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ON NONAUTONOMOUS MARKOV EVOLUTIONS
IN CONTINUUM

M. Friesen,! O. Kutoviy?

Abstract. The nonautonomous Cauchy problem in a scale of Banach
spaces is investigated. The existence and uniqueness of solutions to this
problem is proven. The obtained results are applied to several dynamics
of Markov evolutions in continuum (e.g. spatial logistic model, Glauber
dynamics, etc.).
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1 Introduction

A possible way of describing dynamics of complex systems of interacting parti-
cle is to assume that the elementary acts of the evolution occur at random and
the evolution itself is Markovian. Among the mentioned elementary acts one
can distinguish birth, death and motion. The rates at which they occur may
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depend on the actual state of the system and on the environment. Among var-
ious problems coming from the natural and life sciences the existence of state
evolutions for wide classes of intensities (e.g. time dependent intensities) seems
to be one of the fundamental problem. The evolution of states is informally
given as a solution to the initial value problem:

d
5<F, pe) = (LE, pe),  fiele=0 = po,

provided, of course, that a solution exists. Here L is an informal generator
which describes the functional evolution of the system

0
ot t ts t|t70 0

and

(F, ) = / F()du(y).

One of the aims of the present paper is to develop methods to solve nonau-
tonomous Cauchy problems in a scale of Banach spaces B, which will be used
to treat systems with time or enviroment dependent intensities. Our main
technical tool is a general theorem by M. Safonov from [26] and several con-
clusions, obtained in the present paper. Using this theorem we will prove the
existence of solutions on a bounded time interval for several models and in
some cases we will give conditions for the existence of solutions on unbounded
time intervals. The first part will be devoted to the general theory of nonau-
tonomous Cauchy problems on scales of Banach spaces. A version of the gen-
eral theorem by Safonov for linear operators will be proven. Afterwards we
will extend this theorem for weaker assumptions, where the generator consists
of two parts L = A + B and only the second part satisfies the assumptions
of the general theorem of Safonov. This technique will be used to prove a
continuous dependence of the solutions on parameters. Markov evolutions of
continuous interacting particle systems were studied by many authors for time
independent coefficients. In the present paper we are going to be focused on
nonautonomous models of birth and death type. However, the abstract results
obtained in this paper may be applied also to other classes of Markov evolution.
In our approach, populations will appear as particle configurations forming the
following phase spaces

I =TRY) ={ycR?: |[yNK|< oo, VK C R compact}.

One of the most simplest models of birth and death type is the so-called Sour-
gailis model. The mechanism of its evolution is given by the following heuristic
generator

LE)) =m 3 (FO\a) = F) 45 [ (Fyuw) ~ Fo))de (1)

xrey R

with m, k > 0, cf. [27, 28]. In (1), the first term describes the death of the par-
ticle located at x € 7 occurring independently with the rate m > 0. The second
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term in (1) describes the birth of a particle at 2 € R? with the constant rate
k > 0, which is independent of v € I". The corresponding state evolution as
well as ergodic properties of the process were recently studied in [3].

Another model for Markov evolution which includes interaction between
particles in the birth mechanism is, for example, the continuous contact model.
It can be described by the formal Markov generator

—m Y (F\z) — F() + / S ae,y) (F(y Uy) - F(7)) dy,

TEY R TEYy

where m > 0 and a(z,y) > 0. The first term (death) is the same as for
Sourgailis model and the second term describes the birth of a new particle at
y € R? given by the whole configuration v with the rate > a(z,y) > 0. This
xrey

model was studied in the translation invariant case, i.e. a(z,y) = a(z —y) =
a(y — x), in [18] and [20]. In [20] the authors proved the existence of the
corresponding process for a dispersion kernel a € LP(RY), p > 1 with compact
support. The evolution of correlation functions and invariant states for the
contact model were studied in [18].

A generalization of the previous model which includes local regulation in
death is described by

(L)) = Z(m+ 3 a-<x,y>) (F(\y) — F(7))

ey yEY\T
+3 [at @ Ea Uy - Fo)
:cE'de

with a competition kernel a= : R? x R — R, a dispersion kernel a* :
R? x R — R, and a mortality rate m > 0. Such model is called spatial lo-
gistic model or Bolker-Dieckman-Law-Pacala (short BDLP) model. A detailed
analysis of this model in the case of translation invariant kernels may be found
in [5, 7].

Another example of birth and death type dynamics is a non-equilibrium
Glauber-type dynamics, described by

—m S (F(1\e) — F(9)) + = / e B@N(F(y Uz) — F(y))da

reY Rd

with E(z,7) = . é(z,y), where ¢ : R? x RY — R is a pair potential.
yEY
For non-negative translation invariant potentials this model was discussed in

[4, 6,11, 12, 17, 19]. The reversible states for these dynamics are grand canoni-
cal Gibbs measures. This fact gives a standard way to construct properly associ-
ated stationary Markov processes using the corresponding (non-local) Dirichlet
forms related to the considered Markov generators and Gibbs measures. These
processes describe the equilibrium Glauber dynamics which preserve the initial
Gibbs state in the time evolution, see e.g. [19]. The construction of a non-
equilibrium Glauber-type dynamics was done in [17]. It was based on a general
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approach for the construction of non-equilibrium evolutions developed in [16].
In [6] the authors have shown that the correlation functions corresponding
to Glauber dynamics converge to the correlation functions of the equilibrium
state. Using Ovsjannikov-type technique in [4] an evolution in a scale of Ba-
nach spaces for quasi-observables and correlation functions was proved. In
contrast to [6] in the present paper no conditions on z and = [ 1— e @) dy
Rd

are imposed. The same technique was used in [11] to analyze the evolution of
Bogoliubov generating functionals. In the present paper the similar arguments
will be used to generalize the existence results, although only existence and no
further properties will be studied.

