )l dydA(m)

T'o By T€Ma
~ [+ nmlicmleiasm + e [ [ [ b= plceule ez
To Ty R4 Rd
/(mH)WIIG( ey +/\/Z/ )G ()| dad(n)
To To yEan

- / (m 4 Ml |G @) dA(n) + 2 / InlIG(m)]e"dA ()

Ty To
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and hence M} (1) = (m + 3\)|n|. For the second part we get

/ BG () ledA(n)

<)\/Z// (z —y1, 2 — 12)|G(n\z U y1 U ya) | dydyzdA(n)

T€Ra Rd

=e ") / > > / (@ — 1,2 — 12)|G ()] dadA(n).

Y1EN Y2 EN\Y1Ra

If (48) holds, then MZ(n) < Ae=8|n|?, which shows the estimate for the norm
Of |2l O

Let us take a closer look at L. This operator is a sum of a particle
number preserving part Ly and a upper diagonal part B. Rewrite this number
preserving part Ly in the form

(EvG)(m) = —(m — VllGm) + A3 / (G(n\x Uy) — G(n)) dy.

xEan

By previous proof we know, that (ZV, D(EV)) is a well-defined linear operator
satisfying

m + 3\
ela—a)
Let G = (G™)%2_, be the decomposition of a measurable function G : Ty — R
to its components and set for n € N

(DpG ™) (21, ..., xy)
—(m = MnG™ (z1,...,x,)

n

+>‘Z/b(xk _y) (G(n)(whafikvyavxn) - G(n)(xlaaxn)) dy
k=1

HLVHao/ <

Rd
—(m = NG (x1, ... 2n) + (A, G) Y (zy, ..., xy),

where Z; means that integration over the variable z) should be omitted. For
each n € Ny the operator LV is diagonal, i.e. it acts only on G("). The equation

aGy" n
a; = Dnng)v GE )‘t:O = G(()n)
has a solution G,E") = e*(m*A)”th(n), were Ht(") solves
oH," - n
5= A H™ H™M | =G,

Therefore let us try to understand the meaning of A,. This part describes a
Random walk in continuous time of each cell with intensity 2\ and the proba-
bility of a cell located at = € R? to jump in the region dy is given by

%b(m — y)dy.
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Lemma 4.7. D, is a bounded linear operator on L'((RH)™) and L>®((RH)™)
and the corresponding semigroup is a positive contraction semigroup. Moreover,
if N <'m, then (Lyv,D(Ly)) has an extension to a of a sub-stochastic semigroup
on B, for each a.

Proof. The first assertion is a consequence of the Beurling-Deny-Criterion, c.f.
[17]. Assume A < m and consider

EvG) ) = ~(m + NalGn) + 3 [ bl = )G\ Uy,

xEan

the second summand is positive and defined on the same domain as the negative
multiplication operator —(m + A)|n|. Now an application of [19] shows the
assertion, provided

/ (LyG)(m)eMdA(n) < 0

o
for 0 <G € D(zv). But this is true, since A < m. O

Note that also for m < M\ an evolution ¢t — G; can be constructed.
Let Gy = (Gé"))neN be measurable such that each component Gén) is inte-

grable. Then e~ (m—Mnte tA"G(") = tD"G(n) is well-defined and the vector

Gy = (etPr G(" )52 is the unique component-wise solution to

oGy ~
T

ot vGi
Gili=o = Go

This solution, if Gy € B, evolves in the scale of Banach spaces B, with
a(t) = a4 (m — A)t, ie. Gy € By, which follows from

X —(m—=X)nt a(t)n
e € n
1Gtllaw) = Z — / |€tA“G(() )(fm, coyy)|dey .. dey,
n=0 (Rd)n
<:j{: // G (@, @) |day Az, = [|Golla.
n=0 (Rd)n

The presence of the perturbation B implies that the solution cannot satisfy
Gi € By for t > 0 and any a(t). Since B sends functions of n + 1 variables
to functions of n variables it is not helpful to discuss a direct solution formula,
though it is possible. More precise results will be investigated in terms of
correlation functions.

Lemma 4.8. For k:Ty — R such that |k(n)| < |n|!C" for some constant
C > 0 the operator L™ is given by

L? =Ly + B2,
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where L‘A, is given by the same expression as EV and B® by

ER =AY Y [aw@-ps-whnuen\wde (0)

Y1€M y2EN\Y1pa
Moreover L‘A; € L(B:,B}) and if (48) holds, then B € L(B,,B%) with
HL lora = HLVHaa’ and || B*|lara = ||BHaa

Proof. For G € Bys(T'g) and k as described above, the operator LA is uniquely
determined by the pairing

/ (EG)(mk(m)dA(n) = / Gn)(IAE) (m)dA(n).
Ty T

The negative multiplication part will therefore not change and for the second
part we get by the formula from Lemma 4.2

A [ [ bl = naae unakmanm

o ;cEan
= )\/// (z —y)G(nUy)k(nU x)dydzdA(n)
T'o R4 Rd
= A/Z/ k(n U 2\y)dzG (n)dA(y).
Ty yEan
Finally
[@Eemrmarm
o
- A/Z// a(z —y1, 2 = y2) G\ U y1 U ya)dyrdyak(n)dA(n)
Iy %€Rd R
- )‘////“(x —y1,& = y2)G(n Uy Uyz)k(nUz)dedyidyzdA(n)
T'o R? R Re

S % [ale— v — kU s\ \sm)deGonar)

Iy Y1€My2€N\y1Ra

proves the assertion. The second part follows from (43). O

Again, the equation for Lé can be solved explicitly and since B2 has now
lower diagonal structure the equation

Ok
ot
has a unique solution given by a recursive formula. More precisely let ky =

(k(()"))j’lozo be non-negative and measurable such that k(()") € L™®((R9)™). De-
note by B2 the operator given by (50) taking functions from n — 1 variables

= L%k,
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to functions with n variables. The solution to (4) is given by

k§n+1) _ ef(mf)\)(n+1)tetAn+1 kén'i'l)

t
+ /ef(mf)\)(nJrl)(tfs)e(tfs)AnJrl BﬁJrlkgn)dS (51)
0

Theorem 4.9. For each ky > 0 measurable, such that k(()n) € L=®((RY)™), there
exist a unique solution ki > 0, given recursively by formula (51). If 0 is finite,
then for each initial conditions satisfying ko(n) < |n|!/C1" for some constant
C > 0, this solution obeys the bound

ki(n) < [n]N(C + )" (1 + 6)17 k5 (t) Ml = (m=lnlt

with k(t) = max{1,\, \e(m=NYIf in addition there is 6 > 0 such that
a(z,y) > a >0 for some a > 0 and all ||, |y| < 3, then for each ko(n) = C"
the solution k; cannot be sub-poissonian, i.e. for any n € 'y with:

Ve,yen, x#y: |lz—yl <9

the estimate
ki(n) > ﬁ\n\e—(m—/\)lnltm“ t>1

1
— A
holds, where B = min{C, A\, d, |Bs|} with 6 = { A\—m’ =m and |Bs| is

1, A<m
the Lebesgue volume of the Ball Bs of radius §.

Proof. For the bound from above we will proceed by induction on the number
of cells |n|. The first correlation function is given by

kgl) _ ef(mf)\)tetA1k((]1)
and hence by positivity of (e!41);>¢ and e!1C = C
D < e (m=NtC < (C 4+ £)(1 4 0)k(t)e= MV

For n - n+ 1 we get with [n| =n+1

t
kt(n-‘rl) < ef(mf)\)(n+1)t(n+1)!cn+1 _|_/67(mf)\)(n+1)(t75)6(t75)An+1B$+1k£n)d5
0
< e—(m—/\)(n+1)t(n+ 1)!Cn+1

+ (’I’L + 1)!K(t)n+1(1 + 9)n+1 ((C + t)n+1 _ Cn+1) e—(m—)\)(n+l)t
< (n + 1)'(0 + t)n+1(]. + g)n-l-lE(t)n-i-le—(m—)\)(n-i-l)t.

Here we used the fact that for s <t we have x(s) < k(t). For the second part
let k:(gn) = C", then e'4n kg = C™ and therefore kt(l) = e~ (M=tC > Be—(m=Mt,
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For n -+ n+1 and ¢ > 1 we obtain
kt(n+1) > e—(m—)\)(n—i-l)tcm—i-l
t
+ )\/e_(m_)‘)(”ﬂ)(t_s)(n + Dnae™ (m=Mns grplds| By

0
t

> e—(m—)\)(n-i-l)t/e(m—/\)sdsﬂn(n_’_l)!a)\
0
> e—(m—)\)(n+1)tﬁn+1(n_~_ 1)' ]

This Theorem shows that if the probability distribution for the new cells,
has no hard core, i.e. a(0) > 0 for continuous distributions, than the system
will consist of clusters. Appearance of such clusters are due to the operator
BA. The part L‘% contains information about asymptotic behaviour, speed of
propagation etc., whereas B contains information about correlations of the
system. Assume for simplicity, that in the cell-division the position of the new
cells are independent of each other, then we may write a(z,y) = c¢(z)c(y) for
some symmetric function 0 < ¢ € L'(R?%) normalized to 1. If for example c is
continuous and non-vanishing, then previous assumptions are satisfied and we
get the bound

ﬂnnlef(mf)\)nt < kt(n)

on R%. Hence the system will be always clustering. The same results were
shown for the case a(x,y) = c¢(z)d(y), where each cell creates a new cell and
its location is described by the kernel c¢. In contrast to this model, the old cell
will not die. Clearly such models should have the same properties. Previous
Theorem justifies the assumption, that it is enough to work with the usual
Contact Model a(z,y) = c¢(z)d(y).

Scaling

Following the general scheme of mesoscopic scaling described in previous chap-
ter, we have to scale potentials like a — ea and accelerate birth by a factor
1

—. Clearly, since the birth only consists of the a-part, this will not change

€
the operator itself, i.e. L. = L. First we will look at Quasi-observables.
In this case the renormalized operator is given by LE ren = R _1LR€, where

R.G(n) = e"G(n). Applylng this to this model, one gets L8 ren = LV 1+ ¢B.
Hence we can realize Lsﬂ,en on the same domain as L.

Lemma 4.10. For each G € D(N,) one has
Zs’renG — ZvG, e—0

in the norm || - || for each o € R. Moreover if (48) holds, the operator Ew«en
converges to Ly in the operator norm of L(Bs, By ) for each o/ < a.

Proof. Let G € D(M,), then L. ,nG — LyG = eBG € B,, which shows
the first assertion. For the second part we know B € L(B,,B,/) and thus,



60 D. Finkelshtein, M. Friesen, H. Hatzikirou, Yu. Kondratiev, T. Kriiger, O. Kutoviy

for G € B,
|ZerenG — Ly Glla = €| BGla < €| Bl|aa||Glla- O
Similarly we get.

A

e,ren

Lemma 4.11. Assume (48) holds, then for each o/ < « the operator L
converges in the operatornorm of L(B, B%) to the operator L‘A/.

Proof. Let k € B?,, then
L2, enk = LY kllo = €l B2 K|l < €] B aval ko

e,ren

implies the assertion. O

Hence mesoscopic scaling suppresses the microscopic effects like cell-correlations
etc. The resulting model has less information but is simpler to analyse. As
already shown Ly or L@ will lead to evolutions ¢t — G; or t — k3, which
can preserve the spaces B, respectively B},. Finally we will show the chaos
preservation property and derive the equations for the local densities of the
kinetic description.

Theorem 4.12. Let ko(n) = [ po(z) with 0 < py € L>®(R?). Then the
xen
unique solution to

ot
Etlt=0 = ex(po)

(52)

is given by ki(n) = [] pi(x), where py > 0 is a classical solution to the meso-

xren
scopic equation
Opt N
- =—(m+X)pe+bxp
ot
Pt|t:0 = Po-

Proof. Since for each ko = (k(()n));f’zo such that all k(()") are essentially bounded
there exists a unique solution, we have only to check that also k¢(n) = [] p¢(x)
xrEn

solves (52). Note, that for the given function py a unique classical solution for
the mesoscopic equation exists on R;. Computing

Dy > P (@)er(peim\a)

and

(Leex(p)(m) =D exlpin\z) | —(m + Npi(x) + /b(x —y)pe(y)dy

xEeN R4

we conclude that k; given by the formula is a solution. O

In this model all cells are independent of each other, which implies that
the equation in the kinetic description will be linear. Non-linearities enter
through interactions of cells. So in more realistic models the typical equation
will consist of convolutions and powers of p;.



Stochastic models of tumour development and related mesoscopic equations 61

5 Two-component models

The extension to two-component models is straightforward. The Banach spaces
B, of functions G : T2 — R becomes B, = L*(I'2, e 7 lea” 171d)) with
a = (a*,a7) equipped with the norm

yatlnt am g _
1G]l = / GOt )l M e Gt )
F2

and the dual space of correlation functions k € B}, = L*°(T'3, emo Inlg=aTn ld)\)
with the norm

Iolla = esssup _ [kGr,m)le="n*lema bl
(nt.,n=)ersy

The dual pairing for these spaces is given by

(G k) = / GO n Y™ YA )

2
FU

and satisfies |(G, k)| < ||G||a||k|la- For pairs o/ = (a/T,a/7) and a = (o™, a7)
we will write o/ < a if /T < o and o/~ < o~ holds. In such case for an
operator L € L(B,,B,) for all ' < « and its dual operator L~ € L(B?,,B)

HZ”aa’ = ||LA||a’a

holds. Also there exists a measurable function M, : T3 — R such that

=~ i otintl o n— _
[1EGtrt e e largt )
F2
< /Ma(n)IG(n+,n’)|6“+‘"+'6a_"’_'d/\(77+,77’)7
2

so all previous methods can be applied in this extended two-component setting.

In this section we will derive, similarly as for the one-component case, all
necessary formulas to derive the kinetic description. Such list of interactions
will be not complete, but should cover most of the interesting models in cell
biology. Here we will restrict in many cases to interactions on +-cells. The case
of —-cells in the presence of interactions with +-cells can be derived in the same
way, simply exchanging all + with — and vice versa.

Define the relative energies E(z,7F) = 3 a(z —y) and E,, E, in the
yey
same way with a replaced by ¢ respectively 1. We will assume that 0 <

a,é, € L'(R?) are symmetric.

Example 14. Let us consider first consider the Markov generator

(LF)(y) = Y Ex,y )FON\z,v7) = F(v)).

zeyt
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Each cell at position z € v* can die due to the interaction Y a(z —y) with
yEYT
cells from different type. The operator on quasi-observables is given by

=3 Y al@-y)Gm) - > D ale—y)Gnt,n\y).
zent yen~ zent yen~
The functions M, and N, are in such case given by
No(n) = Ma(n) = > > al@—y)+e* (a)ln*].
zent yen=

After scaling, i.e. @ — ea and renormalization, we arrive in the limit to the

operator
(Lv =3 > alz -Gt \y),

zent yen=

which is defined on D(NY) with NY (n) = e~ (a)|n™|. The convergence holds
for each G € D(N,) in B, since only the multiplicative part is multiplied by
¢. On the level of correlation functions L* is given by

(LR ==Y Y al -y /a(:v—y)k(nﬂn‘ Uy)dy

zent yen= zENT R4

and

Lok =— Y / a(z — y)k(r,n~ Uy)dy.

1677+]Rd
Therefore the kinetic description is given by

. )
O (1) = —pf @)lar pi o), Po(a) = 0

Example 15. Let us consider here the case, where the interaction is not
quadratic in the number of particles, but exponential instead. In such case
the Markov generator is given by

F)() = 3 B eB eI F (e, 7) = ().
zeyt
The operator on quasi-observables is given by

D I

§Cnaegt
x ex(e?) = Lip\EN)ea(e?™ ) — 1 \E)G()
and on correlation functions by

(L2k)(n) = — Z B (2 \2) o B (2.07)

zent

X /ex(ew(w_') — LEN)ea (") — 1€ )k(n U AN (€),

2
r‘0
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where

+) — at P(z) _ 7 -y — o~ o(z) ’
Sulat) = exp(e / () ~1)dz), Byla”) = exp(e /( 1)de)
and

Mu(n) = By(a )ﬁ¢ Z B (@0 \2) By (z,n7)

zent

The rescaled operators EsmenG have for n € I‘(Q) the form

_ Z Z eaEw(m,&”*\:p)eaEd,(w,E*)

ECnxeet
ef¥(@—) _ 1 e efP(@—) _
xer (e e (e ) 6t

and on correlation functions L8 renk 1S given by

. Z GEELZ) (CE,T]+\:E) 65E¢(w»"7_)

16n+
ep(z—) _ ep(z—) _
« [ e (egl;ﬁ) ex <515> KU,

r3
S0)
w (o) £ ep(z) _
Byla™) Eggﬂexp( . R[ (e 1)dfc),
(o) — [ o) _
Bs(a™) Sup e | = R[ (e 1)dx
and
Na(n) = By(0h)83(07) 32 ePrlen™\ehuten),
zent
Taking the limit € — 0 we obtain
T ) = -3 3 ex@la — Jin \e)ea(@(e — )i \E)G(E)
ECnzeg—
and
@R == 3 [extble = e e(6le — )€ MMUODE),
;CE?7+F(2)

so NY (n) = exp(e®’ (1) +e* (¢))|n*]. Finally we sce that the kinetic descrip-
tion is given by

0P () — b () o0 (@) 07 @) OPE (o
001 (2) = ~pt (@)e QB
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Example 16. Let us look at the model with fecundity including interactions
with both types of cells. The Markov generator is given by

(LF)(7) = Y e Pelen e Pulrain) /a+(ﬂf —y)(F(y"Uy,y") = F(v))dy,

zeyt Rd

where Ey, Fy are given by the same expressions as in the previous example.
In such case the operator on quasi-observables is given by

(LE)m) = Y e el e Puleti)
ECnzeet
X /a’(w - y)e,\(e_‘z’(””_') - 1;77_\5_)6/\(6_7’0(35_’) _ 1;77+\£+)
Rd

X (G(EN\z Uy, &)+ G(EM Uy, 7))dy

and on correlation functions by

(LAk)(n) = Z //a(ﬂc —y)k(nué\y U xk—m(w,n’)e—Ew(z,,,Jr\y)

y€n+rg R4
xex(e” ) — 1,67 Jea(e V) — 1;,67)dwd A ()
+ Z Z a(z — y)e Ben )e=Eulwn\)
zent yent\z
. / k(U &\yex(e ™) = 1€ )ea(e ™) — 1;¢H)dN3(6).

2
1—‘0

Hence M, can be chosen as

Ma(n) = Bu(a®)Bs(a”) D /a(l’ — y)er e Felmn e Eu(rn ) g

yENtRa

n e*‘ﬁﬁw(aﬂﬂqa(of) Z Z a(x — y)eff%(ym’)eﬂ‘fu)(y,n*\y)7

zent yent\z
where By(a™) = exp(eo‘+ Ja- e_w(z))dUC) and By(a”) = eXP(eOF S -
R4 R
1
e“i’(w))dx). Rescaling a — €a, ¢ — ¢, ¥ — &1, putting - in front of the

generator and renormalizing, we arrive at

~

(LerenG)(n)
) —ep(z—) _q
_ Z Z e_EEdJ(a:’g )e—€E¢($7£+\w) /a(x — y)e)\ <68;77_\§_)
ECnzeet R4

eIy + - + -
xex| "\ ) (GEN\e Uy, &7) +eG(E7 Uy, &7))dy
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and on correlation functions at

(LErenk) ()

= Z //a(x - y)k(T} U g\y @] :L')e—EE(i,(_»L-’n*)e_EEw(w7n+\y)

yEn+Fng

—eplz—) _q —ep(z—) _q
(Y (T vt

9

+ g Z Z a(a: — y)eisE‘f’(yvni)eisz(yvn+\y)

zent yEnt\z

—ep(x—-) _ e—c¥(z—) _
X /k(nui\y)eA <€€1§§_> ex (517§+> d)\Q(f)-
r3

This yields
Na() = exp(e” () + ¢ () ((ac”) 1 +e" 3 Y ale—v)).
zent yent\z
Taking the limit € — 0, we arrive at
(LvG)m) = Z/ ex(=o(z —);n \¢7)
anI€§+Rd
xex(=(z =) \ENGEN\z Uy, §7)dy
and
(Lek)(n) = > a(z —y)k(nU\yU )
yenﬂ«{R[
x ex(=p(x —); €7 )ea(—(x —-); €7)dwdA* (€)
and hence NY (1) = exp(e® (V) + € ($))(a)|n*|. Thus the kinetic description

is given by

00 (1) — (ax ) (@)e- @D @@ OPL
W(fﬂ)—(a*m)( z)e W(l‘)—o-

Example 17. Another possibility is, where each —-cell creates a new +-cell
independent of all other cells. Such free branching is described by the formal
Markov generator

P = 3 [ale -G Uy - F)dy.
$€77Rd
On quasi-observables it is described via

T = Y [ ale -Gt Uy oy

wEW’Rd

+Z/ )G Uy, )dy

ren— R4
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and on correlation functions via

1) = 3 [ ale =kt Ve

YENTRa

+ ) ) al k(™ \y,n").

r€N~T yeENnT

Hence the functions M, = N, can be chosen as M, (n) = g=a+a” (a)|n™] +

—a® ST > alx —y). After scaling we arrive at
z€EN— yent

EvG)m = Y / a(z — y)Glr+ Uy, g \z)dy

TEN Rd

and

(L8R = 3 / oz — y)k(r \y, ™ Uz)da

y€n+Rd
so that MY (n) = e~ T (a)|n*|. Finally the kinetic description is given by

opf v Opr
P @) = (axpr)(a), L) =0,

Example 18. Let us investigate here the case of jumping particles. For sim-
plicity let us only consider the case of additive intensities, i.e.

(LR = Y Eq) / e(z — 9)(F(y\e Uy.y™) — F(7))dy,

zeyt Rd

where 0 < a € L'(R?) is symmetric. In such case the operator on quasi-
observables is given by

(LG)(n)
)3 S ae—w)6m) —(0) Y. Y ale —w)GHt, T \w)
zeENtT wen— zent wen—
3 S ae—w) / e( — 9)(Gr U\e,n~\w) + Gt U\e, ™ ))dy
zeENtT wen— R4

and on correlation functions by

(L2k)(n Z Z —{c) Z /a(ac —w)k(nT,n” Uw)dw

zeNt wen— wEn‘*’Rd
+ Z a(z —w)e(r — y)k(n\yUz,n~ Uw)dzdw
y6n+Rde

+ Y Y [ ofe—wiete — whlrt\g ),

yENT wENT pa
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thus M, = N, with

)Y D ale—w)+2Ac)a)e® [t + Y D (axe)(z —w).

zeNtT wen— zeNtT wen—

Scaling the potentials means a — a and after renormalization and limit tran-
sition € — 0 we arrive at

(LvG)(n © > > a G(nt,n™\w)

zeENT wen—
£ Y ale—w) / clw— 1) Uy\a.n)dy
zent wen— R4

and

@00 =) Y [ ale—w)ktrt o Uw)de
96677+]Rd

+ Z //a(x —w)e(r —y)k(nT\y Uz, n~ Uw)dzdw,
ye"erd Rd

so NY(n) = 2(c){a)e* |n*|. Therefore the kinetic description is given by
dops _ _ dpy
T (@) = (ex (@ p))pD)(@) = (@ax o) @)/ (@), (@) =0.

Let us now look at interactions, where it is allowed to change the type of
cells. We will only investigate the change from + to — cells, whereas the other
case can be obtained, by simply exchanging all + with — and vice versa.

Example 19. In the simplest case, the intensity to change from + to — is
constant, here ¢ > 0. In such case the Markov generator has the form

F)(v)=q Y (F(y"\z,v~ Uz) - F(v)).

It is not difficult to see, that in this case the operator on quasi-observables will
have the form

(L&) () = —alnt1G) +¢ Y G \z,n~ Uxz)

zent

and on correlation functions it will be given by

(L2k)(n) = —=aIn* k() + ¢ > k(n* Uz, n~\x),

reENT
s0 Mo(n) = Na(n) = NY(n) = qln™| + ge* =@ |n~|. Since on scaling is

necessary here, we immediately obtain the kinetic description

Ay o+ p; o+
W(x) = —qp; (z), W(ﬂc) = qp; (7).
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Example 20. Let us consider density dependent changes of types, where the
intensity depends on the same type of particles, in such case the Markov gen-
erator is given by

(LF)() = Y El@,y")(F(M\e,7~ Uz) - F(7)).
zevyt
The generator on quasi-observables is given by

(LG)(m) = —B( -> Y a G "\y,n")

zent yent\z

+> > a G \e\y,n~ Ux)

zent yent\z

—|—Z Z G(nt\z,n~ Ux)

zent yEnt\z
where E(nT) = Y Y a(z —y). Similarly we can compute the operator

zent yent\z
for correlation functions and obtain

(LAR) () = —B(r)Gm) — 3 / a(z — y)k(r* Uy, )dy

r€n+Rd
—|—Z/ k(nt Uz Uy, \z)dy
ren~ Rd
+ 2 > alz =yt U0 \e),
zen~ yent

which implies M, = N, given by

Ma(n) = BGrt) + e @l + e = (@)~ | +e* 7 3 3 a(e -
zen~ yent

Scaling @ — €a and renormalizing we arrive at

Lv&m=-> > a G \y,n™)

zent yent\z

+Y. Y a G(n"\z\y,n~ Uz)

zent yent\z
and

@R ==Y [ ate -yt Uy )y

m€n+Rd

+ Y [ate =kt Ue Uy o,
TEN Rd

so NY (1) = e (a)|n*| + €2 == (a)|n~|. Therefore the kinetic description is
given by

. )
O (1) = —pf @)ar 5 o), P (@) = pf (@) ) )
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Example 21. In this case the intensity to change the type dependent on the
collection of cells of different type, here the Markov generator has the form

= Y E(x,y ) (F(yN\z,v~ Uz) — F(y)).
zeyt
Some computations yield

-3 S a@-y»Gm -3 Y a@ - y)Gtoy\y)

zent yen=

zent yen-
+ ) al G(n™\a,n~ Uz\y)
zent yen~
£ Y a6 U
ze€nt yen=

and

2R = Y Y ale -kt = Y [ ale =kt uydy

zent yen~

1€n+Rd
+Z/ k(nT Uz, n~ Uy\z)dy
TEN R4

+Y > a k(i Uy,n\y).

zENT yEN~\z
This yields M, = N, with
o at — at—a~
m= > > ale—y)+e* (a)nt+e (a)ln”|+e >
rent yen— zENT yeEN\x

Scaling a — ea and renormalizing we obtain

LvG)m) == > al G n~\y)

zent yen~

+ > > al G(n\z,n~ Uz\y)

zent yen~

and

(AR = - 3 / oz — )k, Uy)dy

I67+Rd

+ Y [ale ikt va Uy,
TEN Rd
so NY (1) = e (a)|nT| + e (a)|n~|. Finally the kinetic equation is given by

. )
L () = —pf @)ar pi o), (@) = pf (@)(a s i ) ()
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Example 22. Let us take here exponential decaying intensities for changing
the type. More precisely the Markov generator is given by

(LF)(3) = Y e Beler e Betaa NI (P (3@~ U) = F(3)),

zevyt

The operator on quasi-observables is given by

=) Y e e PN (G \r 6 V) - G(9)

ECnzett
xex(e ) — LT\ Jea(e VT — L AeY)

and on correlation functions by

(L2K)(n)
— Z 67E¢(:E,’I7_\I) 67E7J1 (z177+)

xren—

X / ex(e7? ) — e )en(e ) — LeNk(nT UL Ua,n” UE \2)dN?(€)

_ Z e~ Eo(xn™) =By (z,n"\2)

zent

x / ex(e @) — L )er(e 0 — 1P )k(n U E)AN (),

g

which implies

Ma(n) _ a —a~ ﬂw Z efEd,(a:,n 7E¢(z,77_\a:)
xren—
+ By (a™) By Z e~ Bu(@n™\a) o= Eg(zn7)
zent
with
By(a) =exp (ea+ /(1 - e_w(x))dx), Be(a™) exp(e(f /(1 - e_¢(x))dx).
Rd Rd

Scaling ¢,v — ¢, 1) and renormalize we obtain

(LerenG) () =Y 3 esBo@e ) emeBue@t ) (G(e M\, €7 U ) — G(€))

§Cnacet

675425(9:7') — ]_ _ _ e*&"(/l(zf) _ 1
co (e o (T e
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and
(Lﬁrm1k>0n
— Z e—sEd}(m,n*\r)e—sE,¢(m,n+)
ren—
—ep(z—) _q —ep(z—) _ 1
[ (T o ()
€ €
r3
X k(T UET Uz, n™ U \a2)dA ()
_ Z e~ Bs(z:n7) g—eBy (z.n*\x)
zent
e—e¢@—) 1 e—¥(@—) _ 1
X /e)\ (675 ) ex <€;£+ k(nuf)d)\2(£)
rg
so that

+

No () = exp(e®” (1) + € (8))(e™ = I~ |+ In*]) = NY ().

In the limit € — 0 we arrive at

(EVG)(U)
=3 (GEN\x, & Ur) = G©))ea(—d(x —)in \E )ea(=v(x — );nT\ET)

ECnxeet

and

(Lyk)(n)
= /ex(—aﬁ(x — ;€ )ea(=y(x —); €Nk UET Ur, T UE \2)dN?(€)

renfl—‘g

> / ex(—(a — )€ )er(—tbla — ) ENk(n U AN (E)

:CE?7+F3
and hence the kinetic description is given by

dp/

5 (z) = — +(z)ef(¢*p[)(w)ef(w*p§’)(x) %(I) — pj(x)ef(w;)(m)ef(w*p?)(z)_
t )

Py at

5.1 Cell-death model

Let us start with the analysis of the first model stated in the context of two-
component systems, the heuristic Markov generator is given by, c.f. (23),

(LF)(v",77) = (AF)(v",7y7) + (BF) (v 77 ) + (VE)(v",v7).
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The first operator A is the Contact Model for usual cells and has the form

(LomF) vy ) =mo > (F(y"\&,y~ Uz) = F(v*,77))

+A Y /a(w—y)(F(7+Uym‘)—F(vﬂv‘))dy.
1€W+Rd

The operator B describes the evolution of — cells, which can only disappear
from the system, so it has the simple form

(BF)(v",v™) =m Z (V"7 \e) = F(y",97).

The last part describes the interaction of both types and is assumed to be of
the form

(VE)y vy ) =2 ) Z F(y"N\z,y~Uz) = F(y",y7)).

The intensities mg, m1, A, A~ are strictly positive and the potentials 0 < a, ¢ €
Ll(Rd) are symmetric and normalized to 1. In [9] the general form of L =

A+ B+V was computed for G € Bys(T3). In this special case we get

(AG)(*.n7) = —moln*|G" ™) +mo Y Gly\w,n~ Ua)

zent
+A Y /a(:ﬂ—y)G(W\ny,n‘)dy
m€n+Rd
+A Z/ )G(n" Uy, n7)dy
z€n+Rd

for the first part
(BG)(n™" ™) = —maln”|G(n*,n7)
for the second part, and finally

V&)t ) =AY Z GOr\e,n~ Uz\y) — Gt 07 \y))
+AT Y Z Gi\w,n~ Ux) = Gn",n7)),

Let us first realize this operator on the Banach space B,,.

Lemma 5.1. The corresponding function My = M2 + MPB 4+ MY is given by

MAG n7) = (mo+ ¢ = me + Nt + 2" 3 S

zent yent\z
MB(mt ™) =maln”|
— — (0 at) — — at—a~
MY (" n7) = A7 (e |nt[+e In )+ A"e >y

zeEN~ yeEN~\z
+ A7 Z Z oz —

zentT yen~

If a,p € L®(RY), then L € L(By,By) for any o < .
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Proof. Let G € D(M,), then clearly A\G,B\G € B, so we will only check
VG € B,, which follows from

/Z S ol@ = IGmH\a,n~ Ua\y)le 17 eI laxmt )

rz vEnt yen-

Tta~ - aTnt| a”n” -
* ///w(fc—y)lG(n+,n Ua)le® " e I ldzdydA(nT,n7)

r2 R Re
— ot _ + ) It e In | + -
=e /Z /cp(fﬂ YIG T 7 )le I e I ldyd A (™, ™)
rz *E€N Rd
+ _ _ _
= et [ b6 N

r3
and

/Z S el —IGH \e,n~ U)le 1T eI lan(mt,y7)

rz v€nt yen-

—e [ Y / oz — 9)|Glrt,~ Uz)e I

r2 YEN Rd

/Z ST ela—yIGHT e T e I g,

1“(2) rzen— yen—\z

+‘ea7

I ldzdA(nt,n7)

The contributions from the negative parts can be dealt in the same way and
the estimate for ||L||aa/ can be shown like in the one-component case. O

Again the computation of the operator L® was done for a more general
case in [9] which shows that for |k(n)| < |n|!C!"! for some C' > 0 the operator
A = A2 4+ B2 + VA is given by

(A2E) (" ,n7) = —moln Ikt 07 )+ D k(T Ua,n\2)
ren~

+)\Z/ k(n™\zUy,n " )dy

$EW+Rd

+AY D> a k(M \z,n7)

zent yent\z

and

(Bk)(n".n™) = —maln” [k(n",n7)|
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and
VARt ) =2 Y /w(w —yk(n™ Ua,n” Uy\a)dy
TEN Rd

—A" Y [ ele =gkt n” Uy)dy

r€n+Rd

+ A" Z Z k(ntuax,n\r)

z€NT yeEn~\z

=AY D ela—yk(tn).

zent yen-

As before (43) can be used to realize L on B,

Scaling

For scaling let us scale the potentials a, ¢ to ea and €y, then the renormalized
operator will have the form L rcp, = Ly + eC given by

(LyG) (™ n7) = —moln |Gt ™) — maln™ |Gt n7)
+ > G\ Ux)+ A Y [ alz —y)Gnt\z Uy)dy

rent zEn*Rd
+ )Y e G(n\z,n~ Uz\y) — G(n",n"\y))
zent yen=

and
=2y /a(a: —y)G(n" Uy,n7)dy

AT o Gn\z,n~ Uz) — G, n7))

z€nt yen=

Therefore the function the function Ny, is given by M. Concerning convergence
of the generators we obtain the following.

Theorem 5.2. For each G € D(N,)
LeyenG = LyG, &0
in By. If a,o € L®(RY), then for all o < «
IZeren = Lvllaar = 0, €0

holds.
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The dual operators can be simply computed and are given by:

(LR (™ ™) = —moly |k(n*n™) = maln” [k(n*,07) + Y k(" Uz,n™\z)

ren—
A Y [ ate— gk \e Uy )y
$€n+Rd
+AT Y /w(m —yk(nT Uz,n” Uy\z)dy
TEN R4
- A7 /w(m —y)k(nt,n~ Uy)dy
96677+Rd

and

(k) )==A" Y > ol k(n",n7)

zeENtT yeEn~

+AT YD e —yk(nt ua,n\a)
FAD D ale—yk\z, ).

zent yent\z
If a,p € L=(R?), then

|2, en — LY lara — 0, € — 0.

g, ren

Let us finally compute Ley(pT)ex(p™) and derive from this the kinetic de-
scription.

(Lyex(pea(p™)) (T n7)

= > [ el@—y)pt @) WealpTsnMealp 0 \2)

TEN Rd

-y / oz — Yot @er(pt s\ (wea(o™ 1)
r€n+Rd

— > mopt(@ex(pin \w)ea(pTin )

- Z map” (@)ex(p”sn \y)ea(pin™T)

+ ) A/a(ﬂf*y)P*(y)dyeA(pﬂn*\w)ex(p*;n’)
w€n+ Rd

+ Y mopt(@ex(ptintea(pTin " \a)
ren—
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and thus the system of equations for pj~ and p; is given by, c.f. (24)

655 () = —map; (x) + pi (z) (0 * p; )(x) + mop] ()
35; (z) = —(mo + (¢ * p; ) (@) p] (z) + (a* p; ) ()

5.2 Go-or-grow models
First model

Here the first model is given by L = Loar 4+ Luop + V, where Loy is given by

(LemF) (v, y7) =m Z Ty \e) = F(y' 7))
Sy / oz — y)(F(r+,7~ Uz) — Pyt )dy
mE’Y’Rd

and is describing the proliferation of the —-cells. The density independent
intensity of death is given by m > 0 and the proliferation intensity by A > 0.
The kernel 0 < a € L'(R?) is again symmetric and normalized to 1. The motion
of the moving +-cells is described by

(LnopE) (v =d Z +\x 7)== F(v" 7))
+ Y [ ew—y)(FOyN\eUy,y7) = F(y",97))dy.
JJE’Y"'Rd

Here we included also density independent mortality of the moving cells with
intensity d > 0. The microscopic behaviour to change from one type (state) to
another is given by

VE) (v ) =g Y (FOy"\a,y" Uy) = F(v",77))

+ Y |p+ D -y | (FOy Uz \2) - F(y"y7).
zEYT yey~\=

The operator for quasi-observables L= EC M+ E;wp +Vis given by, c.f. [9]

V&) =q > (G \e,n~ Uz) = Gy ,n7))
+p Y (Gt v, \x) = G(ntn))

+ Y. > ela—y) (Gt uzn \2\y) - Gnt,n\y))

r€NT yeEN~\z

+ 3 Y el -y GO Uz \e) = Gt )

z€NT yeEN~\z
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and
(Lnop@) ('t m7) = =dln* |Gy ,n7)
+ Y [ ele =@ty ) - Gt ).

37677+]Rd

The expression for Zc ar is similar to those before and is given by

(LomG)(ntn™) = —mln~ |Gt )+ A Y /a(w — )Gt n\z Uy)dy
xen*Rd

+AZ/ )G(nT,n~ Uy)dy.

ren— Rd

Lemma 5.3. The function M, = MSM + M"™P + MY is given by

MY () = (mA+ N[+ xe” S Y

TENT TENT\Y
M"P(n*,n7) = (d+2(c)|n*|
MY (" 07) = Intl(g +pe ~0T 4 e 70T ()
+ I + q + (e)

FY Y sl Y Y

zEN~ yeEn"\z zent yen~

+

If a,p € L=(R?) then Le L(By,By) for any o < a.

Proof. We will only compute the function MY for three terms, the rest can be
done in the same way.

S 3 wle—yIGHt ue g \a\y)le® e At )
rz T€n” yen- \z
= / / / oz — )Gt Ua,n)le e Il dzdydA(nt, n7)
I'2 Rd Rd
_ 20 —at + (et it ] + -
—e > @ —yIGnt,n7)le* M e I ldyda(m*, g )

Fz Rd zent

o —a ofr + o |nT —
& /|n+||Gn e I eI LAt )

and

ST wla—pIGET a\ple T e lan (T )

Fg zeN~ yen—\z
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= [ [ o=t o uale e dadyan )

2 Re R4

= e /Z /@(mfy)IG(nﬂn*)|ea+|n+\ea—|n‘\dyd)\z(w’n,)

rz *€n Ra

<e (o) [T lGu e e I lax )

3

and, finally,

/Z S ple—IGHt Uz \x)|e T e AT, g )

r2 €N yen” \z

—e [ Y / oz — |G Ua,y e

F2 yen_Rd

et e /Z 37 wlw—)IGet e T e lann T, 7). O

r2 zent yen~

+\€a_

T ldad\2 ()

Next we easily see that
(Livopk) (0 507) = =dln ™ [k(n* ™)
+ 30 [ elw =)t \e L) = K )dy
xEﬂ+Rd
and

VARt ™) = Y k" Ua,n \ae) =gl Ikt n)
ren—

+p Yk M\e,n” V) —pln” [k(rTn7)

zent

—I—Z/ k(n™\z,n~ Uz Uy)dy

1677+Rd

+ZZ k(n™\z,n~ Ux)

zent yen=

-y /w(w — k(™. Uy)dy

JEETI’Rd

-3 > k(n™,n7).

zEN~ yEN~\z

Again under the conditions a, ¢ € L°°(R?) this expression can be well-defined
as an element of L(B*

*,,B) with the same norm estimate as ||L||qq/-
In previous section the kinetic description for each term contained in L was

derived, so let us give only a short outline how it works in this particular case.
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Since the jumping part is free, c.f. ¢ = 0 = @ from previous section, the
operator Ly, will not change after renormalization. So let us scale the potential
i by ep. This will lead to the renormalized operator

(Veren@ 0 n7) =a Y (G \e,n™ Uz) = G(n*,n7))

zent

+p Y (Gt Ua,n\e) = GnT,n7))

TeN~"

+ Y > ela—y(Gntuzn\x\y) - Gnt,n\y))

z€N~ yeEn~\z

+ed Y pa—y(GHntuzn\z)-Gnt,n))

z€NT yeEN~\z
and thus we get.

Theorem 5.4. For each G € D(M,,) we have EevmnG € B, and
EwenG — EVG, e—0

in By, where Ev - A+ Ehop + f/\v s a superposition of the limiting part for
the contact model, the operator Ly, and

W&t n ) =q Y (GH\z,n~ Uz) — Gt y7))

zent
+p Y (Gt U, \&) = GnT,n7))
+Y Y e (G Uz, \z\y) — G0 \y)).

zEN~ yEn~\z
Assume a, € L™, then for all o' < «
||L5,ren - LV”ao/ — O, e —0.

and A was given above.

The same result holds for correlation function operators with

V2Rt n) =q Y k(T U, \x) —qlntk(nt,n7)

reEN™
=p > k(p\a,n~ Uz) = pln~ k(nT,n7)
zent
+Z/ Yk \z,n” Uz Uy)dy
$€ﬂ+Rd

- Z/ k(™™ Uy)dy.

xen" R4
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Let us now compute (Viex(p)ex(p™))(n*,n~). This is given by

(Vvealp +> ( Nt n)
=q Z p(@)ex(ptinexlp™in \x)

—q Y pr@exptin \w)ealp in")

+p Y p (@ex(pin ealptin™\x)

—p Z p™(@ex(p™in \x)ex(p™5m )

+ ) ealptint\a) ex(p’;n’)p’(x)/w(x*y)p’(y)dy
zent Rd

=Y eptint ex(p‘;n‘)p‘(ff)/w(w—y)p‘(y)dy
renT R4

and hence the kinetic description is given by

O @) = =0 4+ (@) + (e p7)a) 450 (0) (@) 1) 0
%(””) =—(m+p)p~(z) + Ma*p~) (@) — p~ (2) (0% p7)(x) + qp™ (2).