Chapter 3.5 of this paper is devoted to the general birth and death Markov
dynamics, given by

(LEF)(y) = Zd(zﬁ\w)(F(v\w)*F(W))Jr/b(x,v)(F(vUz)*F(V))dﬁ (2)

TEY Rd

Using a semigroup approach the existence of a solution to the corresponding
Cauchy problem for quasi-observables and correlation functions were proven,
cf. [8]. The authors further have shown that under several conditions there
exists a unique solution to the stationary equation L2k = 0, which can be con-
structed by the “generalized Kirkwood-Salzburg” operator. Here L® denotes
the generator for the evolution of correlation functions. In this paper we will
also study these equations in the class of sub-Poissonian correlation functions.

The structure of the paper can be described as follows. At the beginning
we give a brief outline on the continuous Sourgailis model. An explicit solution
for correlation functions k; will be given and differentiability on some Banach
spaces will be proven, assuming the initial data are regular enough. The pos-
sibility to solve all equations explicitly suggests this model as a play model.
Further questions concerning this model deal with random time dependent co-
efficients.

In sections 3 and 4 the existence of solutions for quasi-observables in the
case of BDLP and Glauber dynamics will be proven and, further, the evolution
of correlation functions and Bogoliubov generating functionals be considered
for Glauber dynamics. The assumptions are likely the same as for the time
independent results, despite all inequalities should hold uniformly in time.

In the last section we will prove existence of solutions for infinite time
intervals for general birth and death dynamics with the time dependent coef-
ficients. Here the time dependence will enter only multiplicatively, i.e. d; =
m(t)d and b, = k(t)b (cf. (2)), since we need precise information about the
domains of the corresponding generators.
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2 Evolution Equations in Scales of Banach
Spaces

2.1 General setting

Let X be a Banach space, let [0,7] = I C R be a compact interval, and
let (L(t), D(L(t)))tefo,r) be a family of operators on X. Our main object of
investigation is the following nonautonomous Cauchy problem

() = Deutr), t2 5, te 1, u(s) = ug (3)

on X for 0 < s < T. Such equations were analyzed in, e.g. [13, 22, 23]. The
aim is to construct an evolution family

A3 (ts)— Ut s) € L(X),

where A = {(t,s) € I x I : s <t }. This map should be strongly continuous
and should have, instead of the usual semigroup property, the evolution family

property
U(s,s) =idx, U(t,q)U(q,s) =Ul(t,s), 0<s<qg<t<T.

In order to give sense to the right hand side of (3), i.e. L(t)u(t), we should
assume u(t) € D(L(t)) or more generally

u(t) € [ D(L(s)) C X.

s€[0,T]

In general it is difficult to characterize the explicit structure of D(L(t)), which
is one of the major difficulties in this approach. Therefore one restricts to some

smaller subspace. Assume there exists a Banach space Y C () Dom(L(¢)) C X
tel
such that for each v € Y the mapping

A>(ts)—Ut,s)ue X

is differentiable with derivatives

aa—lt](t, s)u = L(t)U(t, s)u, ——(t,s)u = —=U(t,s)L(s)u.

Then we can formally write the solution to (3) as
u(t; s,up) = U(t, s)ug.

Similarly, the expression L(t)U(t,s)ug would be well-defined if we assume
U(t,s)ug € Y, so U(t,s)Y C Y, which will be assumption in Theorem 2.3.
This considerations motivate the following definition of a solution to the above
nonautonomous Cauchy problem (3), which can be found, e.g., in [24].
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Definition 2.1. Let XY be Banach spaces such that Y C X is continuously
and densely embedded. For a family of operators (L(t), D(L(t))):c[o,r] assume

Yc () DL@®)cCX.
t€[0,T]

A function u = u(t) is called Y-valued solution of the nonautonomous Cauchy
problem (3) with initial condition ug € Y, if it has the following properties

1. ue C(0,T;Y)NCLH([0,T]); X)
2. u solves (3).
The derivatives at t = 0 and ¢t = T will be always defined by

ou, . u(h) —u(0) Ou,. . w(T) —u(T — h)
E( T 00 h ’ E(T o h—>él,mh>0 h

Note that in contrast to a classical solution we impose continuity in the
Y-norm, which is a stronger condition than just u(t) € Y C D(L(t)). Contrary
to the general semigroup theory, where the semigroup is always differentiable
on the domain of its generator, it is possible that an evolution family is nowhere
differentiable. Now we will state two results due to [24] for existence of evolution
families under conditions know as “the hyperbolic case”. For this let us recall
the definition of admissibility.