Second model

Now let us investigate the second model. Here L = Loar + Lpop + V- with the
operator V' = V; + V; slightly changed to

V() =g 3 exp(, ORICES’ ) (FOr ey~ Ug) — 7))
£ (ot 2 pla— ) )(F(* Uy \a) = F(r* 7)),
zEYT yeY~\z

and therefore the rate of changing from + to — cells is also density dependent.
Clearly all results except these concerning V; still hold true, so let us only
investigate this part. The expression for quasi-observables is given by
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Lemma 5.5. The function M, is given by My = MSM + M"eP + MY | where
MEM and M"°P are given as in the Cell-death model and
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If p,a € L®(R%), then L € L(By,By) for all o < a.
Proof. This follows from
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Since 1 is non-negative we can skip the terms containing ¢ in the definition
of the domain, i.e. if MY = MY* + qMY2, then

D(M,)={GeB, : M"*G,M{MG,M)'G €B,},
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where Mx;h ., contains the terms for switching — to + cells and V5 corresponds
to the switching of + to — cells. The operator for correlation functions is

(VQAk)(nJ’_’ 77_)
oot rtm e
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= Y e e ) S Lk UEIAE):
zeNt To

The scaling a, p,1 — £a,ep,e9) leads to the new renormalized expression for
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and thus to the limiting hierarchical operator
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Theorem 5.6. Assume 1 € L'(R?) N L2(RY), then for all G € D(M,,) such
that > Y WY(z—y)Ge€By and Y. > Y(r—y)G € B, the convergence
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Integrating over I'Z with respect to eIt lga’ T InTIq )2 (n*,n™) we obtain for
the part containing G(n™\z,&~ Ux)
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Similar estimations for the parts containing G(n™,£7) show together with
above computations the first part of the assertion. The second part follows
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The operator for correlation function is changed only at the new operator
V2 and the rescaled version has the form
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Again if a, o, € L>(R%), then the convergence

IL2, 0, — L3 lara = 0, €—0

e,ren

holds. Computing V; vex(pT)ex(p™) one sees that the equations for the local
densities will have the prescribed form (18),(19).

Last two models

Here the changes of types are density independent, i.e. ¢ = ¥ = 0, but the
proliferation is changed either to density dependent mortality or to density
dependent birth. Both models were analysed in the one-component case. Since
the changes of types are prescribed by constant intensities they do not influence
the construction of an evolution and only contribute by additional terms in the
kinetic description. It is not difficult to combine all results and derive from
them the corresponding kinetic description stated before.
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SHORT HISTORY OF STOCK MARKETS AND
STOCHASTIC FINANCES

Yu. Mishura

Abstract. This text will be published as a part of the Introduction to the
book Financial mathematics, 1st Edition, ISTE PRESS, Elsevier, 2016.

Financial markets are sometimes identified with stock markets; sometimes
they are differentiated with the view that on the financial markets we can trade
only securities and on the stock market we can trade other values, such as real
estate, property and currency. The stock market is also called stock exchange.
A stock exchange is a market for different kinds of securities, including stocks,
bonds, shares as well as payment documents. As for the randomness, the
situation is such that the prices in the financial market, more specifically, on the
stock exchange, are affected by many external factors that cannot be predicted
in advance and cannot be controlled completely. This is mainly a consequence
of economic circumstances, for example, of the state of the world economy and
of the local economy, production levels in some sectors, and the balance between
supply and demand. It may be the weather and climate factors affecting, for
example, a certain type of agricultural products, or it may be the activities of
large exchange speculators. Since stock prices at any given time are random,
over time they accordingly become random processes. Of course, the same
situation occurred even in those days when exchange existed, but the theory of
random processes has not yet been established. Recall that the Chicago Stock
Exchange began operating 21 March 1882.

As for the theory of random processes, curiously enough, its founder was
not a mathematician but botanist Robert Brown, who in 1827 discovered under
a microscope the process of chaotic motion of flower pollen in water. The na-
ture of this phenomenon remained unclear for long time, and only in the late
19th—early 20th Century it was realized that it is one of the manifestations of
the thermal motion of atoms and molecules, and to explore this phenomenon
we need methods of probability theory. Appropriate random process was even-
tually called the Brownian motion, and then Wiener process, according to the
name of the famous mathematician Norbert Wiener who not only constructed
integral with respect to this process but also wrote hundreds of articles on
probability theory and mathematical statistics, Fourier series and integrals,
potential theory, number theory and generalized harmonic analysis. He is also
called the “father of cybernetics” for his book “Cybernetics: or Control and
Communication in the Animal and the Machine” [1], first published in 1948.

IFaculty of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv.
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He helped to develop a system of air defense of the USA. Note that the initial
framework for the analysis of randomness in the change in stock prices was
established by French mathematician and economist Louis Bachelier, who in
1900 in his doctoral thesis “Théorie de la spéculation” [2] made the attempt
to describe the stock price by means of stochastic process S = S, ¢ > 0 with
the increments AS; = Sy ay — S¢ of order V/At, in some probabilistic sense.
Such a process is a prototype of the Wiener process but the Bachelier’s model
had a crucial disadvantage: the prices in this model could be negative. In fact,
Bachelier’s model can be described as Sy = Sy+ ut+oWy, where W is a Wiener
process. Nevertheless, Bachelier’s discovery of the “effect of At” in fluctuations
of the value of shares under a large number of economic factors and due to the
central limit theorem became later the key point in the construction of the gen-
eral theory of random diffusion processes. Although for some time Bachelier’s
works had been forgotten, after many years they were rightly remembered and
highly appreciated, and now the main representative congresses on financial
mathematics are named World Congresses of the Bachelier Finance Society.
At the beginning, the mathematical study of the Brownian motion (Wiener
process) was produced in the papers of physicists, namely Albert Einstein and
Marian Smoluchowski, and then it was widely studied by mathematicians, in-
cluding Norbert Wiener.

A very interesting person in economic theory and, to some extent, in
financial mathematics is Russian mathematician Leonid Kantorovich, a spe-
cialist in functional analysis. In 1938, he provided advice to plywood plant
how to use their machines in the most effective way to minimize the waste of
plywood. Over time, Kantorovich realized that such very particular problem
can be generalized to the problem of maximization of the linear form depending
on many variables and containing a large number of restrictions that have the
form of linear equalities and inequalities. He also realized that the enormous
number of economic issues can be reduced to the solution of such problems. In
1939, Kantorovich published the paper “Mathematical Methods of Organizing
and Planning Production” [3], describing the problems of the economy that
can be solved by his method and thus laid the foundation of mathematical
programming. His contribution directly into financial mathematics is that he
found such an interesting coincidence: the best prices, including the prices of
financial assets, are at the same time the prices supplying market equilibrium.
Then his conclusions were obtained independently by US economists, and in
1975 he received the Nobel Prize in economics together with Tjalling C. Koop-
mans “for their contribution to the theory of optimal allocation of resources”.

Financial mathematics has received a new impetus for development in
1965, when at the initiative of mathematician and economist Leonard Sav-
age, who “rediscovered” Bachelier’s work, American economist Paul Samuel-
son, who would also subsequently become the winner of the Nobel Prize in
economics, has suggested to describe share prices with the help of geometric
Brownian motion Sy = Soe*“feawf"’21‘//27 whose advantage is to be non-negative
and even strictly positive with probability 1 [4]. Over time, the model of ge-
ometric Brownian motion was substantially generalized. In particular, we can
consider jump-diffusion process or Levy process, that is homogeneous process
with independent increments, or semimartingale, instead of the Wiener process.
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Finally, in 1968, there was a significant economic and financial event:
the prices of gold and other precious metals were “released”. The history
of this issue is as follows: from 1933 to 1976, the official price of gold was
under control of the Department of the Treasury of the United States federal
government. Now it is managed, in a certain sense, by the London Stock
Exchange. In 1944, the price of gold was at the level of 35 USD per troy
ounce (31.1034768 g) and from time to time increased or decreased under the
influence of the devaluation of the dollar, world crises or wars. The price of gold
increased due to the increasing of the demand for gold as a raw material for
production of electronics and radio-technics, the jewelry industry, medicine and
other purposes. But often the price of gold grew as the result of speculative
transactions on the stock exchange and as the result of the creation of the
highly liquid assets by central banks of different countries. In 1961, Western
Europe countries created a “golden pool”, which included central banks of the
UK, Germany, France, Italy, Belgium, The Netherlands, Switzerland and the
Bank of New York. This pool was created in order to stabilize the world prices
for gold, but in 1968, after the devaluation of the British pound, UK spent
3,000 tons of gold to regulate interior prices for gold, and after this the gold
pool collapsed. From that time, the price of gold is determined by the market,
i.e., by the demand and the supply.

Free gold prices led to additional random components in the financial
markets, and the stochastic finance theory started to develop very intensively
both as a theoretical science and as a tool for the daily management of bank-
ing and stock exchange activities. An additional factor that contributed to
its development was the opening of the first stock exchange in 1973 on which
option contracts were traded. In the same year, two works that led to the
revolution in financial calculations of option prices were published. It was
the paper of Fischer Black and Myron Scholes, “The Pricing of Options and
Corporate Liabilities” [5], and the paper of Robert Merton, “Theory of Ra-
tional Option Pricing” [6]. In October 1997, R. Merton (Harvard University)
and M. Scholes (Stanford University) were awarded the Nobel Prize in eco-
nomics. (F. Black died in 1995, and the Nobel Foundation awards prizes only
to living scientists). Briefly, the Black-Scholes formula evaluates “fair” option
price. The Black-Scholes-Merton model is very useful in making investment
decisions, but principally does not guarantee profit without risk. Conceptually,
the Black-Scholes formula can be explained as follows: the option price equals
the expected future asset price minus the expected cash price, or as the differ-
ence of two binary options: an asset-or-nothing call minus a cash-or-nothing
call. The concept of fair price is based on the concept of arbitrage-free market.
We should pay attention to the point that the real market can be modeled in
various ways, and its properties will be different in different models. For exam-
ple, the same market can be modeled as complete and incomplete, but the only
way to determine which model suits the best is to verify them in practice. Typ-
ically, the construction of several models of the market and the consideration
of several trading strategies are expensive problems, and the art of a finan-
cial analyst consists, in particular, of choosing the correct model. Note also
that the models constructed for financial mathematics are not situated aside
all other science and practice. Indeed, they are used in biology, weather fore-
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casting, climatology and the study of changes in the mobile electrical circuits
communication because the processes in these fields very often have the same
features.

The description of modern financial models is based both on the theory
of random processes and stochastic analysis (theory of martingales, stochastic
integration, Itd formula, Girsanov’s theorem, theory of stochastic differential
equations, martingale representations and elements of Malliavin calculus) and
on basic facts of functional analysis (topological, Banach and Hilbert spaces,
linear functionals, Hahn-Banach theorem etc.).
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Abstract. This paper is dedicated to the memory of the late Gléria Cravo
who first invited me to discuss these issues at the “Conversas da dentro e
de fora” of the Universidade da Madeira, in 2014.

Democracy

Democracy — the rule by the people — was invented more than 2000 years ago
to organize the social life of communities scattered around the Mediterranean,
typically much smaller than present day Switzerland. Life then was dominated
by the rhythm of celestial bodies: time was measured in terms of years, seasons,
months — not much would happen in a day.

When industrialization began to change the world and civil society was
born, democracy was reborn with her, and was later contemplated by Winston
Churchill?, saying “Many forms of Government have been tried, and will be
tried in this world of sin and woe. No one pretends that democracy is perfect
or all-wise. Indeed, it has been said that democracy is the worst form of
Government except for all those other forms that have been tried from time
to time.” Remarkably the first two sentences are quoted much less frequently
than the last.

And in fact, nowadays any doubt about the superior quality of democratic
government is considered politically unacceptable.

How did the world look 200 years ago when democracy began to spread
through Europe in the wake of the French revolution?

Vast, endless, with open space to conquer and to explore or to get lost in,
white, uncharted areas were abundant on the world maps. News of an Asian
earthquake or tsunami would arrive at our shores many months after the event
had happened and would be no more than an item of curiosity without much
further effect on our lives.

Now, 200 years later, democratic rule has not only taken hold in most of
the developed world but has acquired the status of an ethical postulate. It is
considered as an essential attribute of superior social organization and serves
to “justify” military intervention such as e.g. in the 2nd Iraq war.

And how does our world look now?

1BiBoS, Univ. Bielefeld, Germany; CCM, Univ. da Madeira, Portugal; Physics Dept.,
MSU-IIT, lligan, The Philippines. streit@uma.pt
2Speech in the House of Commons, 11 November 1947.
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Invented for those small city states of ancient Greece, democracy now has
to face the challenges of the “global village” where news travel around the globe
in fractions of a second, where events are tightly connected all over the world
and effects can spread with lightning speed, and where for example the effect
of a tsunami in Japan was able within days to impact the national German
energy production portfolio in a profound way from which it has not recovered
yet.

How did this happen? What innovation had the most important impact
in shaping this world we live in today?

The advent of the PC

On August 12, 1981, IBM rolled out its first “Personal Computer”; digital
computing entered the offices and living rooms. Mainframe computers had
been around much earlier, they were born in the forties as a twin of the atom
bomb. It is the global availability of PC power that made the difference. It
made us all see and do things we would not have imagined earlier.

As an example there is the famous Mandelbrot fractal. As we zoom into
its finer and finer details, and so on ad infinitum there appears a beautiful
dream world of forms and colors. A complex structure indeed. My point here
is: the mathematical formula behind it had been catching dust for a hundred
years or so, but until the PC came, nobody had the slightest idea of the complex
pattern that lay behind it'.

Richard Feynman, one of the greatest minds of 20*" century physics, once
said that we lack an intuition for nonlinear phenomena and that perhaps the
emergence of such an intwition might mark a new intellectual awakening of
mankind.

This “new awakening” sounds like science fiction, something out of Kubrick’s
film “Space Odyssey 2001”. Kubrick’s film from 1968 was speculating that by
2001, a computer would attempt to get the upper hand over us. The takeover
has not happened yet, but we do feel the impact?. Even kids to-day have
seen the Mandelbrot fractal somewhere or another, and terms from complex
systems such as the famous “butterfly effect”, have become buzzwords in the
socio-economics discourse.

The end of reductionism

What is this impact of omnipresent computing power?

For two millennia, scientific problems had to be drastically simplified be-
fore being “understood”. The dynamics of protons and neutrons is too hard to
handle? OK, so let us describe them by a bunch of harmonic oscillators because
those are simple enough to deal with. In physics, but as well in other disciplines
such as e.g. economics, simplifications and massive complexity reductions were

1Hear Benoit Mandelbrot himself about the wonders of this computer-based break-
through: http://www.ted.com/talks/benoit\_mandelbrot\_fractals\_the\_art\_of\
_roughness/transcript?language=en\#t-586141

2A dramatic acccount by one who is considered “the father of virtual reality technology”
can be found in J. Lanier: “You Are Not a Gadget.” Knopf, NY, 2010.
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all over the place. In particular collective behavior was often beyond the reach
of reliable modeling

Now, with our exponentially growing computing power, complex systems,
and in particular the collective behavior of large systems can be studied, and
the intuition which Feynman called a New Awakening, is rapidly developing.
The tools were there at the dawn of the new millennium, the time was right.

But the computer not only changed our understanding of the world, it
has changed our own world, dramatically.

With millions of PCs linked in the Web, our cultural, economic and social
world has become a closely connected global network.

Information flies at almost the speed of light. The effect of local disasters
or interventions is felt almost instantaneously around the world.

As one of the consequences, Asian workers are now in a very direct com-
petition with their colleagues in the Americas or Europe, the work force has
been globalized, and employers go for the cheapest offer worldwide. In the
Manila metropolitan region alone , there are more than one million employees
working in call-centers for American, Australian and other companies and even
universities.

All of this has become an incredible complex socio-economic system, with
enormous risks of sudden global destabilization.

What is Complexity?

As an example let us have a look at the Malthusian growth of populations. In
this model the new population is assumed to be proportional to the size of the
previous generation,

Pn+1:f'Pn7

where f is the fertility rate (Malthus model, 1798), and whenever the fertility f
is larger than one, the population will grow; in fact it then grows exponentially.

But the real world is more complex: the effect of competition is felt when
populations become big and can be described by

Poi1=f-P,—c- P

The new population is proportional to the size of the previous one, minus
the effect of competition for limited resources, encoded in the parameter c.

Clear, isn’t it? Now we expect that the population will saturate at a
limiting size, before the quadratic second term becomes too big..

But this is not all that can happen. There can also be oscillations and
even chaos as time progresses from one generation to the next.

We should note here two important features of our model:

1. All these scenarios can occur if one varies the fertility rate f or competition
¢ just very slightly! In this sense the evolution of populations becomes
practically unpredictable since we can never be sure of those parameters
with the necessary precision to exclude one or the other scenario.

2. Even if the formula itself is extremely simple, its less obvious consequences
were only readily available in the age of the PC.
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Fig. 1: Three Scenarios: Saturation, Oscillations, Chaos

What then is Complexity?

A concept of such generality necessarily has several definitions. They will be
context dependent, but not only. In the context of computation for example,
complexity may mean a very complex computer program, or one that takes a
long time to run, or one that uses a lot of memory, or one that is simple in all
these respects but produces surprising results, like our population model.

For our purposes, we may just characterize complex systems by two prop-
erties:

1. Their evolution is difficult to predict. Weather and climate are well known
examples of this difficulty.

2. It is equally difficult to predict their reaction to even small variations or

interventions (“The Butterfly Effect”)!.

Consequences

Crucially important is the lesson that — all the way from the micro-economic,
business level to the macroeconomic level of national and international policy

I This practical unpredictability does not invalidate quantitative mathematical modeling.
Such models, while not furnishing specific predictions, will display, and alert for, possible
types of evolution and outcomes of interventions. As J. Gleick writes: “...a new generation
of scientists has come along. ... They know that a complex, dynamical system can get freaky.
They know, when it does that, that you can still look it in the eye and take its measure.”
J. Gleick: “Chaos: Making a New Science”. Revised edition, Penguin 2008.
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making — planning and strategies have to be continuously readjusted to coun-
teract the surprises of the butterfly effect and of random exterior influences.

According to Lenin, the whole national economy should be organized on
the lines of the postal service.

In practical Soviet terms, this meant governance through centralized plans,
based on an equilibrium model of the economy. The result is well known. When
East Germany was irreversibly bankrupt, the Berlin Wall fell and the commu-
nist bloc crumbled.

In a modern highly complex economy, long term planning must clearly
be replaced by continuous monitoring and feedback loops. The — admittedly
rather sophisticated — techniques to compensate random disturbances on the
fly go back to Cold War technologies, they were invented under the name of
optimal control or dynamic programming, mainly to keep ICBMs on target
during their flight so that they would surely hit New York or Moscow in spite
of any in-flight perturbations. Economists and more generally people from the
humanities tend to be allergic to the notion of control theory — it sounds
too repressive to their tender ears. But now economists have discovered a
nice new label, that of “adaptive management”, it is the same thing, and now
increasingly popular, a new buzzword in economics.

Acceleration

Of course the problems of socio-economic complexity have been extremely ag-
gravated by globalization and acceleration. While economic news used to need
months to travel around the globe before the advent of steamships, information
now flies around the globe with the velocity of light, and hectic reactions are a
potential source of serious instability

As an example, financial transaction strategies with the potential to pro-
duce crises of a global dimension take place in milliseconds, powered by com-
puter algorithms, without the possibility of adequate human intervention. There
have been instances where a large scale financial crash was only avoided by lit-
erally pulling the plug of those computers at the New York stock exchange.

Clouds on the Horizon

Like with other revolutionary inventions there is a definite dark side to our
exponentially increasing computing and data-handling power.

Paradoxically the net and digital data-handling have produced a new kind
of reductionism: to see this, compare the rich and manifold traditional meaning
of the word friendship with its reduction to a mouse click in the Facebook world,
or the rich and unique spectrum of a Stradivari violin with its reduction under
MP3.

Then there is the loss of privacy and freedom of choice: You “pay” for
the web with the loss of your privacy, and the web then defines your identity.
Google et al. will decide what you will want to see, what to know, what to
buy.

And we have to be concerned with a cyberspace beyond the reach of the
law. Google and Microsoft were reported to be planning to move activities to
the “off-shore”.
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Larry Page!, co-founder of Google, said in 2013:

“There’s many, many exciting and important things you could do that
you just can’t do because they’re illegal ...we should have some safe places
where we can try out some new things and figure out what is the effect on
society, what’s the effect on people...”

Democracy — Rule by the People?

The democratic decision-making process requires:

e Transparency of the issues

e Transparency of, and confidence in the effectiveness of the strategies avail-
able

e Enough time to present and discuss these issues and strategies, and often
to test their legal issues in court

e On the other hand, nowadays, an adaptive political management is needed,
responding quickly and promptly to unexpected threats and challenges

e We lack sufficient regulatory capacity to deal with banks “too big to fail”,
to deal with an economy that does not know borders and evades national
laws.

We have to cope with the anti-intuitive behavior of complex systems: they
are highly non-linear — double in will not produce double out. Raising a tax
may produce less instead of more tax revenue because business moves to other
markets. Modifications in the health care system may produce utterly unfore-
seeable effects, and so on and so forth everywhere in government. Politicians
will cite their favorite experts, but even experts are at a loss for reliable predic-
tions, To handle the financial crisis competently the German government had
to resort to the advice of Germany’s leading banker Joseph Ackermann. This
was admittedly a blatant case of conflict of interest, but government simply did
not have the necessary competence to understand the problems and necessities
and to arrive at an independent judgment. In 2009, time of the global banking
crisis, the German economics minister asked a cabinet of specialized lawyers to
draft a law concerning the administration of ailing banks. Criticized for giving
this task to a law firm with important ties to international banking and the
ensuing risk of conflict of interest, he protested that the ministry itself simply
did not have the expertise to handle this highly complex matter.

In view of present-day complexity and acceleration, it is no surprise that
the lifespan of regulations become shorter and shorter before they need to be
rewritten?.

LQuoted from the Open Letter of M. Doepfner to Google’s Eric Schmidt, https://www.
axelspringer.de/d1/433625/LetterMathiasDoepfnerEricSchmidt.pdf

2For more on the causes of legislative acceleration see e.g. J.-C. Michéa: The Realm of
Lesser Evil. Polity Press, Cambridge UK, 2009.
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Complexity, Acceleration, Globalization — Some of the
Challenges

The list is long — Demography, social disparity, public debt, sustainable energy,
ecology, protection of privacy, terrorism, massive immigration, ...

These are undoubtedly giant questions, touching upon the determinants
of society, — and even the man in the street begins to sense the incapacities of
the democratic political system.

A Closer Look at Some Recent Issues

After the collapse of the Lehman Brothers investment bank in New York, an
ultra-fast and high intensity dialogue between governments and central banks
was needed to prevent a global collapse of the financial system.

Then there was the crisis of public debt: bankruptcy of Greece and other
countries was avoided through loans and guarantees from richer EU countries.
These allocations amounted to a significant fraction of their national budgets.

Most recently, Europe is literally overwhelmed with a seemingly uncon-
trollable wave of immigration.

In all these cases parliaments were — at best — informed by the executive
that the situation was far from transparent, but large financial commitments
were without alternative, and were so urgent there was no time for any proper
discussion on them.

Very complex and dramatic issues, and parliaments are told that there is
no time to discuss them at any length.

It should be recalled that the authority over the national budget, about
how to allocate taxpayer money, is the central and most important privilege of
Parliaments. Or was it...?

Post-Democracy

No wonder that the public feels at a loss with regard to the big political ques-
tions. Low voter turnout is the consequence.

Colin Crouch! observes “...Even if elections take place and continue to
influence governments, the electoral debate is a tightly controlled show, rival
groups led by experienced professionals in the techniques of persuasion practice
on a limited number of questions selected from these groups. The mass of
citizens plays a passive, acquiescent, even apathetic role, merely reacting to
the signals it receives. Apart from the spectacle of the election campaign,
policy is decided in private by the integration between elected governments
and elites...”. 2

One just has to look at the propaganda before elections. The enormous
gap between the complexity of the current problems, and the extreme simplicity
of the “slogans” of political parties highlights the helplessness of the political
class to communicate properly with the electorate, and effectively dissuades
the people from exercising its democratic right of voting.

1Colin Crouch: Post-Democracy. Polity Press, Cambridge 2004.
2For more on this see also Jiirgen Habermas: in “Critique et communication: les taches
de la philosophie”. Esprit 2015/8, p. 40-54.
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Public reactions to this disillusionment of the electorate tend to be polit-
ically correct: characteristically, the ensuing discussion focuses almost entirely
on somehow keeping democracy going by working on the symptoms. The Sec-
retary General of Germany’s oldest and most venerable political party recently
proposed to locate polling stations in shopping malls or big railway stations
and to keep them open for a week to revive voting interest, instead of facing
the delicate question whether the democratic process in its present form might
be fundamentally inadequate.

Democracy — Two Imperfect Alternatives

There is Singapore with no natural resources, and a delicate balance between
three ethnic groups of very different cultures — Chinese, Malay, and Indian.

Rising from great poverty and massive unemployment it is now one of
the richest societies in the world, with very low crime rate and corruption,
reasonable human rights, but with a very limited political participation.

Then there is China, often cited for human rights deficits, and with ex-
tremely low political participation, but quickly becoming an industrial super-
power, global, financial and military, feared by its neighbors of becoming the
bully in the region, but also with an impressive record in eliminating poverty.
An 88% drop of the number of people living in poverty within the 23 years
from 1978 to 2001' shows how China is winning the war against poverty, and
thus the approval and gratitude of many.

These two models cannot and should not be copied. But it would also
be a big mistake not to study them carefully with regard to their important
successes.

Summarizing: Questions, Doubts, and Challenges

The most important feature of democracy, the one that is essential to be main-
tained and protected especially in troubled times, is of course its control of the
political process. The problem we need to address here when we look at our
role as voters is threefold:

1. Ex ante control is insufficient in view of Complexity, which entails in-
transparence of the issues and unpredictability of outcomes.

2. Ex post control often comes much too late in view of Acceleration.

3. Both have limited impact because of the transnational nature of many
issues due to Globalization.

Can the democratic process effectively deal with increasingly important
issues which are — at best — understood only by a small group of experts,
taking into account that they occur so fast that there is no time to consult
the legislative, much less the electorate, and that they require a considerable
amount of continuous adaptive management and imprevisible, ad hoc govern-
ment intervention?

1See e.g. M. Jacques: “When China Rules the World” Penguin, NY, 2009, p. 162



Or else:

Is it advisable — or is it possibly too risky — to seek and study possible
adaptations or alternatives of the democratic process as we know it?

What could be these modifications? How can they ensure quality of the
governmental system and civic control of its performance? What do you think?

Acknowledgements: My thanks go to my late colleague Gléria Cravo, Fun-
chal, for her encouragement, and to Josef Frohlich, Vienna, for his stimulating
suggestions and “question marks”.
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«3-3A TIOJII XUTTCA...»

I10. 1. Marun

Ot pemakumn: IOpuit liBanoBuy MaHuH OJUH M3 CaMbIX U3BECTHBIX CO-
BPEMEHHBIX MaTeMaTUKOB, wieH.-kopp. PAH, umen Koposesckoii akaze-
vun Hayk Hupepnammos, @paniysckoil akageMun Hayk, AMEpPHUKAHCKON
aKaJeMUU UCKYCCTBA M HAYKH, HOoUeTHbIH JOKTOP COpOOHHBI, YHUBEPCUTE-
ta Ocno, lerrunrena... o 2005 r. gupekrop Wucruryra Makca [lnamnka
B Bonne, ¢ 2005 r. 3aciy2kennbiii npodeccop Uucruryra Makca Ilnanka.

XapaKTepHOIl 0COOEHHOCTBIO Hay4dHOU aesTesibHOCTH [Opusi VBano-
Bu4Ya MaHHHA sIBJISIETCSI aKTUBHBIM MHTEPEC K HOBEHIINM OTKPBITHSAM B
maremaruke u dpusuke. Cdepa ero HayIHBIX UHTEPECOB MIUPOKa: ajarebpa-
UYecKasi reOMeTpHsi, TUO(DAHTOBLl YPABHEHUS, HHTEIPUPYEMbIE CHCTEMBI,
KBAHTOBbBIE CTPYHBI, TEOPUS BBIYUCITUMOCTH. ..

Cpenu nocienaux pabor FO.M. Manuna paboTsl B 06/1aCTH KOCMOJIO-
IUU B COABTOPCTBE C HMTAJIbSHCKUM MaremarukoM Maruiabnoit Mapkos-
mu — «Big Bang, Blow Up and Modular Curves: Algebraic Geometry
in Cosmology» u «Symbolic Dynamics, Modular Curves and Bianchi IX
Cosmologies».

B cBoeit pa6ore «Time between Real and Imaginary: What geometries
describe Universe near Big Bang?» IOpuit Manun numer: «Kocmosorus
HMMeeT CBOE COOCTBEHHOE, HCKIIIOUUTEIHHOE MECTO B HAYTHOM IIO3HAHUM, Ta-
KYIO 2Ke IIOJIE3HOCTD JIJIsl TIOHUMaHus BeeneHHol umeroT dbunocodus, mos-
3us, Bepay. Pumocodusi, ICUXOIOrUs, MOIBUI TAK 2KE SBJIAIOTCH chepaMu
unrepeca IOpus Manuna. 3aecy cienyer ynoMsiHyThb ero KHury «Mare-
maTuka Kak Meradopar, B KOTOPYIO BOILIA «HEMATEMATUIECKUE» TEKCThI
¥ [093WM, HAINCAHHBIE 32 MHOIHE IOAbl. B mpeaucioBum K 9TOH KHUTH
FOpuit Manun numer: «Maremarnka, TpeKpacHOE PEMECIO, KOTOPBIM s
3aHIMAIOCh BCIO YKU3Hb, CJIY?KHT 37E€Chb HE TOJIbKO IIOBOJOM JIsI HEMaTe-
MaTHYECKUX PA3MBIIIJIEHUN, HO 1 MeTadOPOl YeJI0BEUECKOro CyIIeCTBOBA-
uus. He caenyer nonnmars a1y dppasy szorepudecku. MareMaTnkoB Majo
B KasKJ[OM IIOKOJIEHU!, ¥ OHM OBIIAIOTCS YacTO HAJ FOJIOBAMYU COBPEMEHHM-
KOB ¥ 9epe3 MPOIIEIINe NeCATUIIETHS] U CTOJIETHUS, KAK ITO JEJIAIOT IIOJTHI,
MY3BbIKAHTBI, PUIOCODBI».

Huke MBI 3HAKOMUM YUTATENEH C PAIOM CTUXOB U MOITUIECKUX MTE€PE-
BogoB IOpus Manuna, 310 dumocodCcKie pa3MbIIIICHIS O YKU3HA U CMep-
TH, O YeJIOBEeKe B beckpaiineir Bcenennoii.

KoMmMenTapuu K CTEXaM U IOITHYECKHUM IIEPEBOIAM — aBTODPA.

IMax Planck Institute for Mathematics, Bonn, Germany. manin@mpim-bonn.mpg.de
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ITamaTu Nocuoea BPOJICKOTO

W3-3a mosist Xurrca na 6eper Ctukca

Bribupatnesi, Tepsist OCTaTKU CMBICTA,

Ja u rosoca, cJiOBHO GeJIbMO Ha IJIOTKE,

Tak uTo He JOKpUYATHCs TpedIla U JIOIKU,

Han Bosioit, Hajt KOTOpPOIt elle cBeTieeT

Craburit cser. [Tocrenenno u oH ciabeer,

Iloromy 4TO, mOZIparuBasi, yIJIBIBAET C CETYATKA HA JTHO
30J10TO TIsITAK, MEIHBIA 0001, IATHO...

KsanToBoe nmose Xurrca — mpuvnna, 1o KOTOpoi B paHHeil Bcemenmnoit
M3HAYATHHO 0€3MACCOBBIE IaCTHUIIBI TpuoOpesn Maccy. B pesysbrare Jmroaun cie-
JIaHBI HE U3 CBeTa, KaK aHIeJIbl, & U3 TsKeJiofl Marepun. BeimyMmka Tpex HOOe-
JIEBCKUX JIayPeaToB, SKBUBAJIEHT IIEPBOPOJ/IHOIO I'DeXa.

«Ha ceTuarke Moeit — 30710T0i IATaK. XBaTUT HA BCIO JJINHY IOTEMOK» —
[I0CJIE/[HIE JIBe CTPOKN JiBeHaaToi Pumckoit sierun Bposckoro.

FO. M.

HpOCTpaHCTBO— BpeMd KaK JIUarno3

Mexpebeprast HOCTATBLIHS:
TOCKA 110 BPEMEHU, KOTJIa

s1 TOCKOBAJI 10 TIPOCTPAHCTBY.
IIpocTpanCcTBO OBLIO 3AKPHITO.
Ceituac

IIPOCTPAHCTBO OTKPBLIOCH, HO OYTH 3aKPBLIOCH

BpeMsl.



«H3-3a noas Xueeca...» 103

s Anbdpena Bpengens

Ammyuku

Ilepes Bosbimum B3psisom

OBLIM B OCHOBHOM BBIJBUXKHBIE SITITUIKI
Mup no Bosibmoro BapreiBa

HEe CUMTasi HECKOJIBKUX IMAaPUKOB

COCTOSIJT U3 SIIIITIKOB

B AIMNYIKaX IIOMeIlaJICsa

MUJIJIMOH C JIUIITHUM CBETOBBIX JIET

a OOJIbITIe POBHO HUYErO

Tlorom pu HEBBICHEHHBIX OOCTOSATEIHCTBAX
ATMUIKA

Me/J[JIEHHO HO BEPHO

CTaJIi HAIIOJIHSIThCS JTUHAMUTOM

Mup nepen, Boabmum Bapsisom

OBLI B OOJIBIIIOM TIOPSIIKE

Ilo Bpemenam f1azke CJIBIIIAJICS Y€H-TO CMeX

Ansdpen Bpensiens — 3HaMEHUTHIN MUAHUCT, POAUMBINUiCA B ABcTpun,
wbiHe xuBynwii B Jlongone. OmyOInKoOBaI HECKOJIBKO KHUT CTHXOB, O KOTOPBIX
roBoput: «Bce 3T0 npucHMIIOCH MHE TI0-HEMEIKH, IOTOMY YTO CHBI MHE CHSATCH
IIO-HEMEIIKA, U MHOTHE CTUXU 3a4YMHAJIUCH B TOM COCTOSTHUU MEXKJy CHOM WU
SIBBIO, TJI€ CMBICJI CJIUBAETCS C OEC-CMBICIHEM U MOPSIIIOK C Xa0COM>.
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W3 Hypca I'pronbaitua.

TTAPHK. DUioOPUS

Apurmust cepana npu B3rsige Ha Horp-Zlawm...
Ha nogaoce Curs ocraBuir 6esiblit ckeserT
JIOTIOTOITHON PBHIOLI

HEBEJIOMBIIT MITP-11
qepabix CpeHuX BEKOB U JIET.
Bsrusin mbiBeT. 3anpoKuHyTas roJIoBa
KPYKUThCsl BMecTe ¢ [lapukem, BjIleKOMa OCbIO,
IPOXOJISAIEH CKBO3b OKO moprasia. Hebo, simcrBa —
Bce mpo3padno. OceHb,
nessitoe okTsibpst. Komokoma Cen-/lenn
ciaBaT Biaxkennoro. Bo3nyx mosion 6/1a:Ke€HCTB:
YUCT, TPO3padeH, 3BEHUT, 3BOH VILIBIBAET B 3€HUT,
KaXK/bIil MUT' — COBEPIIEHHDLINA KeCT.
TTapux riryboko germut. B JliokcemOyprekom camy
HaJ| TPaBoil u mebHeM BeTep HbsAHUT, KAK HAPKOTHUK.
Hu oxmoit cBobomHOM ckaMeiiku HET Ha BUIY.
Cerka yJuI| pacTsiHyTa B IIOIKOPKE.
Kak mpekpacho Bce npexogsinee. Bee, aTo ¢ jmia
MUPO3IaHbs UCIE3HET, KOTJIa NCIE3HENb Thl, OPEHHBI.
Ot Bousbmioro B3peiBa 10 TBOEro KoHia
KPY2KUTCA BaJbC CO CJ€30i1

Bceemnennoii.
Sakpyx)uck u Thl. [Io OybBapam, rjie depeoi
GbIAaHUPYIOT SKCIATPU/IBI, M3THAHHUKHU, SMUTPAHTHI.
Y OyKUHUCTOB BIOXHU HaJ BOIOI
apoOMaT HEPACKPBITHIX 38 COTHU JIET (POTHAHTOB.

Hypc I'prorbaitn oquH U3 caMbIX M3BECTHBIX COBPEMEHHBIX TTOTOB U TIe-
pesomuukoB l'epmanuu, pommics 9 oxkrsops 1962 r. B [pesnene. Ilpuexan B
[Tapmx u3 ['JIP u 6bu1 nopakeH OTKPBITHEM HOBOI BCEJIEHHON KakK M ¢, KOIJIa

npuexaJn Brepsbie B [Tapuxk B 1967 1.
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13 lN'anca-Marnyca DHiieHcbepra

HAVYHA4A TEOJIOTUS

BepositHo, oH JUIb OJUH U3 MHOTHX.
Wmorma ycraer,

rjla3a B pa3Hble CTOPOHBI. PaboTka — He IIPUBEIH...
Bcee st Hecuernbie monbiTku... Hy ja,
B IIPUHIIATIE OH BCE3HAFOII,

HO Be/Ib HET HUKAKON BO3MOXKHOCTHU
BCe BpeMs BXOJUTL BO BCE JIETAJIH.
Temuas maTepust

HUKAK HE KEeJIAeT CBETUTHCS.
Marpurna paccesiHust

TOJIbKO PaCCENBAET BHUMAHUE.

Hac muoro, a on oauH.

IIpoxoauT BEeIHOCTD,

U BOT OH CHMMAET IIpo0y.

B orpomubix riazax

oTpaxkaeTcs Bcs Halra Bcesermrast.

A nHac yxe Her.

7Kann. MoxkeT ObITh — B 9YHCTO HAYIHOM ILJIaHE —
MBI OBbI €0 3aMHTEPECOBAJIH.

Bce ke noBunka.

Hy, ckoponoprsmasics,

3a IPYTUMU e IaMu

7 HE 3aMETHUIIb.

Dror Bor nac mpocrair.

Tlanc-Maruyc DuieHCOEprep HEMENKUN MOIT, MUCATEb, TEPEBOTINK. Po-
muicst B 1929 r. B BaBapun.
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Iuckyciitamit kn1y6 o  Discussion Club

KocMoiorud KAK CUHTE3
PEJIUT'NN, ®NJIOCODPUN 1 HAVKU

H. B. Kondpamuvesa

¢ nmoutararo, 4TO KocMosIOrusl — camasi OIU3Kas K pesiu-
rUU HAyKa.

Ioav Jlupax

(U3 duckyccuu ¢ xapourarom Xoporcem Jlememponm,

npeaudermom Ilancroti Axademuu Hayx)

Bce 6yzner B pykax OyayInux JIIofeil, — BCe HayKHU, THIIO-
Te3bl, BEPOBAHMS, TEXHUKA, TEJIENIATUSI. . . © HUIeM OyIy-
1ee 3HaHWe He CTaHeT nmpeHebperarsb, Kak IpeHedperaemM
MBI — JAHHBIME BEPBI, TBOPEHUSMHU (PUIIOCOPOB, IHCa~
Tejiell U yYEeHBbIX APEBHOCTH, haKTaMu, HAOIIOJCHUIMU.
Haxxe Bepa B Ilepyna u Ta npuromurcsi. I ona 6yner
Hy>KHa [IJIsI CO3JaHUsI UCTUHHON KApPTUHBI MUPA.

K. 3. IJuoakxosckui

BBenenmne

CeroJiHst MBI SIBJISIEMCSI CBUJETEJSIMA HEOBIBAJIOIO B HMCTOPHUM YEJIOBEYECTBA
HAyIHO-TEXHUYIECKOro mporpecca. Eie ¢To marhaecsaT JeT Ha3a CKOPOCTH, J10-
CTYIIHBIE Y€JIOBEYECTBY, OIPEIEISIINCH HATMIAEM KOJIECA U JIOMAJeH, n Kape-
Ta OIpeie/isiia CKOPOCTh PaCIpOCTPaHeHust MH(POPMAIUK. A CTO JIeT Ha3aJ
y2ke ObLI Tesierpad, TejaedoH, aBTOMOOUIbL U JIEKTpuYecKas Jjamiodka. Ce-
TOJIHST JIFOJI pabOTaIOT B KOCMOCe, HHTEPHET M3MEHUJI HAIlle MPEICTABIEHHE O
MIPOCTPAHCTBE, CKOPOCTh YKU3HU KAK KOJMYECTBO COOBITHI B €IMHUILY BpEMe-
HU PE3KO BO3POCJIA M HAIe NPEJICTABIEHUE O KU3HU Ha IJIAHETE U B KOCMOCE
OGBICTPO MeHsieTCsl. BoJIbIloe 3HAYeHNEe B HAIIEM HOBOM TOHMMAHUU KOCMUYe-
CKHX IIPOIECCOB UMEET KOCMOJIOTHSI.