Definition 2.2. Let (L, D(L)) be the generator of a Co-semigroup (T(¢))¢>0
on X and Y C X a subspace. Y is said to be L-admissible if T'(¢)Y C Y holds
and the restriction T'(t)|y is a Cp-semigroup on Y.

In [24] it was shown that this is equivalent to the condition that the part
L of L onY is again a generator of a Cy-semigroup. This semigroup is then
given by restricting T'(¢t) to Y. The part L of L on Y is defined as

D(L)={ueYND(L): LueY}, Lu=Lu, forue D(L).

Theorem 2.1 ([24]). Let X,Y be Banach spaces such that Y can be densely
embedded in X and let (L(t), D(L(t))):cjo,r) be generators of Co-semigroups
((e™E®) 1 50)teo,r) on X. Assume that the following conditions are satisfied:

1. L(t) is Kato-stable, i.e. AM > 1 and w € R such that (w,00) C p(L(t))
for allt € [0,T] and

k

||e7'kL(tk) o eTlL(tl)HX < Mewj§1 i

forall0 <ty <. <t <T,keNandmn,...,7u, >0, where p(L(t))
denotes the resolvent set of L(t).

2.YC () D(L(t)) and
te[0,T)

Ist— L(t) € LY, X)

is continuous in the uniform operator topology.
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3. Y is L(t)-admissible for all t € [0,T] and L(t) as the part of L(t) inY is
Kato-stable.

Then there exists a unique evolution family (U(t, s)),s)ea with the properties:

1 U, s)||px) < Me*t=%), (t,5) € A

. (%ZY (t,8)—stt = L(s)u

ou

0s

for w € Y. Here the derivatives are considered in the sense of the norm in X

3. (t,s)u = —U(t,s)L(s)u

+
and (aag) (t, 8)|t=su is the right-sided derivative evaluated at (s, s).

Remark 2.1.

1. Kato-stability is neither necessary nor a sufficient condition for the exis-
tence of an evolution family. In [23] the authors gave a counterexample,
where an evolution family exists, so the Cauchy problem (3) is well-posed,
but the stability condition is not satisfied.

2. The main idea of the proof is to consider a sequence of with respect to
t piecewise constant operators A,(t) and define appropriate evolution
families U, (¢, ), which are piecewise continuously differentiable on X for
u €Y. After showing the existence of a limit U(t, s) in the strong sense
on L(X) it remains to show that the differentiability property still holds.

3. It is possible to replace continuity of ¢t — L(t) € L(Y, X) by the weaker
assumption
L(-) € L'([0, T, L(Y, X)).

In this case the strong differentiability for (¢,s) € A holds only almost
everywhere.

To obtain stronger differentiability properties for U(t, s) we should know
further properties of the evolution family. In a scale of Banach spaces these
properties can be easily checked. As already mentioned we should assume

oU(t
U(t,s)u € Y for u € Y to give meaning to the expression %u =
L(t)U(t, s)u. This will be the content of the next theorem, cf. [24].

Theorem 2.2. Let X,Y, L(t),U(t,s) be as in Theorem 2.1. IfU(t,s)Y C Y
holds and the mapping
A3 (t,s) — U(t, s)u

is continuous in'Y foru €Y, then U(t, s) satisfies the stronger differentiability

property
ou
e (t,)u=L&)U(t,s)u, 0<s<t<T.

Consequently equation (3) has a unique Y -valued solution given by U(t, s)ug =

u(t).



12 M. Friesen, O. Kutoviy

2.2 Scales of Banach Spaces

In this section we will introduce the notion of a one-parameter family of Ba-
nach spaces and state some consequences for the corresponding nonautonomous
Cauchy problems, which will be useful later.

Definition 2.3. A scale of Banach spaces of type 1 is a one-parameter family
Bos | - |lo)an<a<ar With a, < o satisfying

o <a=|lla<| o Ba CBa.

Analogous, a scale of Banach spaces of type 2 is a one-parameter family
(Blou H ’ Ha)a*gaga* with

o <a= | |la < llay B, CBL.

B, will always denote a scale of Banach spaces of type 1 and B/, a scale of
type 2.

The family of weighted LP spaces is a natural example for scales of Banach
spaces. Let (2, ) be a measurable space and w : & — R, be a measurable
function. Define the weighted LP spaces by

B, — {f QK 7 = [ @peaut) < oo}
Q

for 1 < p < oo and for p = co as the weighted Banach space with the norm
[ £lla = ess sup |f(a)[e >,
e

Clearly (B, | - |l«) is a scale of Banach spaces of type 1 and B, = B_,, a scale
of Banach spaces of type 2.

Remark 2.2.

1. We do not impose conditions whether the embeddings from the smaller
into the bigger Banach spaces are dense. In applications we will consider
the scale of L'- respectively L>®-type spaces, so this condition would not
hold for B,. In [2] the author uses the density of embeddings to prove
some sufficient conditions for the well-posedness of equation (3).

2. In general, the spaces B,, |J Bo and (] B~ are different for a scale
a'<a a’’ >a

of type 1. The same is valid for a scale of type 2.