Kocmoimorust — 310 Hayka o Bceemennoit. YesoBeduecTBO MOXKET UCCIIE]IO-
BaTh BCEJIEHHYIO ¢ HOMOIIBIO TEJECKOIOB (OINTUYECKUX, HEHTPUHHDBIX, Pajuo-
U uHOPAKPACHBIX,...), 3aIyIIEHHBIX C 3eMJId KOCMUYECKUX AallllapaToB, ¢ I0-
MOIIBIO PA3JNIHBIX COBPEMEHHBIX NpubopoB. [103ToOMy, KOCMOIOTHSI — YacTh
pU3UKYT 1 aCTPOHOMUM. B CBOMX TEOPETUYECKUX MOCTPOCHUSAX KOCMOJIOTHS sIB-
JISIETCSl 9aCThI0O MAaTEeMaTUKU M TeopeTudecKkoii ¢pusuku. Hayunas kocmosorus

1nkondr24@gmail .com

106



Kocmonozun wax cunwmes peaueuu, purocopuu u nayxu 107

poammack B Havdase XX Beka. /1o 3Toro KocMosorus ObLia IpeIMeTOM PeIUTUi,
dumocodun n nmoszun. IloB3pocies, MmareMaTnka, PU3NKA, XUMHUS TTOCIUTAIN
cebsl He3aBUCUMBIMU OT CXOJIACTUKHU, ACTPOJIOTUU, AJIXUMHUK U JIPYTUX CPeJIHe-
BEKOBBIX HAyK; BCE, 9TO HeJIb3sl OBbLJIO M3MEPUTh U IIPOBEPUTH, HE CUUTAJIOCH
HayJIHBIM, PEJUTHO3HbIE BepOBaHus U (HUIOCOMDCKUE U HE SIBJISUINCH HAy Y-
HBIMU apryMeHTaMu.

PaszpeiB mex ity penurueit u HayKO# MPOU3OIIES O MHOIUM MPUIHHAM.
3ama/iHasl EPKOBb C PAHHEXPUCTUAHCKUX BPEMEH OTCTAWBAJIA CBOIO JIOKTPUHY
o TBopiie, KOTOPBII BCe TOPOAMJI, BCE BUJINUT U Bcex cyauT. llepkoBb Gosiiack
ACTPOHOMUYECKUX UCCJIEIOBAHNI, T. K. €€ JIOKTPUHA ObLITa JIOTHIHOMN I 3eMIn
KakK eIUHCTBEHHOTO W IJIABHOIO IEHTPa MHPa, HO 3Ta JOKTPUHA HOIBEPTJIACh
OBl COMHEHUIO B CJIydae, ecjau Obl 3eMJisi OKa3aJ1ach Obl MAJEHBKON IJIAHETON
B oHOI u3 Gecuncsennbix CoJiHeYHBIX cucTeM. Bpsia jiu 661 B Takoil Beesien-
HOHM KTO-TO OBl 3aHMMAJICSI KOHKPETHBIM YEJIOBEKOM, — TaM YK€ JTOJIZKEH ObLI
JeficTBOBAThH 3aKOH. 3aKOH KaK CMBICJIOBOE siIpO BceleHHoi, B COOTBETCBUH C
KOTOPBIM BO3MOXKHO TIO3HATH CBsI3U Beero. VIHKBu3uIms craBusia 6apbep MewK Iy
penurueit u Haykoit. I[lo3ke paspbiBy MeKIy peurueil m HayKo# crocoOCTBO-
BaJIO pacrpocTpaHenne rpyboro Marepuain3mMa, 9To B CBOIO OYePE/b TPUBEJIO
K ITaJ[eHII0 MOPAJIbHBIX IIPUHIIAIIOB U MCIIOJIb30BAHUIO HAYYHBIX JOCTHXKEHUN B
KOPBICTHBIX T[JIX, ITPOTUBOPEUAIINX TEJISIM Y€ T0OBEYECKOM SBOJIIOIUN.

O/ 1HAKO TOJTHOrO OTCTPAHEHUSI HAYKH OT «HEHAYYHOTO» HUKOTIA HE MpOo-
WUCXOJIUJIO W B TIOCJIE/IHEE BpeMsi Bce OOJIbIe B3aMMHOTO WHTEPECa BO3HUKAET
MEXKJIy IpEJCTABUTEISIMA HAyKH, peJurun u duiocodpuu. 1o 00yCIOBICHO
TeM, YTO HOBbIE HayYHbIE OTKPBITHUSI, C OJHON CTOPOHBI, BCE JYallle TIOATBEepPKIa-
0T PUI0COPCKO-PEIUTHO3HBIE YTBEPXKIEHUsI, C IPYroil CTOPOHBI, BJIUSIIOT Ha
WX Pa3BUTHE.

Mozxuo 6B110 OBI IpenmnonokuTh, 9T0 B CoBerckom Coroze, crpaHe mmo-
OeIMBIIEr0 MaTepUAIN3Ma, MAPKCUCTCKO-JIEHUHCKOM (butocodun, cTpane, rie
pPeIUrusl CYUTAJIACH YE€M-TO BPOJE <«OIMMyMa il HApOjay, BeJyIIUe ydeHbIe
JIOJIZKHBI ObLIN OBl HE JAyMaTh O eIUHCTBe pejuruu, dpumocodpun n Hayku. Ho,
[MOYEeMy-TO, UMEHHO CaMble U3BECTHBIE COBETCKUE YUEHBbIE, OCTABUIN HAM CBOU
MBICJTH 00 9TOM €JIMHCTBE.

Axanemuk A.Jl. Caxapos (busuk): «f me mory upexncrasurh cebe Bee-
JIEHHYIO U YeJIOBEYECKYIO XKU3HBb 6€3 KAKOT0-TO OCMBICIUBAIONIETO UX HAYAJIA,
0e3 UCTOYHMKA, JIYXOBHOI TEIIOTHI, JIEXKAIIero BHe MaTEPUHU U ee 3aKOHOB. Be-
POSITHO, TAKOE IyBCTBO MOXKHO Ha3BaTh PEJIUTHO3HBIM». «[jist Mmens Bor — ne
YOPABJISIIONIANA MUPOM, HE TBOPEI €ro 3aKOHOB, & IapaHT CMbICJa ObITHS —
CMBICJIa BOIIPEKH BUAUMOMY GECCMBICIHIO...» [1].

Axanemuk B.B. Paymen6ax (busuk, oqun u3 ocHosareseil KOCMOHABTHU-
kn): «Pesurnossoe nepexxusanue — 310 cdepa samormonansHoro. Ho cymectsy-
er BeJib U OOr0C/IOBUE, COBEPIIIEHHO JIOTUIECKOe ITOCTPOeHUE Haromobue (huiio-
coPCKUX CUCTEM — CyXOBATOE, CTPOrOe, KAK MaTeMATHKa; OHO JIEPYKUTCS Ha
sioruke... CyInecTBOBaHME JIOTUIECKU CTPOTrOTrO OOTOCTIOBHUS HAPSAY C TUIyOOKO
WHTUMHBIM DEJTUTUO3HBIM MTEPEKUBAHUEM M KPACOTa MATEMATHIECKIX JI0KAa3a-
TEJILCTB CBUJIETEILCTBYIOT, UTO HA CAMOM JIeJie PAa3pbIBa HET, YTO €CTh IeJIOCT-
HOe BOCIIPHUATHE MUpay [2].

Axagemuk A.Jl. Anekcanapos (MaTeMaTuk): u3 aprorpada cBoeobpasHo-
ro cobcrBennoro «EBanrenmss: «He rosopro Bam — BepyiiTe cieno, a ycTpem-
JISTATECh K TIOHUMAHUIO TOTO, YTO €CTh W KaK OHO €CTh, U HE CTaBbTE BIIEPEIN
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Toro npemxybexxaenns csou. V160 B TOM, 9TO €CTh M KaK OHO €CTh IPEMYIPOCTH
Tlocrioftis, a B mpey0eKIeHNIX TBOUX — TOJBKO TBOsI. TaK Kak Ke ThI TOCTa~
BuIib cebst Boie [ocrona.» [3].

Axanemuk B.J. Bepuasckuii (eCTECTBOUCIBITATE b, OCHOBATEIL GUOTEO-
XMMUAK), U3 JHEBHUKOBBIX 3ammceil: «$ cumraio cebs rirybOKO DPEeJUrHO3HBIM
qesioBekoM. Mory o4eHb MIybOKO TIOHUMATD 3HAYEHHUE U CHJIY PEJIMTHO3HBIX UC-
KaHUil, PEJINTHO3HBIX JOTMATOB. Besmkast eHHOCTh PeIUTUU ISl MEHs sICHA,
HE TOJIbKO B TOM YTEIIEHUU B TSI?)KECTHAX YKU3HU, B KAKOM OHa YacTO OIlEHUBAa-
ercsi. 9 4yBCTBYIO ee Kak rirybodaiiliiee IposiBJIeHHE Y€JIOBEYECKO JIMIHOCTH.
Hwu uckyccrBo, Hu Hayka, Hu dbunocodus ee He 3aMEHAT, U 3TU IEJIOBEIECKUE
MepPEeXKUBAHUS €€ KACAIOTCS TeX CTOPOH, KOTOPBIE COCTABJISIOT ee yiea. A Mex-
JIy TeM JIjIsi MeHsl He HyKHa IePKOBb M He HyXKHA MoJuTBa. MHe He Hy>KHBI
cJ0Ba U 00pa3bl, KOTOPbIE OTBEYAIOT MOEMY DEJUTMO3HOMY TYBCTBY».

Axanemuk H.H. Moncees (Mexanuk, maremarnk) B riase «O Bore, du-
Jiocopun u HayKe» B cBomX Memyapax «Kak jajeko 10 3aBTpaIrHero JHs...»
numier: «$1 mymaro, 9To coueTaHue Bephbl B HEYTO BBICIIEE W CIIOCOOHOCTHU K Ha-
YYIHOMY TBOPYECTBY JEJIAT YeJIOBEKA MO-HACTOSIIEMY CUACTIIUBBIM... . 1 3HAJ
JIIOJIelt, KOTOPBIE YKUJIM IPEUMYIIECTBEHHO B MHUPEe YYBCTB U BEPBHI M BUJIEJI,
YTO OHM OBLJIM HEM3MEPHMO CUYACTJINBEE MEHs M BCeX TeX, KTO YKUJI B JIPYTOii,
HelepeceKaroleics maockocTu. U, mosTomy, Korma MHE OYeHb ILJIOXO, s MHOLIA,
MIPOU3HOIILY Ty KOITYHCTBEHHYIO MOJINTBY, KOTODPYIO IPUAYMAJ €Ie B PaHHEN
ronoctu: «locnomu, ecsin Toi ecTb, moMoru MHE yBepoBaTh B Tebs».

MOKHO IPOJIOJIZKUT TU MPUMEPDL.

Bor Heiorona, Bor Ditnmreiina, Bor BepHajickoro — y Kaxjaoro cpoit
Bor.

Y BuBekaHaHIBl OJHAXKBI CIPOCUJIN MOYEMY OH YIOTPEDJISIET yCTapeB-
mee caoBo «bors. Busekanamna orsermir: «Ilotomy, uTo B HEM cocpemoTode-
HBI BCE HAJIEXKIBI M CTPEMJIEHHUsI 9eIoBevdecTBa. HbIHe cTajio y:Ke HeBO3MOXKHO
U3MEHUTh 3TO CJIOBO. BHadaje 0OHO ObLIIO BHIKOBAHO BEJIMKUMU JyIIAMH, OIILy-
MIABIIMMYI €r0 CHJIy U IOHUMAaBIIUMU €ro 3HaYeHue. 3aTeM, [0 Mepe TOTO Kak
OHO 0OPAIAJIOCH B U€IOBEYECKOM OOIIECTBE MM OBJIAJIE/IA HEBEXKIBI U YHIUITO-
xKmm ero ayx... CinoBo «Bors ¢ HezamaMsaTHBIX BpeMeH ymOTPEOJIsiIOCh JJTst
Boipaxkerus: Kocmumaeckoro Pazyma u Bcero, 9ro ¢ HUM CBSI3BIBAJIA BEJIMKOTO
7 CBSITOTO..., OHO OBLIO CBSI3aHO C OECUMCIEHHBIM MHOYKECTBOM BEJINYIECTBEH-
HBIX U MOTYYHUX KJIeil, MUJIJIMOHBI Y€JIOBEYECKHUX JYIII OTOXKIECTBJISLIA €r0 CO
BCEM, UTO €CThb CAMOT'O BBICOKOI'O M CaMOIO JIydIllero, CO BCEM, UYTO PA3yMHO, CO
BCEM, 9TO JOCTONHO JIIOOBHU, CO BCEM, UTO €CTh T'€POMIECKOTO W BO3BBIIIIEHHOT'O
B U€JIOBEYECKOU MPUPOJIE...». [IOHITHE PETUIun TaK Ke He ABJISeTCS MOHATHEM
OTHO3HAYHBIM. MUPOBBIX PEIUTuil HECKOJIHKO U MX PETUTHO3HO-(riIocodckme
YYEHUsI OTJINYAI0TCS JIPYT OT JPyTa, OJJHAKO, B CBOUX BBICIIUX IIPOSIBJIEHUSX OHU
eJnHbI, — 9T0 no3HaHne bora. Bora kak Beicmeit crunbt, kKak 3aKOHOB MUPO-
amanusg, Cymuaocru (A6Gcomora), Jexkaiero B 0CHOBe Besikoro Opirust; Ceera, B
KOTOPOM KU3Hb BUIUTCS TAKON, KAKOBA OHA €CTh, ... VI MBI BUJIUM, YTO B CBOUX
Boicmmx mposiBIIEHUSIX 1€/ PEJTUTUNA U HAYKW COBITAJIAOT.

Kak poxgaiorcs u yMUPAIOT ILIAHETHI, 3BE3/(bl, TAJIAKTUKI; ITO 38 U3JLy-
YeHUsl POHU3BIBAIOT HAIY IUIAHETY, U YTO 33 «TEMHAsT» JHEPIHUsl 3aIlO0JIHSIET
Kocmoc; kKak «3achlliaeT» U «IIPOCHIIAeTCs» BcejleHHas W 9TO 3HAYUT «KaK Ha,
Hebe, Tak u na 3emite»? Kocmosiornn npuHa jiIe’kKuT BaXKHas POJIb B CO3MaHUU
HOBOII HAY4YHOI HapaJ urMbl.
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Hayky KocMOJIOruio TBOPSAT JIIOAM C UX JTOCTOMHCTBAME U HEJIOCTATKAMU,
ApaMaTUIeCKUMU COOBITHSMH >KU3HA U T'ePOMYECKON CaMOOTBEPKEHHOCTHIO,
MYYUTE/IbHBIME [T€PEKUBAHUSIMU U PAJIOCTbIO 1Mo3HaHus Beesennoii. Cerojusi,
KOT/Ia, PA3BUTHE HAYTHO-TEXHUIECKOTO MPOTPECCa CTPEMUTETHLHO TPOJIOIKAET-
cst, P YIeHBIX U (HutocodoB BUAAT HEOOXOINMOCTb B CHHTE3€ PEIUTMO3HO-
dunocodCcKnX U HAYIHBIX TEOPHil [jIs BHIPAOOTKH HOBOI'O MHUPOIOHUMAHUS,
Apyras 9acTb yYeHBIX IPOJOJIKAET PACCMATPUBATH HAYKY KAK HE3aBUCHUMYIO
or pequrun u dunocodpun chepy nozuanus. B momckax apryMeHTOB pro et
contra MbI oOpaIaeMcsi K OIBITY YYEHBIX, KOTOPbIE BHECU OOJIBIION BKJIAJ, B
KOCMOJIOTHIO, SIBJISISICh TIPU 3TOM (PUJIOCO(MAMUI UJIH PETUTHOSHBIMA JESATEJIs.

Enena baaBarckas u Pomxkep Ilenpoy3

B cienyiomem romy ucnosmures: 185 ser co mgust poxaenust Esrennr [leTpoBmbr
Brasarckoit. B /IHenponeTpoBcKe COXpAHUIICS JOM B KOTOPOM pojauiaach Eirena
ITerposHna, cerommus B Hem naxomutcs Myseit E.Il.BraBarckoit.

Cpenu yuennkos Ejennr [lerpoBHB! ObLIu 3HAMEHUTHIE yUEHBIE U U300Pe-
Tarean ee BpeMmenu. 3BecTHo, Tak ke, 4TO ocHOBHOI TPy BaaBarckoit «Taii-
nas Jloxkrpuras Obljaa HACTOJBHON KHHUTOUW AbOepra DHHIITEHHA, KOTOPBIA
BHEC 3HAYUTEJILHBIA BKJIAJ] B PA3BATHE HAYYIHON KOCMOJIOTHH.

«Tatinas /IokTpunay ObLIa HACTOJIBLKO HOBOM W TPYIHOM I MOHUMAS B
XIX Beke KHHUIOil, 9TO OY€Hb MaJjiO KTO YBHJIEJI B 9TOM TPY/E HJIEU, JaBaBIINAE
HEBUJIAHHBIN WMITYJIbC Pa3BUTHIO HAYKHU, U 3TO TPUIUHUJIO MHOTO CTPAIAHUN
aBTOPY ITOTO TPYIA.

B nepsom Tome «Taitnoii JJokTpunbi», KOTOPBIA HasbiBaeTcs «CuHTE3 pe-
qurun, dumocodbun n Hayku. Kocmoreness, Enena BraBarckas nsnoxmia dpu-
JIoCO(CKIE TIOJIOXKEHUsI JIPEBHENHTUNCKON PeJIurin, paHee HEU3BECTHBIE 3aI1a,1-
HOMY MUDPY, JIajia, KOMMEHTAPUH K HUM, PACCMOTPEJIa UX B KOHTEKCTE IPUHSITHIX
HAYYHBIX [TOJIOYKEHUII CBOEr0 BPEMEHM.

Kocmomorusa «Taitmnoit JIoKTpuHbBI» paccMaTpUBAET CYIIECTBOBAHNE TPEX
MupoB, — ABYX HENPOSIBJIEHHBIX M OJIHOTO IPOSIBJIEHHOIO, & TaKKe IIUKJIU-
YecKyI0 BeesleHHY0, — MOCJIe/I0BATEIbHO POXKJIAIOINLYOCH, TIPOSIBJISIIONLYIOCST U
YXOJSIIYIO OISITh B MHUMOCTh. B 5TOM TpyJe, BIIepBble, ObLIN JAHBI IIOIPO0-
HBIE OIMCAHUS ITPOIIECCOB IPEIIIECTBYIOMUX BOJIbITOMY B3PBIBY U CJIEIYOIINAX
3a HUM, KaK OHU OBbLIM MU3JI0YKEHBI B JPEBHUX WHINWCKAX KHUTAX, XPAHUBIITHIX-
¢ B TubeTckux MoHacThipsax. Cranrpl «Kuurn J[3man» roBopun Ha CBOEM
sa3biKe: «Bpemenu He ObLIO, OHO TIOKOUJIOCH B OECKOHEUHBIX HEIPaX MPOIOIAKI-
TesibHOCTH... Ejuna Thma HamosHsiia Gecripenenbaoe Bee, u6o Orer, MaTs u
Cein eme pa3 Obuin BoeauHo, u ChbIH He MPOOYIMIICS eIre Jjisi HOBOI'O KOJIeca
¥ CTPAHCTBUiI Ha HEM... BcejleHHast — HEOOXOIUMOCTHU CHIH — OBLIa MOTPYKe-
Ha B aDCOJIIOTHOE COBEPITIEHCTBO... [[pUYINHbBI CYIIEeCTBOBAHUS NCIE3IIN; ObIBIIIEE
BHUJIMMOE U CYII[ee HEBUINMOE [TOKOMJIOCH B BEYHOCTU HE-OBITHS — €UHOrO ObI-
Tust...» [4].

Enena BiaBarckast nucasa: «...IeHTpaJibHAsl TOYKA, U3 KOTOPOIl BCe BO3-
HUKaeT, BOKPYI' KOTOPOA U K KOTOPOH BCE TATOTeeT U Ha KOTOPOH BUCUT BCA
ee dunocodus, ectb BoxkecrBennast Cyocranrus — [Ipuanun, Exnrnas Havans-
nas [Ipuanna. ... Cy6eranmusa — [purmun cranoBurcst Cyberannueit Ha mra-
He mposiBiaeHHoit Beemennoii...». /lamee BaBarckasi nmuiieT o mepuoinaecKoM
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npossiennn Beemennoit, o Beeennoii B ee Tpex acmekTax: I[Ipe-cymecTByformmast,
3BOJIIOIIMOHUPYIomAas n3 Beuno cymecrByromeit, 1 PeHoMuHaIbHas, KAK OTPa-
JKEHUE TE€PBbIX.

«Bcenennast BeipabaThiBaeTCs U ycTpeMJIeHa U3HYTpU HapyxKy. Kak BBep-
Xy, TaK U BHH3Y, Kak Ha Hebe, Tak u Ha 3emJje, 1 9eJI0BEK, MUKPDOKOCM W M-
HuaTiopaas kKorus Makpokocma, ecTh »KHUBOil CBHjETeN b dTOMy BcesrenckoMy
3akoHy u ero crocody meitctBusi. Mbl BUIM, UTO KaxK/10€ BHEITHEE JIBUZKEHHE,
JIeiiCTBUE WU JKECT ... IPOM3BOJUTCS U IIPEIBaPsIeTCsl BHYTPEHHUM YyBCTBOM
WU SMOIHEH, BOJIEIO WU YKEJIAHUEM, MBICJBIO M YMOM». [5]

Boutee guem gepes cro et maremaruk u3 Oxcdopma Pomxep Ilenpoys na-
mcas o Tpex Mupax: ¢pusndeckom mupe («B HeM HAXOATCs HACTOLAIIHIE CTOJIBI
U CTYJIbsl, TEJIEBU30PbI U ABTOMOOMJIM, JIIOJIN,...» ); MUDE BOCIPHUATHUI CO3HAHUS
(«B arom Mupe ecThb cuacTbe, 60716 U 1BeT. B HeM J1060Bb, IOHUMAHHYE. .., & TaK-
JK€ HEBEKECTBO M MCTUTEJLHOCTD. ...» ); ILIATOHOBCKOM MUPE MATEMATUIECKUX
dopm («B 3TOM MHpe MBI BCTpPETUM 3JIEKTPOMAIHUTHBIE ypaBHeHus: Makcse-
Jla ¥ TPABUTAIIMOHHBIE — JUHINTENHA, PABHO KaK 1 O€CUNCIIEHHBIE YIOBJIETBO-
pSIOIIHEe UM TEOPEeTHIeCKHe IPOCTPAHCTBA — BpeMeHa... VIMeHHO 31ech mpe-
OBIBAIOT MAaTEMATHYECKAE MOJIEJIU CTOJIOB U CTYJbEB, KOTOPBIMH MOXKHO BOC-
[IOJIb30BATHCS B «BUPTYAJIBHON PEaIbHOCTUY, & TaK K€ MOJEJH YEePHBIX JIbIP U
yparaHos») [6].

Pomxep llenpoy3 Tak»ke M3/JI0KIMJI CBOIO BEPCHUIO MUKINIeCKoOi Bcesren-
woit B kaure «Kpyru Bpemenus. CoracHO 9Toif Bepcud, 0HBI IUKJIAIECKON
Bceenennoit ormenensr apyr or apyra cobbitueMm Bosbmoro B3psiBa. Kosutarc
CBEPXMACCUBHBIX YEPHBIX JIBIP I€pejl BoJIbIM B3PBIBOM ITPOU3BOIUT BO3MY-
[EHUsI B BUJIE TPABUTAIMOHHBIX BOJIH, KOTODBIE, IIEPEIai0T UH(MOPMAIMIO OT
90HA K J0HY. Y YeHbII 00beXaJl MHOTHEe YHUBEPCUTETHI Mupa ¢ Jekiueir «Kpy-
ru BpemeHu. MoXKXHO i CKBO3b BOJIBINOI B3PBIB PAa3IJIAIeTh MPEIbIIYIILYIO
Bcestennyio?». U1 eciim HEKOTOPBIE YUeHbIE, BBIXO/S U3 JIEKIIMOHHOIO 3aJ1a, J100-
ponytrHO mo3BOJIsAIN cebe 3ameTuTh: «Hy, Koneuno, sto Ilerpoys, on moxker
cebe MMO3BOJINTE MMO(MAHTAZUPOBATh...», TO YaCTh JIPYTUX sIBHO BIOXHOBJISLIACH
YCJIBIIIIAHHBIM.

Mo2KHO KOHCTATHPOBATD, 9TO 38 CTO JIET OTHOIIECHUE K DALY PETUTHO3HBIX
ujeit crasio 6ojiee TOJEPAHTHBIM M 9TO HAYKA yKE «AMHUCTHPOBAJIA» HEKOTO-
poie dunocodckre KOHIEMIMH B KOCMOJIOTHH. BO MHOTOM 3TOMY CIOCOOCTBO-
BaJI0O Pa3BUTHE HAyJHON KOCMOJIOIHH B XX BEKe y MCTOKOB KOTOPOH CTOSLIN
Annbepr Ditamreiin, Anekcanap Ppuaman, 2Kopx Jlemerp, ITasen ®Piopen-
cknit, Koncrantun HuoskoBckwmii.

Anpbept DitHmiTeitH n Ajekcanap ®puamanH

B 1949 r. B wectp 70-steTHErO 1006MIesT DAHIITEHA BB cOOpHUK «AJbOEpT
Ditamrreitn. @ustocod-ydenbrity. IUHIITEHH HE TOIBKO THCAT paboThI IO HUJIO-
codun, dunocodueit on moBepssr HaydHble paboThl. OH pa3essiia TeocodcKre
B3Il Birasarckoii u Crniunossr 06 orpunannu Bora kak jguanocTd (MHIUBY-
JyaJbHOCTH) U paccMmarpuBai mup kak CyGceranimio, HajeneHHyIo Pasymom,
KoTOpbIt BopabarsiBaer Wnen (3akonst). Cornacuo dunocoduun Cunnosbl, KO-
Topas 6bL1a 6JiM3Ka DWHINITEHHY, TPOIECC MO3HAHNUST MUPaA COCTOSIIT B (DOPMY-
JIMPOBKE aKCUOM U IIOJIYIE€HHUUN BCEX OCTAJIbHBIX TIOJIOXKEHU I nyTeM JIOTHIeCKUX
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CJIEJICTBHIA, YTO TAPAHTUPOBAJIO HCTUHHOCTD BBIBOJIOB B CJIy9Yae HCTUHHOCTH aK-
CHOM.

O cBoOUX PeJIMIMO3HBIX YyBCTBax JifHITeiiH nucasr: «Camoe IpekpacHoe
7 IyOOKOe IepeKuBaHue, BBIIAJIAIONee Ha JIOJII0 YeJIOBEKa — ITO OILYIEHIe
TANHCTBEHHOCTH, OHO JIEXKUT B OCHOBE PEJIUTUU U BCeX HamboJiee riryOOKUX TeH-
JIEHIIUH B UCKYCCTBE U HayKe. 10T, KTO He MCIBITA STOTO OIIYINEeHNs, KayKeTC s
MHE, €CJI He MEPTBEIIOM, TO BO BCSIKOM CJIYUAE CJICTIBIM.

C1oco6HOCTD BOCIIPUHUMATH TO HEIIOCTUXKUMOE JIJIs HAIIIETO pa3yMa, ITOo
CKPBITO I10JI, HEITOCPEICTBEHHBIMU TIEPEXKUBAHUSIMU, YbM KPACOTa U COBEPIIIEH-
CTBO JIOXOJIAT JIO HAC B BUJI€ KOCBEHHOI'O OT3BYKA — 9TO U €CTh PEJIUTHO3HOCTD.
B sTom oTHOmEHNN s penurnozed. f HOBOIBCTBYIOCH TEM, YTO CTPOIO JOTA/I-
Ki 00 9TUX TaiiHaX M CMHPEHHO IBITAIOCh MBICJIEHHO CO3/IaTh JIAJIEKO He TI0JI-
HYIO KADTUHY COBEPIIEHHOM CTPYKTYPBI BCErO CyIIero... Kcim roBoputs 0 ToMm,
YTO BJOXHOBJISIET COBPEMEHHbIE HAYYHBIE MCCJIEIOBAHUS, TO sI CIUTAIO, UTO B
objacT HayKH Bce HamboJiee TOHKHE HJIeM OepyT CBOe Havaso U3 IIybOKoro
PEeJINTHO3HOTO IyBCTBA U YTO O3 TAKOTO UyBCTBA ITU U HEe ObLIN OBbI CTOJIb
[JI010TBOpHBIMEY [11].

B srom rony mayunoe coobmectBo ormedaer 100 jer obmieit Teopun oT-
HOCHUTeIbHOCTH AJibbepra DifHinTeiiHa. DTa padoTa chirpaJsa O0JIBILYI0 POJb B
pa3BUTHM HAYYIHONW KOCMOJIOTHH.

IIpu cozpmanuum obIeil Teopuu OTHOCUTETbHOCTH, AbbepT DiHIITEHH 06-
HAPYKUJI, YTO KPOME OOBITHOI'O BEIECTBA W U3JIYUEHHs], ICTOYHUKOM TDABH-
TaIK MOYKET CJIy?KUTDH OCODOBII WIeH B IPaBOW YacTH ero ypaBHeHUs. B cBoux
MEPBOHAYAIBHBIX PabOTaX MO KOCMOJIOTHU DITHINTENRH MpuaaBaJj O0JIbIToe 3Ha-
YEHHME 9TOMY WIEHY U IMOJIYUIUJI CTATUYECKYIO MOJEJb BeesleHHON, HO He ¢MOr
(BupodeM, u He xX0Te !) HANTH HECTAIMOHAPHBIE MOJEIH — ITO IPOTUBOPEYUUIIO
ero dumwirocobckuM ybexkaenusm 7).

Momenn pacmmupsrorieiics Beemennoit ObLIn HafIeHBI PYCCKUM YIEHBIM
A.A. ©puamanoM.

B 1922 r. Anekcanap @puaman omybukoBas B xKypHase «Zeitschrift fur
Physik» pabory, B KOTOpOii HA OCHOBAHMM HCCJIEIOBAHUs ODIIENl TeOpUru OTHO-
CUTEJBHOCTHA DUHIITENHA, CAEIAT BBIBO O TOM, UTO BceesleHHas TOKHA Pac-
MUPSTHCs. DUHIITEHH JIAJT OTPUTIATENIBHBIN OT3BIB 00 9T0# paboTe, T. K. CAUTAJ
Bcesiennyio crammonapuoii. Onnako, B XX Beke B CUCTEMY aKCHOM (HayIHbBIX
Teopuit) U JIOTHIECKUX BBIBOJIOB AKTUBHO BTOPI'CS 9KCIIEPUMEHT U, BCKOpe, DifH-
IITEelH TPU3HAJI, YTO 10 1moBoay paborsr Ppuamana ommbasics. Tem He MeHee,
OOHAPYKEHHBIT 0COOBII WIeH B ypaBHEHUU, KOCMOJIOIUIECKYIO IOCTOSHHYIO,
cUuTa «CaMoOil HOJIBINION OMmuOKOoW cBoel kKu3um». CerojiHst Mbl 3HAEM, 9TO
Bcenennast He cTaTndHa W KOCMOJIOTHYECKAsl TOCTOSIHHAST HEe paBHA HyJsi0. Tak
YTO «OIubKay DifHIITEiHA OKa3a/ach ero OOJIBIIIMM OTKPBITHEM.

Awmepuranckuii ¢pusuk B. Baiickord 3amedaer, 9T0 «BemecTBO», KOTO-
pO€ OIMCHIBAET KOCMOJIOTHYECKasl IIOCTOSIHHAST BeChbMa OJIM3KO K MMEIONEeMYCs
B Bubaun BbIpakeHnio «Toxy BabOXy» — 3emiie, KOTopasl Obliaa «Oe3BUIHa 1
IycTa» M KOTOpasi CyIEeCTBOBAJIA COTJIACHO KHUTE BBITUST 710 COTBOpEeHMsT CBETa
[8]. Peub umer 0 «TeMHOI 9HEprumM», KOTOpas MOXKeT 3aHuMarh 1o 70% Bere-
ctBa Bceenmennoit.

DitHITeiH Beeraa MoaIepKUBaJI, YTO IPUOPUTET MOJIEIU PACIIAPSIONIEii-
cs1 Beenennoit mpunayiexkut Anekcanyipy Opuamany.
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Asexcanp @pupman poauics B Cankr-Ilerepbypre B 1888 romy, ymep ot
tuda B 1925ro1y 1 1oXopoHeH Ha rpaBocyaBHOM Kiaabuie B Cankr-IlerepOypre.
lennasibabIil n300peTaTesib U yuenblit, @pumaman 3a 37 JieT ycies ¢e/iaTb O9eHb
MHOTO B aBHAIPHOOPOCTPOEHNH, MeTeoposorun, kKocmosoruu. O mupe ero du-
JIOCOCKUX MBICJIEH, IyBCTB M BEPOBAHWII M3BECTHO OYE€Hb MaJjo. Bo Bpemsi
ITepgoii Mmupogoii BoiiHbl Anekcanap OpuaMad BoeBaJl, ObLI JETIYUKOM, yIacT-
BOBAJI B BO3/IyIHON pa3sejke. Aekcamap @pumaman — [eopruesckuit kaBaJep.

Nwmst Asekcannpa @pujiMana TecHO cBst3aHo ¢ umeneM 2Kopxka Jlemerpa.
Besbruer 2Kopxk Jlemerp Toxke repontdeckn BoesaJ Bo Bpemst [lepBoit MupoBoit
BoitHbI 1 ObLT HarpaxieH Boennsim Kpecrom (Croix de guerre).

Abbar 2Kopxk Jlemerp mpuies K Mojenn paciupsiornieiics BeeseHHoi
Hezapucumo or Asekcanapa Ppuamana. [TosTomy yacTo roopsar ob ypapHe-
HUAX U Mojienisax Jlemerpa-Ppupamana.

Karoaunuecknii cBsanieHHuK 2Kopxk Jlemerp un
npaBocJjIaBHbIN cBsalleHHUK IlaBena DiropeHckmii

A66ar 2Kopxk Jlemerp u csamennauk [lases @openckuii 6btn yaenbivu. la-
Besn QuiopeHcknii 3aKOHII pU3mKo-MaTeMaTwdecKuit paxyabreT MOCKOBCKO-
ro yuusepcurera, 2Kopxk Jlemerp mosmyuni pusnko-mareMaTndeckoe odbpa3o-
BaHue B yHuBepcurere Jlysena, B Besbruu. Im 060uM NPUXOIUIIOCH peIIaTh
3a/a9u CUHTe3a pesnruu, Guaocodun U HaAyKd. ITO ObLIM Pa3HbIe PEIeHUs,
TeM WHTEPECHEE UX PACCMOTPETbD.

ITocne 3amuTer JOKTOPCKOI uccepranuu 0 Maremarnke Jlemerp mocty-
I B ceMuHapuio apxuenuckonnu Masuusl. B cenrsabpe 1923 1. o 6611 pyKo-
[IOJIOYKEH B CaH CBSIEHHUKA M HEIIOCPEJICTBEHHO II0CJIe 3TOr0 OTIPABUJICA B B
KeMOpu 2k Ha MOCTIOKTOPCKYO IIPOrPAMMYy TOJ PYKOBOACTBOM A. DIMHITO-
Ha. 3aTeM, MoCcJie MOJyIeHus CTeeHn IOKTopa dunocodun MaccadyceTckoro
uHCTUTYTa Texuosoruu B 1927 r., Jlemerp ObuT Ha3HAYUEH HA TOJKHOCTH IMIPO-
deccopa Karonuueckoro ynusepcurera Jlysena. B Tom ke rozy o ciesras cBoit
KJIIOYEBOH BKJIaJ B KOCMOJIOIHIO, OIybJsinkoBaB crarbio «Opaopognas Beesen-
Hasl IIOCTOSTHHON MACChl U YBEJIMUEHUE PAJIINyCa B 3aBUCUMOCTHU OT PaIuaJibHON
CKOPOCTH yJIaJIeHus TaJIAKTUK». BO BpeMs HalucaHusi 3TOU cTarbu Jlemerp He
3HaJ 0 ToM, 9T0 A. PpuaMan MpeJBOCXUTHII €ro Ha TATH JieT. Jlemerp mmest
XOPOIIYIO HAYYHYIO0 HHTYUIUIO U yTBEPK/IAJ, ITO KOCMOJIOTUYIECKAs TOCTOSH-
Hasl OTJIMYIHA OT HYJIsI U UTPAET CyIIeCTBEHHYIO posib. OH Tak YKe MPeJJIoKIII
TUIIOTE3Y O «IIEPBUYHOM ATOME», KOTOpasl MO3Ke IOJIyYN/Ia Ha3BaHUe TEOPUU
Boubmioro B3peiBa [9)].

B 1960 r. 2Kopx Jlemerp cran IIpesumentom Ilamckoit akamgemun nHayk
B Barukamne.

Corutacuo ycraBy 1936 1., mesb AkajieMuu — COCOOCTBOBATE IIPOTPECCY
MaTeMaTUIECKUX, (DU3NYECKHUX U JPYTUX €CTECTBEHHBIX HAYK U U3yYEHUIO CBs-
3aHHBIX C HUMH THOCEOJIOIMIEeCKUX 1IpobsieM. UieHCTBO B AKaieMun He CBSI3aHO
C KakuMu ObI TO HU OBLIO OTPAHUYECHUIO IO STHUIECKOMY WA PEJIMTUO3HOMY
npusnaky. B ee cocras Bxommmu M. Ilnank, 3. Pezepdopa, H. Bop, 9. lpe-
muurep, B. Boabreppa, ...
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Ectp Bepcus, uro Bo Bpems [lepBoit MupoBoit Boitubl JIemeTp mepekuit Mmu-
CTHYECKUiT OIIBIT, 3aCTABUBIINI €ro BEpUTh Herokosiebnmo. Bepa B Bora 6ouia
abCoJIIOTHA, KaK U Bepa B TO, 9TO Bory yrogHo, 9ro0bl JIIOJU CAMOCTOSITEIHHO
MMO3HABAJIN yCTPOHCTBO Mupa U FKro Mbician. 910 youpaso BCSIKOE ITPOTUBOPE-
qre MeXKJy peJIurueil u HayKoii. JIeMeTp MOCTOsIHHO MOMYIepKUBAJT 3HAUUTE b=
HYIO KOHIEITYaJbHYIO JUCTAHIIAIO, KOTOPAs IPOJIETAET MEXKIY JIBYMs IIyTIMU
[MO3HAHUsI UCTUHDI,- HayKoil u pesurueit. C ero TOYKM 3peHusi HAYKHU, BKJIIO-
Yyas KOCMOJIOTHIO, HE UMEJIU IIPSIMOI0 OTHOIIEHUS K PEJIUIMH, CyObeKTy, Ibeil
001acThio OBLIM JIYIIH, & HE rajakTuku. JleMeTp, KOHEYHO, 3HAJ U Pa3/IeJIsl
mo3unuio ['ajuiest, KOTOPBIi MHUCaI BEJIMKOM repriornae XpUCTUHE:

«Hamepenne Csaroro lyxa B ToM, 4TOOBI HAyINTH HAC, KAK B3OUTH HA
Hebeca, a He TOMy, Kak Hebeca IBUKYTCsA». B To ke Bpems Jlemerp nmca: «Ilo
Mepe TOro, KaK HayKa IIPOXOJUT IIPOCTYIO CTaJIAI0 OIMCAHUS, OHA CTAHOBUTCS
WCTUHHON Haykoi. Tak»Ke OHa CTAHOBHUTCs 0OJiee PeIUIMO3HON. MareMaTuku,
aCTPOHOMBI U (PUBUKHU, HAIPUMED, SBJSIIOTCS OYEHb PEJUTMO3HBIMU JIFOIbMHU,
3a HEMHOTHMU HCK/IIOYEHUAME. UeM TiiyOyke OHU IMPOHUKAIOT B TAWHY BCEJICH-
HOIi, TeM IUIy02Ke CTAaHOBHUTCS UX yOexKIeHue, 9TO CHUJia, CTOAIMIAS 38 3BE3/IaMu,
3JIEKTPOHAMH U aTOMaMHU, €CThb 3aKOH u OJsiaroctbs. 1 9T0 03HA4YaI0, 9TO pe-
JINTUO3HBIE ¥ MeTA(DU3NIECKHE [IEHHOCTU CTAHOBUJINCH BayKHBIMU JIJIs Y YEHOTI'O
Ha 00Jiee BBICOKOM YPOBHE HMOCTHXKEHUsI MCTUHBI, CTOSIIEM HAJI ONMUCAHWEM U
METOAMH.

B pasrosope ¢ ITonem Iupakom, KOTOPBI yTBEPKIAI, ITO caMast OJn3-
Kasl K PeJIUIUH HayKa 9T0 KocMmouiorusi, 2Kopxk JlemeTp BO3pa3ui u BBICKA3aJ
MHEHUE, YTO CaMOil OJIM3KOI K PeJIMTUU HAayKOI SIBJISeTCs IICUXOJIOTUsI. 3JeCh
MHE XOYeTCsl CJIeJaTh HeDOJIbINoe OTCTYIIEHIE U 0OpaTUThCA K paboram Biia-
aumupa Astekcannposuda Jlederspa, KOTOPBI CBA3AJ BOEIUHO KOCMOJIOIHIO U
IICUXOJIOTHIO U TIOKA3aJI, ITO B PABHOI crenenu npasel u Jupak u Jlemerp.

Jledenp mocTponst cBoio MozesTh Beesrennoit, BO MHOIOM T'HIOTETUYIECKYIO,
B KOTOPYIO BBEJI pa3yMHBIH KOCMUYECKHI CYODbEKT HaJeeHHbIH pedJiekcueit
u cosectbio. (Peduiekcusi Kak caMOCO3HAHHME M CHOCOOHOCTB OIIPEJIENsATh CO-
3HAHWUS JPYTUX CyOBEKTOB M COBECTh KAK CIIOCOOHOCTH PAa3/UYaTh <«I00pO»
WK «3J10%). DTa, He CTPOr0 HAydHAsl MOJEJIb TEeM HE MEeHee II03BOJIUJIA CIe-
JIATh OY€Hb MWHTEPECHBIE IIPEIIIOIOKEHIS: TUIABHAS I[eJIb KOCMUIECKUX CyObeK-
TOB — JIOCTH?KEHUE BEYHOI'O CYIIECTBOBAHU:A, T. €. OeccMepTus; Marepueil co-
BEPIIEHHBIX KOCMUYECKUX CYObEKTOB MOXKET ObITH MarHUTO-ILJIA3MEHHOE 00pa-
30BaHNE; COBEPIIIEHHBIE KOCMUIECKIE CyObEKThI B CBOEM IOBEIEHNN HEYKOCHM-
TEJILHO MOIYUHSIOTCST BBICIITIM MOPAJIbHO-ITHIECKUM 3aKOHAM, KOTOPhIE 00ec-
neduBalioT cyiecrsoBanue Beenennoii [12]. Jledesp Takzke mokaszas, 4ro B OC-
HOBE COBECTH U HATYPAJIbHBIX MY3BIKAJILHBIX NHTEPBAJIOB JIEYKAT CXOIHbBIE AJI-
rebpandecKue CTPYKTYPBI U Cejall BBIBOJL, YTO JIJIsi OOHAPYKEHUsI BHE3EMHBIX
Pa3yMHBIX CyObEKTOB CJIeIyeT UCKATh MY3bIKAJbHBIE CTPYKTYPHI B JOXOISIINAX
0 HAC KOCMUYECKUX CUTHAJIAX.