Using this approach, one has the possibility to overcome the difficulty of
the time dependence of the domain D(L(t)). More precisely one would like to
consider the operators L(t) as bounded operators acting from smaller into a
bigger Banach space, cf. [2, 5, 11]. Using this, one could consider the operators
(L(t), Dom);c(o,7) on B, with the domain

Dom = U B

o' <«
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for a scale of type 1. In the case of a scale of type 2 one has Dom = |J B.,.
a<a'
Except for Theorem 2.1 and 2.3 we do not need any conditions of closedness

of the operators for this approach. Unfortunately, the solutions will only exist
on a bounded time interval [0, 7). As a consequence of the proof we will see
that the solutions evolve in this scale of Banach spaces.
Now assume Y < X are Banach spaces and I 5t — L(t) € L(Y, X)
is strongly continuous. Then sup ||L(¢)u|lx < oo holds for all u € Y and
tel

by Banach-Steinhaus theorem L(t) is uniformly bounded in t € I, i.e. M :=
sup || L(t)||(v,x) < oo. Moreover, for each function u € C([0,7];Y’) the map-
tel

ping I >t — L(t)u(t) € X is continuous, which follows for tg,¢ € I from

[IL()u(t) — Lto)u(to)l|x
[L(@)u(t) = L(t)ulto)l|x + [IL(H)ulto) — L(to)u(to)llx

<
< Mlfu(t) - ulto)ly + IL()ults) — Lits)ulto)l|x-

For our calculations, we will need the following product formula for evolution
families, which proof shall be omitted.

Lemma 2.3. Let Y < X be Banach spaces, U : A — L(X) strongly contin-
uous in the second variable for fired t € I and let s — U(t,s)u € X be con-
tinuously differentiable for fizredt € I and uw € Y. Then for each u € C1(I,X)
such that u(t) € Y with t € I the equation

0 oU ou

s (U(t, s)u(s)) = E(t’ s)u(s) + U(t, S)E(S), (t,s) € A (4)
holds on X.
Remark 2.3.

1. Of course, we can apply this lemma for strongly continuously differen-
tiable evolution families as in Theorem 2.1 and 2.3.

2. In many applications the so-called exponential growth condition
Ut )] px) < Ce=)

is satisfied. Nevertheless there are evolution families that do not have
exponential growth. For example denote by X the space of all continuous
bounded functions f : R — R and let 0 < p : Ry — R, be bounded.
The expression

Ult,s)f(x) = ==f(z), z€R
. _ p@®) .
defines an operator U(t,s) € L(X) with [|[U(t,s)||rx) = 0s); If pis
p(s

not bounded away from 0, then clearly U(t,s) cannot be exponentially
bounded. Note that a strongly continuous semigroup (T'(t));>o always
obeys a bound [|T(t)||x) < Ce“".
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2.3 The Space of Solutions

At first, we will give a formal definition of a solution to equation (3) in a scale
of Banach spaces. The idea is to consider solutions in some Banach space B«
with the property that for each ¢ there exist oy such that u(t) € B,, holds.
Additionally we would like to have the differentiability property for each « in
the space B,. In other words a solution is a consistent family of solutions in
the spaces B,,.

Definition 2.4. Given a scale of Banach spaces of type 1 and L(t) € L(By/, Bs)
for o/ < a and ¢ € [0,T]. A solution in the scale B, to the Cauchy problem

(1) = Liyu(r), u(0) = o € B, 1€ [0,7] )

is given by a continuous, monotonically increasing function (au,a*] 3 o —
T(«) > 0 with T(a) < T, which we will call time data, and an element

u € CH[0,T(a*)); By-)

satisfying u(0) = up and for all a € (v, a*] we have

Uq = Ul[0,7(a)) € CH[0,T()); By) (6)
and 5
%A (1) = Lty 1)
in B,.

Given a scale of Banach spaces of type 2 and L(t) € L(B/,B/ ) for o < a.
A solution in the scale B, to the Cauchy problem

ou

a(t) = L(t)u(t), u(0)=wup€B.., te][0,T]

is given by a continuous, monotonically decreasing function [a.,a*) > a —
T (o) > 0 with T(a) < T and an element

u € C([0,T(e)); By, )
satisfying u(0) = up and for all a € o, a*) we have

Ua = tjo,7(ay) € C1([0,T(a)); Ba)

and 5
Ue
ﬁ(t) = L(t)ua(t)
in B.,.
Remark 2.4.

1. The time data T'(«) may depend on the initial condition. Nevertheless
in our approach this will not be the case.
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2. If we start with some given T'(«) > 0 and unique elements u, as in (6)
satisfying the corresponding equations one can show that u := uy~ is a
solution in the scale B,.

3. The continuity and monotonicity of T'(«) implies that for ¢t € [0,T(x))
there exists some o’ < a such that 0 < ¢ < T(a’) < T(«) holds. Thus
one has u,(t) € By and hence L(t)uq(t) is well-defined as an element in
B..

It is possible to rewrite the problem (5) in the integral form

which proof shall be omitted.

Lemma 2.4. Assume that [0,T] >t — L(t) € L(By,By) is strongly contin-
uwous for any a,a’ with a, < o < a < a*, then the following statements are
equivalent:

1. w is the solution to (5) in the scale By with the time data T'(x)
2. uwe C(0,T(a)); By) for all o € (v, @*] and solves

u(t) = uo + / L(r)u(r)dr € Bo, uo € Ba, (7)

0

fort € [0,T(«)), where T(a) < T is continuous and monotonically in-
creasing.

With the help of Lemma 2.8 it is easy to show the existence of a solution

to equation (5) on a bounded time interval. Assume ||L(t)|qa < - for
o —

o/ < « and that [0,7] 2 ¢t — L(t) € L(B,,B,) is strongly continuous, where
| - |la’a denotes the operator norm on L(B,/,B,). We will show this only for
a scale of type 1, since the other case can be shown analogous. Let ug € By,
and define the sequence

uo(t) =g, Uny1(t) =wo+ [ L(7 7)dr, n € Ny, (8)

S—_ .

which satisfies

t t1 th—1

:uo—l—zn://... / L(t1) ... L{ts)uodts . .. dts € C([0,T(a)); By).

k=109 0

For n € N and o, < a < o* define

o — Oy

€= and o = o, + je for 5 =0,...,n, (9)
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so we have ag = v, o, = @ and oj41 — a; = € and hence

1 tn—l

A

Using Stirlings formula we see that the right hand side is summable in n € N
for |t| < T'(«) with

[un(t) = un—1()]la <

w.dty .. dt

o (10)

:’_\ = O\w

o —
eM
Hence, (un(t))nen C B, is a fundamental sequence and therefore has a limit
u(t) = HILH;O un(t) € B, for ¢t € [0,T(c)). Moreover, the convergence is uniform

T(a) = (11)

on each interval [0, s] C [0,T(«)). To show this, consider for n < m

m—1 0o y k
[lum (t) — un(t)|la < Z llugs1(t) — ug|la < Const. Z (T(a))
k=n k=n

and obtain by passing to the limit m — oo

oo k
un(t) = u(t) o < Comst. S (T(ta)> .

k=n
Therefore u € C([0,T(a)); B,) and by

n+1 n
L0 - L O < (F) ol

nM 1 tnM \"
l[uollo. —
n!

O — Qg O — Oy

the convergence L(t)u,(t) — L(t)u(t) holds uniformly on compact intervals
t €10,s] C [0,T(c)). Consequently taking the limit in (8) we obtain equation
(7).

Remark 2.5.

1. In the same way one can show the existence for arbitrary initial times ;.
In this case we would have the condition |t —ty| < T'(«) for convergence.

2. The difficulty is to show that the solution above is unique. Our assump-
tions on L(¢) do not allow to apply the Gronwall Lemma. To overcome
this difficulty we will solve the corresponding integral equation (7) in
some Banach space S?, which reflects the properties of a solution in a
scale B,.

The general result for a quasilinear Cauchy problem in a scale of type 2
was published by Safonov in 1995 in [26]. Here we will only present a proof
for the linear equation in a scale of type 1. The last result suggests that

T(a) = a —)\a* for A > 0 is a natural candidate for the time data. This

motivates the following definition.
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Definition 2.5. For A > 0 and 8 > 0 let
58 (0m 0", \) = 8¢ = {“ e N ofp5)m) |y < OO}
ax<a<la*
for the type 1 scale and
58 (0ma®, \) = 5 = {“ e N o5t m) | me < OO}
ax<a<la*

for the type 2 scale. The norms are given by

||u||(15) = sup (a—ax — )7 [Ju(t)]a
a€lay,a*], te[0,T1(a))
lufl$? = sup (0 = a = xt)7||u(t)|a
a€las,a*], t€[0,T2(a))
with Ty (o) = C- % and Tr(a) = i

Here we use the notation C([0,0);B,,) = B,, and C([0,0);Ba) = Bos.

Clearly this spaces are complete and therefore Banach spaces.

2.4 Existence of local solutions and properties

In the main part of this section we will discuss two possibilities to show existence
of solutions to (5). The first existence result is a simplified version of the general
result from [26].

Theorem 2.5. Consider a scale (Bq, |- |la)a.<a<a+ Of type 1 and assume that
there exist Ay > 0 and M > 0 such that
o — a, . ;
1. [O, A) S t+— L(t) € LBy ,B,) is strongly continuous for any
a

o < a
M a
2. |IL(t)lara £ —— for any o/ < a andt € [0’ M)
a—« )\a

Then there exists \g > Ag > 0 and Ty : (a.,a*] — Ry continuous and
monotonically increasing given by

Ta(a) = & ;O‘*, with A > Ao

such that for each initial condition ug € By, there exists a unique solution
u € Sf()\) to the Cauchy problem

ou
5 (0 = Lt)u(t), u(0) = uo

in the scale B, .
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Assuming we have proved this theorem, we can also state the following
version.

Theorem 2.6. Consider the type 2 scale (B, || - [|a)a.<a<a and assume that
there exist Ay > 0 and M > 0 such that

1. [O, %) >t L(t) € L(B,,B!,) is strongly continuous for any
a
o <a

*

forany o <« andt € [O,%).