CuHTE3 MICUXOJOTUN M KOCMOJIOTUH OCODEHHO IMPHUCYII, BOCTOYHBIM DeJIr-
rusam. [ayrame Bymame npunuchiBaior cieayiomue ciaoBa: «He mpuaumaiite moe
ydenue mpocTo u3 Bepbl. [1o106H0 ToMy Kak Kyrelr Ha 6a3ape mpHu MOKyIKe 30-
JIOTa TIPOBEPSIET €ro: HAPEBAET, IIJIABUT, PEXKeT — YTOOBI yOEIUTCsI B €ro MojI-
JINHHOCTH, TaK Ke [POBepsiiiTe U MOe yueHne». Bekamu mocseaoBaresn By bt
«HArPEeBaJIN» U «IIJIABUJINY, HAKAILINBAJIN OIBIT JOCTHKEHUsT O3aPEHUI IIyTeM
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CO3€epIaHUs, COCPeIOoTOueHns U MeauTanuu. UV ceromus OyaauiicKuil OIBIT Ya-
CTO HA3BIBAIOT HAyKoil 0 cozHanuu. C Jpyroif CTOPOHBI, OY/IIN3M PA3BUJI CBOIO
KOCMOJIOTHIO — OyuiicKy1o GpuitocoCKyIo JOKTPUHY O U€PeIOBAHUU ITPOSIB-
JIEHHO U HemposiBJieHHO# BceeteHHoi, 1 Ieproiax BOSHUKHOBEHUS U PA3pyIIie-
HUS MUPOB, U3MEPSAEMbIX B KaJsblax (Kajbia — 4,32 Mipz,. Jjer).

Bubsins Tak ke rosopur o BpemeHnu corBopenusi mupa. 2Kopxk Jlemerp
JIeJ1ajl CBOU M3MEPEHHs — TO BPeMs Y HEro MCYUC/IIOCh B 4,5 MiIp. Jiet.

B memasno uznannoit kuure Canyepa Baiica «Bo ciaBy naykus co cchuLi-
Koit Ha B. Baiickonda npusoaurcs cirydaii, KOTOPBIi IIPOU30IIeST BO BpeMs dTe-
Hus JeKwmit JlemeTpom mo pessTuBucTcKOit Kocmostoruu B Lertunrene. Crymaen-
Tl cupocmin Jlemerpa 3atueM OH 3aHUMAETCs] MCYUCIEHHEM BO3PACTa 3EMJIH,
pa3Be oH He joBepsier bubsmu? Jlemerp orsermit: «IIpocro jyist Toro, 4ToOBI
y6eauTh cebst, uto Bor He cirenan uHu enunoil omubku» (9], [13].

ITaBest @ropeHcKuit 3aKOHIMIT (PUBUKO-MaTeMaTuIecKuii dpakyibrer Moc-
KOBCKOTO YHUBEpCHUTETA, 3aTeM MOCKOBCKYIO JyXOBHYIO akajemuio, B 1911 r.
TIOJTY9HJI CAH CBANIEHHUKA U CIEJIAJICS HACTOSATEIEM TOMOBOI 1epkBu OOmuHbBI
Kpacnoro Kpecra B Cepruesom Ilocase. Iocie pesosrorumn 1917 r. 3anumalt-
cs1 IPOOJIEMaMM IJIEKTPUYECKUX IIOJIeH U MJIEKTPUKOB HPH «lUtaBajiekTpos.
B 1928 r. 6b11 11epBhIil pa3 apectoBaH, B 1933 BTOpOil u cocitan Ha JlaabHuii
Bocrok B CkoBopoauno. Tam @jiopeHckuii n3yda BO3MOXKHOCTb CTPOUTE b~
cTBa Ha BeuHO Mepajore. laree CooBenkuit tarepb 0cOO0I0 HAZHAYTEHUS, TJI€
Droperckuit paboTas Ha JIATEPHOM 3aBOJIE HOIHON MPOMBINIIEHHOCTH 1 3aTIaH-
TeroBas 10 HAYIHBIX OTKPBITHIA... ITO OUEHD TOBEPXHOCTHAS Guorpadudeckast
CIIPaBKa O YeJI0BEeKe, KOTOPhI KaK HUKTO B HadaJje XX BeKa BOILIOIIAJ] B CBOEM
TBOPYECTBE CUHTE3 pejuruu, puaocopuu, HAyKu U UCKYCCTBA.

®uocod H.Jlocckuit mucan o @ioperckom: «OH OBLT TPEKPACHBIM My-
3BIKAHTOM, [IPOHUIATE]bHBIM IMOKJIOHHUKOM Baxa m mosmdOoHnIecKoit My3bI-
Ki... DIIOpeHCKHit OBLI IOJTUTJIOTOM, B COBEPIIIEHCTBE BJIA IEBIINM JIATUHCKUAM 1
JPEeBHEIPeYeCKUM U OOJIBITUHCTBOM COBPEMEHHBIX €BPOIEHCKUX A3BIKOB, & TaK
ke s3pikamu Kaskasza, Upana u Uamuu...» (IT.A. @nopenckuii: Pro et contra,
c. 395) Uccnenosarens naciaemusa @noperckoro U. Vcyios gan eMy 04eHb BazK-
HYIO XapaKTEePUCTUKY, OH IucaJ, 910 ¢ OIOpeHCKNM B KyIbTYPY IIPUIIEST HOBBII
THUI JTUTIHOCTH, HOBU3HA KOTOPOT'O OIPEeIsIach HECTAHIAPTHBIM YCTPONCTBOM
maMsaTd U CTPYKTypPOil BHyTpeHHero npocrpancTsa yma Propenckoro. B arom
IIPOCTPAHCTBE He ObLIO TIeHTPpa, Kak B KocMmoce — oH ObLIT Be3sie.

®JropeHCKUit OCTABUI HAM PEJIUTHO3HO-PII0codCKy0 padboty «Cromn uim
YTBEP2K/IEHNE UCTUHBI», PAOOTHI B 00JIACTH UCKYCCTBA, (DUIOCOMDUN, PETUTTH U
nayku «Ukonocrac» n «Henpasuibaas nepcrekTuBay, paboTy B 00/1acTH HAy-
Ku, punocodpun u penurnu «Munmoctu B reomerpuny. OIopeHCKHit He TOJIHKO
SIBUJI B 9TUX paboTax cuHTe3 pesiuruu,puiocodpuul, HAyKu U UCKYCCTBa, OH I10-
KazaJl HOBbIE TIOJIOXKEHUSI, CJEYIONIe U3 3TOro cuHTe3a. B pabore «Muumoctn
B reomeTpun» PIIOPEHCKHI OIPeIe N CKOPOCTh CBeTa KaK TPAHUILY MEXKIY
1M cBeToM u Tem cBerom, (Semieit u Hebom): «HT0 cOGCTBEHHO 3HAYAT TIpe-
JIEJIBHOCTH BEJIMIUHBI CKOPOCTHU CBETA?

OTO 3HAYUT BOBCE HE HEBO3MOYKHOCTB CKOpOCTEil paBHBIX n Oosbimx C,
a JIUIIb TOsIBJIEHNE BMECTEe C HUMU BITOJTHE HOBBIX, [TOKa HAMU HATJISIHO HEIIPe/I-
CTABUMBIX, €CJIU YIOJHO, — TPAHCIEHIEHTHBIX HAIEMy 3eMHOMY, KaHTOBCKO-
My OIIBITY, YCJIOBUI »KM3HU; HO 9TO BOBCE HE 3HAYUT, YTOOBI TAKOBBIE yCJIOBUS
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HEMBICJIUMBI, & MOXKET OBbITb, C PACIIUPEHHEM OOJIACTH OIbITA, — U IPEJICTa-
BuMbI. VlHade ropopst: 1pu cKopocTsix, paBHbix C u Tem Gojiee — Gouibiie C,
MUPOBasl KU3Hb KAYECTBEHHO OTJIMYHA OT TOI'O, YTO HabOJIFOIAeTCs IIPU CKOPO-
cTsix MeHbImX C, U Iepexoj MexK Iy 00JIaCTsIMU 9TOTO KAYECTBEHHOT'O PA3JINIUS
MBICJIAM TOJIBKO IIPEPBIBHBIM. ..

Ha rpanure 3emsn u Heba jjiiiHa BCSIKOTO TeJta JIE€JIAeTCs PABHOM HYJIIO,

. TEJIO YTPAUUBAET CBOIO IIPOTIKEHHOCTDH, IIEPEXOIUT B BEYHOCTb U IIprodpe-
TaeT abCOJIFOTHYIO yCTOWYMBOCTH. PasBe 3TO He ecTh Iepeckas B (DU3MIECKUX
TepMUHAX — IPU3HAKOB Hjen, 1o 1liaroHy — GecTebHBIX, HEIPOTSIKEHHBIX
BeuHbIX cyimHOCcTei? PasBe 310 He apumcroresneBckume uuctbie dopmbr? Uinm,
HaKOHEI[, Pa3Be 9TO HEe BOWHCTBO HEDECHOE,- CO3epIiaeMoe C 3eMJId, HO 3eM-
HBIM cBoiicTBaM ayxkioe? ...06sacTh MHUMOCTEl peasibHa, TOCTUKIMA, ... Bee
IIPOCTPAHCTBO MbI MOzkeM mpesactasuts JIBOVIHBIM, cocraBieHHBIM 13 Jeii-
CTBUTEJIBHBIX U U3 COBIAJIAIONINX C HUMH MHUMBIX I'ayCCOBBIX KOOPJIMHATHBIX
nosepxuocreil...» (1922, 3/17, Ceprues Ilocan).

®DropeHCKuit MOHST ABOMCTBEHHOCTH, Mupo3manus, 18e YaCTH BCEJICHHOII:
MHUMYIO BEUHYIO U BPEMEHHYIO peasbHyo. OH paCKpBIBAJI CMBICI CJIOB XPUCTA!
«IlapcTtBo Moe me oT Mupa ceros, «f ecMb MyThb U UCTUHA U KU3HBb», «B03b-
MU CBOU KpecT U ciefyit 3a Muoity. 91oT nyrh PIOpEeHCKHl HOHUMAJ Kak
IIyTh paCIIUpPEHUE CO3HAHUsI, OJ[yXOTBOPDEHNE W yTOHUYEHUE MATEPHUH, IIyTh OT
obbekTa K cyobekTy dBosoruu. OObeKT MpeBpaiaercs B CyObeKT KOra Iy Th
CTAHOBUTHLCS OCO3HAHHBIM U BO3HUKAET MOTPEOHOCTH B TBOPUYECTBE. DTO CTAHO-
BHUTCS BO3MOXKHBIM IIPU BMEIEHNU CO3HAHUEM CUHTe3a. Kak pa3HOCTh IIOTeHIIN-
aJIOB TIOPOXKJIAET JBUKEHNE, TaK U 3Ta BeJIUKasl JBOWCTBEHHOCTh MuUpo3aHus
[IOPOK/IAET BEYHOE JIBUXKEHUE, OECIIpe/Ie/IbHOCTD U beccmepTre. JeoBeduecTBoO
TOCKYET U CTPEMUTCsI B MUD TOPHUIA, & JJOCTUTHYB €r0 BO3BPAIIAETCS 38 HOBBIM
OIBITOM B MHUP KOCHOH MaTepHUH.

3mech g X049y ¢/IeJIaTh HeDOJBIOe OTCTYILUIEHHE W TPUBECTH IIUTATY U3
onHO#l crannsl apxanynoit «Kuuru /[3mans, koTopas KacaJjach IPeIBOILIOINIE-
Huto BcesieHHO# 1 KoTOpyro kKoMmMmenTuposaJia Fiena Ilerposna BiaBarckast:
«3 nydesapHOCTH cBeTa — Jiyda BEYHOU ThMbI — YCTPEMUJIACH B IIPOCTPAH-
CTBE SHEPIUH ... TPU, OIWH, YeThIPE, OINH, ISATh — JIBAYXKIbI CEMb, CyMMa BCErO.
1 stm cyTh ecrecTBa, mamMeHa, Hadaja, CTPOUTEIH,...». BaBaTcKas, KOMMEH-
TUPYS Ty CTAHILY, OTMedaJa; «DTO OTHOCUTCS K KPYTY U ndpaM U paBHO3HAU-
HO CJIOBaM O TOM, 4TO 1udpsl 3 1 4 1 5 Bce UMEIOT OTHOIIEHNE K OKPY2KHOCTHU U
auaMerpy Kpyras. IIoHATHO, 9TO peds uier O Jucjie I, KOTOPOoe 3aaeT OTHO-
[eHNe KPUBU3HBI K TPAMOJIUHERHOCTH I JIF000i cdephl U ITO 9TO UUCIIO UT-
paet ocobyro posb pu popmuposanuu Beestennoit. Eciin Terrepb Mbl BCmoMHIM
MHHAMYIO euHuUIly i (110 m3BecrHOMY BbicKasbiBaHuio Jleitbuuna: «/lyx Goxkuii
HAaIle/l TOHYANIIYIO OT/IYIIIUHY B 9TOM 4yJle aHaJIu3a, JBONCTBEHHON CYIIIHOCTH,
HaXOJIAIIEHCsT MeXK Ty ObITreM U HeObITHEM, KOTOPYIO Mbl Ha3bIBAEM MHUMBIM
KOPHEM M3 OTPULATEIHHON eJIUHUILI» ) U YUCIIO €, TO MOXKEM KOHCTATUPOBATD,
9TO NMPU3HAHHAS CAMON KPAaCHBOIW MaTeMaTwdeckoir (opmysoi, — dopmysta
Eitnepa ects Takke dopmysra KOCMOJIOTHIECKASI.

PaccmarpuBasi TBOopueckuil mporiecc B 2KHMBOINCH KaK I€OMETPH3AIUIO
npocrpaHcTBa B paborax «VkoHocrac» u «HemnpaBuiibHasi IT€pCIEKTHUBAY,
®DropeHCKUl MPUXOIUT K BBIBOAY: «MUPONOHUMAaHUE €CThb IPOCTPAHCTBOIO-
HUMaHUEe. B KUBOMMCH MMEHHO TPOCTPAHCTBO OIIPEJIEJISIET HE TOJBKO CTHJIb
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XY/IO?KECTBEHHOT'O IIOCTPOEHHS, HO M OTPaXKAeT MUPOIOHUMAHIE CAMOI'O TBOP-
ma... Crpoenne npocrpancrsa ectb KPUBU3HA ero... Bes xyabrypa moxker
ObITH MCTOJIKOBAHA KAK JIEATEJbHOCTh OpraHm3aiuu npocrpascTsay [10]. Ue-
cnenyst ukony Amnppess Pyb6sesa «Tpoumnas, Dyiopenckuii mokasas, 4To Tep-
CIIEKTHBA HA WKOHE HE TaKasl KaK y XYIOXKHUKOB — PEAJIMCTOB, OHA OOpaTHAas.
[IpocTpancTBO HA MKOHE MCKPHUBJIEHO, OHO MCKPHUBJIEHO COIJIACHO YETBEPTOMY
U3MEPEHUIO.

Paborer @opeHCKOr0, €ro 3amucu, 3T0 OKEaH, B KOTOPOM BOJIHBI HAY THBIX
7 PUIIOCOCKUX MBICJIEH, PEJTUTMO3HBIX U ICTETHIECKUX IePEKUBAHUN HAKATHI-
BAIOTCsI OJTHA HA, APYTYIO U PACTBOPSIIOTCS B €IMHOM BCEJIEHCKOM IIPOCTPAHCTBE.

ITaBesr @iropenckuit 611 paccrpessa B Cososerkom jarepe B 1937 romy
U TIOXOPOHEH B OOIIeil MOrujie st 3aKJIIOYeHHBIX 110/, JIeHnHrpa oM.

JIiomvuna [anomuwnkoBa B cBoeit kuure «Bcenennas Macrtepay ommy
rnaBy nocaTtuia [laBay @uopenckomy. B sroit rirtaBe IllanomuukoBa npuBo-
JUT WHTEPECHBIN 3mu301; «...AuBaps 2002 roma 661 B Utanuu yauBUTEIHHO
temtbiM. S Opommia mo Bartmkamy, mepexois m3 OZHOrO XpaMa B JAPYTOi, u3
oJtHOTO My3est B Apyroii... Cobupasich yXOIUTh, s elle pa3 3aluia B 3abl Jlpes-
nero Puma. 4 crosina y mpeBHero capkodara, paccMaTpuBast €ro yIUBATEIHHO
HUCKYCHO cJleJlaHHble Oapesibedbl, KOIja BO3Jie MEHsI OCTAHOBUJICS YeJIOBEK U
ckazaJgi : «IIpocrure 3a HazoiMBOCTDL, HO BBl ObLIM B yacoBHe Boxueit Mare-
pu?s «IIpaBo, st 3aTPYIHSIOCH OTBETUTD, CTOJBKO XPaMOB S IIOCMOTPEJIA, 9TO
3amyranachb. Bo3aMokHO s u ObLia B Heit», — ckazana si. «Ho ecan Ber Obuin,
TO TaK Obl HE OTBETHUJIN.», — W OTOIIEJ, HAIIPABJIASACH IIPIMO K BBIXOJY.

A s, 3auHTepecoBaHHAs STUM CTPAHHBIM Pa3rOBOPOM, IIOINJIA UCKATH 4Ya-
copHio. Hama st ee He CKOpo, a BOIiJisi B Hee, HUYEr0 CTPAHHOTO M TAWHCTBEH-
HOTO He OOHADYKWJIA, ITOKa MOW B3IV HE 3aJepXKaJjicsi Ha CTeHe, rie ObLIa
MO3anKa, CIeJanHast, s Obl CKa3aJja, B COBPEMEHHOM CTue. S moaonuia modsm-
ke u yBujesa Tpu purypbl. Cy/s Mo HaJIIUCH, CASJTAHHON HA PYCCKOM SI3bIKE,
onHa u3 HuX m3obpazkasna Puopenckoro. OH CTOsI ¢ Kpaio, PACIIACTAB Py-
KU, TIOXOXKM€e Ha, KPbLIbsi. 10rIa »Ke s y3HaJja, 9TO BCe TPoe OBbLIN MPU3HAHBI
KATOJIMYECKON T[EPKOBBIO0 HOBOMYY€HHUKAMIU .

Bozmoxkno, 2Kopxk Jlemerp mocemas 9Ty 9acoBHIO.

Koucrantun IlnoskoBckuii

Koncranrun [uonkoBckmit roBopuit: «9 — wwmcreiimuit marepuaanct. Hugero
He mpu3HaK, Kpome marepuns» [14]. ITHONKOBCKUiI MOMIEPKUBAI CBOIO HEPe-
JINTHO3HOCTD, 9TO HE MOMENIAJ0 €My CO3/IaTh CBOIO (riIoCOPCKYIO TEOPHUIO,
OYeHb HAIIOMUHAMINILYIO duaocoduio nuayusMa u oypausma. CBoro duiocod-
ckyio Teopuio 1{nosikoBcKuil Ha3Ba TeOpueil KOCMUYECKUX 3P UJIH JIyIHCTOTO
qenoBedecTBa. OH MOBOPHUJI, YTO BCe M300PETEHUS U TEOPHsST PAKETOCTPOCHWUS
OBl pa3paboTaHbl UM JIUITH KaK MPUIOKEHUsT K ero (hUI0COMDCKUM M3bICKaA-
HUSIM.

Mpsbr MHOTOE 3HaeM O Ku3Hu U TBopuecTBe IlnoaKoBCKOTO GJaromapst ero
yYeHuKy u jnpyry Astekcanjapy UMiKeBCKOMY — OJIHOMY M3 OCHOBATeJeil KOoc-
mugeckoit buosiornn, «Jleonapmo XX Bekas.

VIuBUTEIBHO,YTO B Ha4Yae XX BeKa B IPOBHHITHAJILHOM ropoje Kamyre,
r7ie ¥ aBTOMOOW/Ib OBLT B JIMKOBUHKY, JBa BEJUKUX YIEHBIX W H300peTaTesIst
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00CyKIaJi XKU3Hb BCesleHHON, n3ydenrne KOCMUYECKOTO IIPOCTPAHCTBA PEaAK-
THUBHBIMU allllapaTaMU U IIPO3PeBaJin Oy IyIee de0BedYeCTBa.

YuKeBCKHIT COXPAHUJI 3AIUCU ITUX OOCYXKIEHUN M CEroHsI Mbl MOXKEM
MMO3HAKOMUTBCS C HUMU.