2. L) laar <

a— o

Then there exists Ao > Ao > 0 and Ty : [an, ™) — Ry continuous and
monotonically decreasing given by

Th(a) = ; . with A > g
such that for each initial condition uy € BL. there exists a unique solution
u € Sg()\) to the Cauchy problem

ou
%ty = L(tyutt). () =y

in the scale B, .

Proof. Define the spaces B, = B, 4 o-_q with the norm || - ||, = [| - [la.+a*—a
for a, < a < o and apply the first result. O

Now we will prove the first stated version, namely Theorem 2.11.

Proof. By Lemma 2.8 it is enough to solve the equation
t
Mﬂ:um+/LhMﬁMT:um+Hw@)
0

in the space S7. So let A > A\, and S > 0. To abuse notation, we will write in
this proof || - |®) for the norm || - ||§ﬁ).

1. For u € S% we have: ||L(-)u(-)|[|®+D < M28+1||ul|(®).

O —
and take o/ < « so close to a that we have

Indeed, let 0 < t <

/ — j—
0<t< a )\a* <2 /\a*. Thus u(t) € By implies L(t)u(t) € B, and

since a and ¢t were arbitrary we obtain

O — O

A
Now let a € (s, @*] and t € [0, Tx(«)) be arbitrary and define

L(t)u(t) €Ba, 0<t<

p=a—a, — M, a’:a—g.

For such p and « the following holds



On nonautonomous Markov evolutions in continuum 19

and hence we obtain

a — a, — \t)PTL
(a— o = AP L(tut)|o < ! a—a/) [w(®)]or

= M2~ an— M) u(t) o
M2+ |u)| )

IN

which implies ||L(-)u(-)[|®+1) < M25+1 ||y ).

M2Bs+1
<
= 7
Indeed, let a, < a < a* and t € [0,T\(«)), then we have

t
/UTdT
0

. For u € S+ we have: || Tu|® [[e]| B+,

t

t
/HU(T)HadT < /(oz—a* —)\7-)*5*1d7-||u“(ﬁ+1)

@ 0 0

IN

(8+1)
=~ %(O&-(X*—)\t)ﬁ
IMW“
and so H f T)dT H ) . Now the statement follows from
0
h (8)
1 M2P+
| Tu||® = H/L Du(r)dr|| < —<||L(-)u(-)||P) < —— ||u||<6 .
) BA BN
M28+1
. We saw that for all A > max{\,, ———} =: Ao > A,
B
IWW@< me<WWm
holds. Let ug € B,, be arbitrary. Using
[uol| P = sup (@ — ax = AP ||uglla

a€la.,a*], t€[0,Tr(a))

< sup (a@—a. — )\t)ﬁ> |
a€lo.,a*], te[0,Tx(a))

one sees that uy € S# and hence the sequence (u(k))keN given by uw©® =g
and w1 = yy 4+ Tu® satisfies u(®) € SP, cf. Definition 5. Due to

IN

[+ 6) < (iﬂ) u) — @)
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this sequence has a limit u € S8. By definition this limit satisfies

u(t) = ug + /L(T)u(T)dT7 vt € [0, Th())
0

O — Oy

with the time data Th(«a) = 3

4. For uniqueness let v € S? solves the Cauchy problem with the zero initial
data or equivalently

v(t) = | L(t)v(r)dr = (Tw)(¢).
/

A
So w is a fix-point of T and because of ||T[|1(gs) < 70 < 1 we have that
v=0. O

Remark 2.6.

28
1. Minimizing the expression 7 we obtain for 8 = and A\, small

1
log(2)
Ao = 2eM log(2) = eM log(4).

So up to the factor log(4) this is the same time data as in the first existence
result, cf. (11).

2. Note u(t) € [\ B, where a4 is given by

a>og

< 0 < a, + Mt < ay.

Thus we have u(t) € () Ba.
a>a.+At

3. Now we have solved the Cauchy problem for each 8 > 0 and A > Ag, so
there are solutions u = ug . For each A > Ao and 8’ < 3 the inequality

(a—a,—At)? = (a—a,—M)P (a—a—At)P 7 < (0" = )? P (a—a— M)

implies |- |7 < (a* — o )?=F'||- H’f/ The same holds for a scale of type 2.
Consequently we obtain $# < S# for each 8/ < 3. Since Ay depends on

8 we use Remark 2.12.1 and chose § = m to obtain solutions on the
biggest possible time interval. But in the same way

(= ay — At)? < (a—a, — Nt)P
for M < X implies that the solutions satisfy

ugA(t) =uga(t) fort e [0,Ta(a)) C[0,Th()).
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So taking 8 =

1 — Qe . .
and T(a) = 2% we obtain the existence of a
log(2) Ao

. . « Qx . .
unique solution w : [O, A) — B,~. By construction each restric-
0

tion to [0, Th(«)] corresponds to some element
ulp7 ()] € C* (0, Ta(e)); Ba)

for A > Ag and sup (@ — a, — At)P|Jullo < oo solving the
a€la,,a*],te[0,Tx(a))
Cauchy problem in B,,.