ITnonkoBeckuit pemunca ¢ YnMKeBCKUM CBOMMHU pas3mayMbaMmu: «Mbl yike
MHOT'O pa3 TOBOPWJIM C BAMH O IEPEIadnd MBICIH HA PACCTOSHUU, MOJHUEHOC-
HO, MTHOBEHHO. MTIHOBEHHOCTH — 3TO CaMO€e YIUBUTEJbHOE. MIrHOBEHHOCTH U
poHUIAeMocThb. [loceaaee KadecTBO 00s13aTEIHHO COTPOBOXK TaeT mepBoe. Ho
€CTb eIle OJTHO KAYIEeCTBO TEJIEATHH — ITO IIOBCIOJHOCTD, T. €. IIpoHuaeMocTnb
moBcoay. MosroBoe olreHne ecTb MUpOBOe siBjieHme. ... Ho moiimem masiee.
MuHKOBCKHIT BOOOPA3MJI «MIUPOBYIO JIMHUIO». MBI y2Ke TOBOPHUJIH O «MUPOBOM
Mosrey. [Toka ero ver. He Buano! Ho eciu Testenaruyeckast pyHKIuUs mepeiiger
CO BPEMEHU B «CAMOE CYIIIECTBO MUPA», & 3TO, OUYEBUIHO, HEN3DEKHO, TO TOIIA
... KocMoc craneT euHBIM MO3rOM. DTY 9Py s HA3BIBAIO JIJIsl KPATKOCTU «JIyJIH-
cTOit». ... HesicHbIM OcTaeTcst CKOpOCTh PACIPOCTPAHEHUS [TEJIEIATHIECKOTO 10~
JIsI, HO 1 [yMAI0, 9Ta CKOPOCTh MPEBOCXOIUT CKOPOCTH PACIPOCTPAHEHNS CBETA.
... UeJtOBEK IOCTEIIEHHO MEPEPOKIAETCH — U3 YKAJIKOIO IPOCUTEJSI OH CTAHO-
BUTBHCS B BOMHCTBEHHYIO 1103y M HAa4YMHAET TPeOOBaTh: JECKATb, BBIKJIA/IbIBAI,
MaTb-IIPUPOJIA, BCIO MCTUHY. Tak 3asBisieT 0 cebe HOBasi KOCMUYECKasi 3pa, K
KOTOPO#l MBI ITOJIXOJUM, MEJJIEHHO TOXO/MM, HO BEPHO. ... depe3 MHOrMe MUJI-
JIMapIbBL JIET «JIyIucTas» dpa KocMoca CHOBa IIPeBPATUTCS B KOPITYCKYJISPHYO,
HO GoJtee BBICOKOTO YPOBHsI, YTOOBI BCe HAYATh CHadasa: BOZHUKHYT COJHIA,
TYMAHHOCTH, CO3BE3IHsI, INIAHETHI, HO 10 00JIee COBEPIIIEHHOMY 3aKOHY, U CHOBA,
B Kocmoc nipuzier HOBBINA, erne OoJiee COBEPIIEHHBIN YeJIOBEK, YTOOBI IEpeiTn
qepes3 JI0JITMe MUJIJIUAP/IBI JIET U ITOTACHYTh CHOBA, IIPEBPATUBIIUCH B CBEPXJLY-
9eBOEe WJIU CBEPXTEJIENaTUIeCKOe COCTOSIHUE, HO y2Ke 00Jiee BBICOKOTO YPOBHSI.
[IpoitayT MuUIIHAD/ILI JIET, U ONATH U3 JIy9Ieil BOSHUKHET MATEPHSL...».

Kax n ®nopenckuit [lnomKoBeKuit paccMaTpuBaJI IPOIECC IBOJTIOMUN KaK
JBUKEHIE OT 00beKTa K CyObeKTy, OT KOCHOM MATepHH K SHEPI'HUH CO3HAHMUS.
JpoitcreerHoCcTh BeeseHHOM (IPOSIBIIEHHOM 1 JIy9InCTON) OH BOCIIPHHAMAI KAaK
Pa3HOCTH IOTEHINAJIOB, TOPOXK/IAIOILYIO IBUKEHIE — OECKOHEYTHYIO 9BOJIIOIHIO
Bcenennoii.

YurkeBCKHil TcajI, 9TO 3a BHEITHE CIIOKOWHON Ku3HbI0 IIMoaKoBCKOTO
CKpBIBAJIACh OOJIbINAs JpaMa KI3HM, HEIOHUMAHWE U YMBIIIJIEHHOE UI'HOPU-
posanue ero. /la u camomy UmKeBCKOMY IPHIILIOCH IIPOATH Yepe3 JIarepHYIO
JKWU3Hb, TPYbI €T0 OMPEIe/IsJINCh KAK «HeHayJHble» W BOCIOMUHaHWUS O [lnost-
KOBCKOM €My TakK U He yJaJI0Ch OIyOJMKOBaTh npu xku3nn. B 1963 romy pyko-
much Jmxkesckoro o llmonkosekom mepesasu [taBHOMY KOHCTPYKTOPY KOCMME-
qeckux Kopabseit Ceprero [lasiosuay KoposeBy ¢ mpocsboit mojnucars OTpu-
naTebHbIN 0T3bIB. KOpoJieB oTKa3aJ/Ics MO IIUCHIBATD TAKON OT3bIB M IIBITAJICS
Jayke IOMOYb C U3JAHUEM PYKOIIMCU, TeM He MeHee PYKOINCh ObLIa H3/aHa
TOJIBKO B 1995 romy.

Koncrantun uosnkosckuit ymep B 1935 romy, ero moxopoHmIn Kak aTeu-
cra. Yepes 31 roj mpaBocyiaBHbIil cBsmeHHUK Astekcarap Menb mpoBes o6psiT
OTIIEBAHUS HAJ[ €r0 MOTHJION.

Jocrmxkenust HayaHoii kocmosiorun B X X—XXI Bekax okaszaju 0OJIbIIIOE
BAUsHEE Ha (DOPMHUPOBAHUE COBPEMEHHBIX (DUIOCOMCKO-PETUTUO3HBIX MUPO-
BO33PEHUI.
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«C snoxu Peneccanca cJI0KnJIaCh KOHIIEIIUS, TPOIATaHIMPOBABIIASICS
>xopnano Bpyno, o «6eckoneunoiis Bceeenmnoit Kak HEKOTOPOM GECKOHETHOM
«CKJIaJle» Pa3jIMYHBbIX BeIllell, HEM3BECTHO KaK IOsIBUBIIMXCH... Hama 3emiist
¥ JIOAU Ha Hell — 9TO TOXKE HEM3BECTHO KAK W 3a4eM B3SIBIIHECs CJIydaii-
HBIe OOBEKTHI ITOr0 THTAHTCKOIO <«CKJajay. Ty Touky 3penus K. Jlemerp
HA3BaJjl «KOIMMAapoM OecKoHeIHOCTH». OKPYKEHHBIH 3THM MPOCTPAHCTBEHHO-
BPEMEHHBIM KOIIIMapOM, YeJIOBEK MOI' HAWTH €IMHCTBEHHOE yTeIleHNEe B HEKO-
TOPOM «3aKPBIBAHUU IJIa3» — COCPEIOTOYEHUH HA «3JI€Ch U CETOIHSA> — CUIOMHE-
HYTHBIX HHTEPECAX U CO3HATE/bHOM OTKAa3€ OT [MOCTAHOBKU (PyHIAMEHTAIbHBIX
BOIIPOCOB MHUPO3/IaHus» [5].

CoBpemMeHHass KOCMOJIOTHs Y TBEPKIAET, 9TO BO3PACT U pauyc BeemeHHo
MOXKHO BBIYHC/IATD.

«BcestenHass — 9TO TPOMAJIHBIN «JIOM», B KOTOPOM BCe OBLIO TOTOBO JIJIst
POXKJIEHUST 9eJI0BEUeCTBa U Ijie XpaHsATcsi «dororpadun» ero mpomnuoros [6].
«Kommap 6eckoHeUHOCTH» CMEHMJICS yCTPEMJIEHHEM K OECKOHEYHOMY IO3HA-
HUIO MbIcieil Bora, cpenu KOTOPBIX 3aKOH BEYHOTO NIBUKEHUS, TBOMCTBEHHO-
ctu BceesieHHOI, 3aKOH IUKIMYIHOCTH C [TOCJIEIOBATEILHBIM «Pa30paChIBAHUEM
KaMHell» U «CoDMpaHWeM KaMHel», 3aKOH HTPUIUHBI-CJACJACTBHUS... dejoBetde-
CTBO JIOJITO NPEOBIBAJIO U OCTAETCS JI0 CUX IIOP B OYEBHIHOCTH TPEXMEPHOI'O
MPOCTPAHCTBA C IPSMBIMU HAIIPABJIEHUSIMHU BJIEBO — BIIPABO, BBEPX — BHU3; B
OYEBUIHOCTH HECIIPABEJINBOCTH, T. K. OMEPUPYET OYEHb MAJBIMU II€PUOIAMUI
BPEMEHI; B HEBEKECTBE YBEPEHHOCTH B AOCOTIOTHOM IIPABE U BJIAJIEHUNA CBOUMUI
MBICJIAMU U 2KEJIAHUSAMU; ...

Cerognst, korjga CraHgapTHast MOJEb yXKe HeJI0CTATOYHA, JIJIsl OIUCAHUS
[IOJIy9aeMbIX yUYEHBIMEU pPe3yJIbTaTOB M CTAJM FOBOPUTH O pacimupennn CraH-
JapTHOH Momesu (XOTsl He BCe yUEHbIE ¢ 3TUM COIVIACHBI), KOCMOJIOIHs BILIOT-
HYIO IIOJIONLIA K M3YYEHUIO0 Y€PHBIX JIBIP, TEMHONU MaTEePUU U TEMHOH dHepruu
nu Toro cBera o kotopom mucas ®aopenckuii. Mbicab Kak sHeprusi, nHHOP-
MaIs IeperaBaeMasi CoO CKOPOCTbIO OOJIbIIIE CKOPOCTU CBETA, IIEPEIatia ee I10
MarHUTHBIM «TYHHEJISIM» U ODIIeHne MEXIYy MUPAMHU, ... — 3TO BCE yKe IMpe/l-
MEeThI UCCJIe0BaHUS HAYKU.

MsI cromM Ha TOpPOTe TOTO, 9TO HAYKA JIOKAXKET, U9TO JIOXKb, BOPOBCTBO,
3aBUCTDb, Y€CTOJIIOONE, HEBBITOIHBI, T.K. Y€JIOBEK ITO IIPOIECC IBOJIOINNA U €roO
Ku3Hb He orpanHmuuBaerca 80 — 100 romaMu 3eMHOI >KHU3HU U Ha OOJIBIIAX
BPEMEHHBIX U ITPOCTPAHCTBEHHBIX MHTEPBAJIAX 3aKOHBI DOXKECKUE O CIIPaBeIJIU-
BOCTH, TAPMOHUHU M PA3YMHOCTH CYIIEr0 HEYKOCHUTEJHHO coOJomarTcs. Ha-
VK&, 1 KOCMOJIOTHSI KaK €€ JaCTh, [IOMOXKET Pa3BUTh U MOBBICUTH MODPAJIbHBIE
OPHEHTHUPHI OOIIECTBA U T€M BO3bMET Ha Ce0s JacTh 3aJad PEJINTUU, HO HOBBIE
TaflHbI MUPO3JAHUsI BCTAHYT IIEPE] YeI0OBEYECTBOM U BEPA BMECTE C HAYYIHO-
du10cOPCKUME TEOPUSIME W Hay IHBIMH UCCJIEI0BAHUSIME IIPUHECET JIFOJSIM Be-
JINKYIO PAJIOCTh U CIEJIAeT UX COTPYIHUKAME IBOJIIOIUN.

06 sTom 29 mHosiOpsa 1996 r. mumcan Ilama Moann Ilasen II obpamasich
¢ mocnanneMm K Ilamckoit akamemun: «K cdacteio, [lepkoBb n HaydHOE COO0-
MIECTBO MOTYT CErO/iHs PACCMATPUBATH JIPYT NIPyra KakK IMapTHEPOB B ODOIIEM
CTPEMJIEHNU KO Bce 0oJiee COBEPIIIEHHOMY IIOHUMAaHUIO BcesieHHOI, TOil ClieHbl,
10 KOTOPOU YeJIOBEK HIET CKBO3b BPEMsl HABCTPEUY CBOEMY TPAHCIIEHIEHTHO-
My IpeJHa3HAYEHUIO. ... IpKuil mpumep oO0INero mHTEepeca HAYKW U PEJIUTHUH,
6oJtee TOrO, WX HYXKIBI APYT B ApPyre — TEMa BAIllero HBIHEITHErO COOPAHUSI:
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«BosHukHOBeHHE CTPYKTYphl BO BeejleHHO# Ha ypOBHE rajlaKTUK». DTOM KOH-
depenImeit Bbl 3aBepiiaeTe oOIIHI 0030p PUIUIECKOTO KOCMOCA.
Ilorpsicarome, 94TO ¢ MOMOIIBIO CJIOXKHON COBPEMEHHONH TEXHHUKE BBl «BH-
JUTEe» HEe TOJIBKO OOIMMPHOCTH BceseHHOI, HO W HEBOOOPA3UMYIO IHEPIUI0 U
JIUHAMI3M, TpOHU3bIBaomuil ee. Eme 60see mopa3uTenbHo TO, 9TO MOCKOIbKY
CHUTHAJIBI OT €€ CAMBIX JaJbHUX 00JIacTell mepeIaloTCs CBETOM ¢ KOHEIHOM CKO-
POCTBIO, BBI CITOCODHDI «3aIVITHYThH» B OT/IAJIEHHbBIE IIPOILIbIE STIOXH, & HE TOJIb-
KO OIIUCBHIBATH IIPOIECCHI IIPOUCXOISIIIE CENO/IHS. ... BbI, JIFO/M HAYKM, BHUMAsI
Or'pOMHO IyJIbcupylomieit BeesieHHOM 1 pa3raibiBast ee TaflHbI, OCO3HAETE, UTO
B HEKOTOPBIX TOYKAX HAyKa, BUIUMO, JOCTUTAET TOW TAWHCTBEHHON I'DAHUIIBI,
y KOTOPO# ee BOMIPOIIaHNE COIMPUKACAETCS cO cepaMn MeTA(PU3UKH U TEOJI0-
run. B pe3ynbTaTe 9TOro Hy:K/Ia B AMAJIOTE W COTPYTHUTIECTBE HAYKU U BEPDI
CTAHOBUTCsI Bee GoJiee YKUBOTPENeNty el 1 Maoroobemaromeii» [15].

5 oxmabpa 2015 e.
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MY SPACETIME: LINKING PAST, PRESENT AND FUTURE
IN AN UNBROKEN CHAIN OF ETERNITY

A. Azarova-Antonovat

They say living in the present is the only way to be happy. If so, why
do I so often tend to yearn for my past, trying to revive emotions and events
that turned to cold ashes a long time ago. What is it in my past afterwards
that makes it so attractive I can’t or even don’t want to let go of it. .. Or, what
is the past itself? Is it just my sweet memories, my unfulfilled wishes, my
unexpressed potential or something else?..

To understand this phenomenon, I start to analyse what I truly feel when
dwelling on the past — or rather on its brightest moments. First of all, I have
to admit that I feel comfortable, warm and safe — yes, I feel like being at a safe
distance, far away from the harsh modern day reality. Well, to some extent,
my past gives me a momentary solace and relief, which help me cope with a
day-to-day boring routine. The past helps me balance with the present.

However, there is something more to it than a perfunctory and brief relief.
The thing is that I had (or I seem to have had) a very abundant life in my past,
full of different kinds of events and experiences that would come and go, with
every day bringing in something new. Then I was young and therefore eager to
learn things, to absorb — even glutton — any piece of information coming from
everywhere. Perhaps, it is my adolescence that made my perception too sharp,
too acute, and too sensitive, no matter what I experienced — grief or joy, pain
or excitement. Perhaps, due to my acute perception and open-mindedness, I
thought I had been doing a big job in my life, implementing some important
tasks (the Mission?) that mattered, in a way, both to the other people and to
my spiritual progress.

Those days are all gone now. ..

However, memories still stay here to help me go through hardships and
ordeals that come up my way now and then. They help me face the current
days, full of frustrations, sadness and bitterness. When I recall my past happi-
ness in times of misery, it gives me strength and energy to go on. It gives me
a sense of meaning and purpose of my being. I say to myself — if I was happy
once, then I can be happy again, I can again enjoy the taste of life, I can again
feel important, individual and confident.

Well, I am talking about recollections of mind, and this is just the first
layer of memory. However, there is the second — deeper — layer of memory,
which entails reminiscences of Soul, recollections of its previous incarnations,
previous journeys and previous experiences with their effects still reflected in
my nature, character, and the circumstances that surround my relations. ..

1Journalist and editor for Ukraine Today channel. anna.azaroff@gmail.com

120



My Spacetime: Linking Past, Present and Future in an Unbroken Chain of Eternity 121

I think this ‘déja vu’ feeling is familiar to you all — for example, when
you walk through a brand new place and feel like you have been here before.
Or you meet someone for the first time in your (current) life and suddenly feel
like having strong and close ties with him/her. Our paths have crossed before,
now they are crossing again. And I ask myself - what does it mean to me now?
What for does this person appear in my life again? Shall I avoid or invite
him/her in my life to complete my unfinished tasks? Do we have to continue
our story or put an end to it? What roles shall we play now?

Memories of Soul can do some other tricks as well.

Sometimes I plunge in the past so deeply it becomes even more real than
reality itself. It is a bizarre yet exciting feeling — like going through a layer of
various dimensions, like being here and there and somewhere else just at the
same moment. I feel like being someone else when still remaining Me, Myself.
Perhaps this is a moment when I am truly awakened to some parts of my inner
world, which were hidden (rooted) in my unconscious to come out as a sudden
revelation. Each of this part also has its own past life memories to give me an
idea who and what I am or was or can be or had better not be...

This multifaceted and multidimensional state of mind is equally as dan-
gerous and destructive as conducing and healing. (It is just a tool, and the key
issue is to learn how to use it in a proper way. Now I have arrived at the very
core of my analyses, this is the cornerstone of the whole story...) This can be
utterly ruinous only in case I start comparing my present and my past, with
a distinct preference to the latter (while indulging myself in a sweet memory
pie). In this manner I pump the vital energy out of my present and give it away
to my past, thus stripping my future of its great potential. As a result, sub-
consciously, I know that nothing good awaits me in future, and consequently I
feel upset, depressed and frustrated. Then the vicious cycle starts rotating. ..

This is how this foul scheme works — but only if I resort to comparative
assessment. Although, when I don’t make evaluative assessments, when I ac-
knowledge what I feel without judgment, my past memories (deprived of energy
now) remain just. .. memories, which like fragments fall into one picture — my
rich, wonderful and precious experience.

That is it. It is purely my experience and I have to treat it in a right
way. My life is the process of going through a combination of states, of being
and becoming. If T focus only on the past memories, I fail to pay attention
to what’s going on in the present. If I dream of the future, I will get lost in
fantasies leading me nowhere.

The best compass to guide me to the lighthouse is embracing whatever
happens in my life: the past with its mighty history, the present with its
poignant reality, and the future with its promising perspectives. I have to
embrace it all to keep things going and write a new chapter of my life.

When I take my past as it is with all its lessons useful for the present,
it gives me energy and hope for the future. Here is where the circle of LIFE
starts rotating to produce the beautiful formula of my personal Spacetime:
“Trapped in the Past = Fearful Hopeful of the Future”.

Here is where the Eternity steps in. ..
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CIRCLES ACROSS UNIVERSE

I am the Rock, hidden under the inevitable dust,

(I wonder if ever the celestial sphere will condescend to embrace me?)

It might have been the Lord who flung me away,

Or perhaps it was Lucifer who kicked me off ...

Though scorched by the sun, still I remain cold,

Though worn away by the constant water dropping, and subdued by the
seasonal snow,

Still I can feel, I can breath and I can see,

I am the Rock, I am the Faith coming from above.

I know what it feels like carrying the burden of the terrestrial gravity

Against the arrogant wind trying my patience with hundreds of its tricks,

I am the groaning of the Tablet, which gives birth to the Word,

I am the Rock — I am alive!l So are the purple streaks throbbing on my
skin

And shaping an intricate pattern of my future and past lives. ..

Constrained within myself, I am absorbing the outer Space,

I am the Rock, I am the flame concealed in a stone goblet.

I am Creator’s first attempt, his initial design,

And his incipient premonition, which pre-shaped the first ever human
heart. . .

I am grey, and therefore invisible when lying on the grey ground,

However, this is what makes my fragile carcass firmer and safer. ..

I am the Rock wrapped in a limp cocoon,

I am the moss-covered, worm-eaten mystery of the Being,

Call me a tombstone, a wall-stone, a cornerstone!

I am a block bearing the Universe,

I am the living soul of the co-creation process. ..

I am the Wanderer, who does not move,

But keeps going along the path of repentance —

At the end of my journey I will be freed (with a knowing grin on my face)

And T will sink in the starry Heavens

Sending circles across the Universe. . .

I am the Rock, I am the Rock. ..
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ITOBIJIOMJIEHHST TAKOXK BITAIOTHCS.
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