Now let A > Ag, ug,vo € B, be two initial conditions and w respectively
v the corresponding solutions. Then we have

Ao
= 0]| % < Jlug = vol| P + | T'(w — )| < Jlug — vol| P + 5 Ml —o||®

and hence N
— I8 < — o8
[u—of*” < )\_)\OHUO vl
Taking into account that
luo — wol| P = sup (@ — = At)7[|ug — volla

a€lag,a*], t€[0,Tx(a))

< (o =) lug — vl

oy

we can rewrite

A

20 =) ug —

_ 1B <
Ju— ol < 5

Qs

or using « € (a.,a*] and ¢ € [0, Ta ()

Qe

* B
A ot — .
u(t) — v(t < Uy — U
Jutt) = o)l < 325 () Mo vl
This shows, that the solutions depend continuously on the initial data ug, vg.
It is possible to show a stronger result, but this part shall be omitted. Now
we would like to handle the situation, where L(t) does not satisfy an esti-

mate ||L(t)||oa < In applications effects like pair interaction lead

.
to operators, which do not satisfy above estimate. Nevertheless the follow-
ing approach may be still applicable. Assume L(¢) can be decomposed into
L(t) = A(t) + B(t), where B(t) still satisfies this assumption. If we can solve
the Cauchy problem for A(t) with an evolution family, one can try to solve the
Cauchy problem for L(t) using similar arguments like the ones before. This
approach is realized in the next theorem.

Theorem 2.7. Let (Bo, || - lla)a.<a<a+ be a scale of type 1 and Ag > 0 such
that A(t) satisfies the following assumptions

a* — o,

— | 2t
" ]2t+—

1. For all o/ ;a0 with a, < o' < a < a* the mapping [0,
A(t) € L(Bo,By) is strongly continuous,
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2. For all a € o, a*] there exists an evolution family U : A — L(B,) such

that ||U(t, )| L,y < 1 for (t,s) € A={(t,s) € [0, " 12: s<t},
3. Foralld < a and u € B,
A (t,8) — U(t,s)u € B,
is differentiable with derivatives
%—I;(t,s)u = AWU(t,s)u, 0<s<t< O‘*A_ao‘*
and oUu a* — a,
g(t,s)u =-U(t,s)A(s)u, 0<s<t< N

ou
In the case of s = t the derivative —(t, s)u is to be understood as a

ot

right-sided derivative.

*—OZ*

Further assume that [0, a ] >t +—— B(t) € L(By,B,) is strongly con-

M

—ad

Ao > Ag > 0 and T : (o, @] — Ry continuous and monotonically increasing
given by

a

tinuous for all o < « satisfying ||B(t)||lara < Then there exists

O — Ol
A

such that for each initial condition ug € By, there exists a unique solution u
in SP(\) to the Cauchy problem

du
ot

T)\(OZ) =

with A > Ao

(t) = (A@t) + B(t))u(t), u(0) = uo (12)

in the scale B, .

Analogous to the previous result the first step is to reformulate the Cauchy
problem in the integral form. This will be the content of the next lemma, for
which (4) is needed.

Lemma 2.8. Let A(t), B(t),U(t,s) be like in Theorem 2.13. Then the follow-
ing statements are equivalent:

1. w is a solution to (12) in the scale (Ba,| - |la)a.<a<a+ with a time data
T(a) >0

22ue () C(0,T());Bn) solves the equation

u(t) = U, 0)up + / Ut 1) B(r)u(r)dr (13)
0

in By fort € [0,T(a)) and a € (au, a*].
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Using Lemma 2.14 we are now in a position to prove Theorem 2.13 in a
scale of Banach spaces of type 1.

Proof. For A > A, we will solve the equation (13)
¢
u(t) = U(t,0)ug + / U(t,7)B(T)u(r)dr = U(t,0)ug + (Tu)(t).
0

Write [|-|®) and T} as before. Using |U(t, s)||rz,) < 1 we obtain for u € S5+,
a € [ay, ] and ¢ € [0,T)\(«)) by the proof of Theorem 2.10

t

£ — A
vt /Hu ot < @220 e,
0

JU(C, )u(r)dr
0

®) _ 1
=B

As a result we have shown ||uH(ﬁ+1) and therefore

(8)

' 1 M2P+
i@ = | [ 06 nBEwEar| < ZBOOIE < X2 o,
0

A
For the same \ as in the previous proof and 3 > 0 we have ||Tul|®) < 70||u||(5).

Now define a sequence by u(®(t) = U(t,0)up and u Y (t) = U(t,0)uy +
(Tu™)(t). From

@)@ = sup (@ = a. = AP U (t, 0)uolla
a€la.,a*], tel0,Tx(x))
< sup (o = o = M) [|ug |l
a€lay,a*], te[0,Tx(a))
< (@ =) |luglla, < o0

one easily sees (u®))zeny C SP. Therefore, (u®)),ey is a fundamental sequence

M2B+1
for A > Ag = maX{B, /\a} and hence there exists a limit lim u® =

k—o0
u € 8P, which solves the equation

u=U(-,0)uo + Tu

by definition, which shows (12). This shows the existence of a solution. For
uniqueness let v € S? be another solution, then w = u — v solves w = Tw and
therefore w = 0, since T is a contraction. O

Remark 2.7.

1. Under some modifications it is clear that a similar result can be stated
for a scale of Banach spaces of type 2.
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2. A similar result for the time independent case was stated in [5]. The
authors have shown the existence of solutions directly by using (9). To
establish uniqueness they have used analyticity at 0 and the formula
d™u
W(O) = L"u(0). Unfortunately such a formula does not hold for the
time dependent case and due to the properties of the operators it is
not possible to apply the Gronwall Lemma, which is the reason for this
approach.

3. The same considerations as in Remark 2.12.3 hold also here. If we weaken
the assumption ||U(t, s)|| ) < 1 to

sup UL, 8)[|L@.) < C <o
(t,s)eA

*

_ 2
with A = {(t, s) € [0, %} i s < t} and for some constant C > 0

independent of «, then a similar result holds. More precisely one has
MC2°+1 }
g

and consequently Remark 2.12.3 still holds. Note that the supremum
always exists, but in general might be not bounded with respect to a.

Ao = min {)\a,

Similar to the first version one can show |ju — v||(®) < Cllug — vo||?) for
some constant C' > 0. Likewise it is possible to show a stronger result con-
cerning continuous dependence of the solutions on parameters. To summarize
we have shown the existence of solutions in scales of Banach spaces under the

condition that either ||L(¢)|lara < holds or L(t) = A(t) + B(t) satisfies

a—a

IB(t)|lare < ajl4 - and A(t) generates an evolution family. For many ap-
plications in interacting particle systems or partial differential equations such
results can be used, cf. [26]. For further developments it is useful to construct
evolution families under more general assumptions or even using the properties

of scales of Banach spaces.

3 Evolutions of interacting particle systems

For motivation we start with an explicit model of interacting particle systems.
Consider a habitat with living individuals, e.g. humans, located in R?. For
such individuals we would like to model natural birth and death as elementary
events. Now assume that the habitat is contaminated due to some mechanism,
i.e. an atomic catastrophy. Hence the individuals will become sick and die
according to specific rates. For applications one would like to know how this
system will behave in the time evolution. Important questions are concerned
with the possibility of whether the individuals would survive this catastrophy
or not. To model such a system mathematically we will not distinguish between
individuals, meaning that the only important information is the position of the
individual. Therefore a population can be described as a subset v C R%. Since
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we will describe this system in a probabilistic way via Markov evolutions it is
enough to give the formal Markov pre-generator. In this case such generator
has the form

(LOF)) = Y _(mlt) + Pi(@)(F(3\z) = F(7))

+/ (Z a(z — y)) (F(yUz) — F(v))da.
R4 yey

Here and in the further chapters we will just write v U x and v\z instead of
~vyU{z} and y\{z} for brevity. The interpretation is that each individual z € =
might die due to a space independent mortality rate m(t) > 0 and additionally
to a space dependent rate P;(x) > 0, which describes the habitat. Further
each individual located at some point y € R? may produce another individual
located at 2 € R? depending on the time dependent birth rate a;. In this model
the new individual at point 2 € R? immediately may produce new individuals
by themselves. Note that the birth is modeled translation invariant. More
generally one can consider a general birth-and-death process given by

(L)) =Y di(w, o) (F(3\z) = F(7)) + / by(,7)(F(yUz) = F(y))dz.

TEY R

A general approach to dynamics on configuration spaces was given in [10]
and references therein and [14] contains all necessary technical details for this
approach via correlation functions. In the next section we will give a brief
outline on general birth and death dynamics on configuration spaces. After-
wards we will use the Sourgailis and continuous Contact model to answer the
given questions above. Further sections are devoted to Glauber-type dynamics,
Bolkmann-Dieckmann-Law-Pacala model and general birth and death models.

3.1 General Dynamics on Configuration Spaces

The configuration space I' over R for d € N is defined as the set of all locally
finite subsets of R?, i.e.

F={ycR%: |[yNA| <oo, VA CR? compact }.

We will use the notation yN A = v, and |y5| denotes the cardinality of the set
~va. Denote by Fé") = {y CcR?: |y| =n} the space of n-point configurations
and by

the space of all finite configurations. Via the identification

I3yr—dy=) 6, €.#R"

TEY
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one can endow I' with a topological structure. Here .#(RY) stands for the
space of all Radon measures on R?. The topology on I' is the weakest where
all mappings

I'oy—{p7) = /w(x)dv(w) =Y o) R

R4 xeEy

are continuous for ¢ € C.(R?). In [25] the author showed that T is a polish
space and gave a characterization of compact subsets of I'. It is also possible
to define a differentiable structure on I' and on Iy, for further aspects see [1].
Using this differential structure it is possible to prove an integration by parts
formula and characterize Gibbs measures, which are the equilibrium states for
the Glauber dynamics. The Poisson measure 7, for z > 0 is defined as in [1],
i.e. as the unique probability measure on (I', Z(T")) with the Laplace transform

F/ exp({10,7))dms(7) = exp ( e - >da:)

Rd

for p € C.(R%). Tt is also possible to define this measure as a projective limit
using the Kolmogorov theorem for projective limits. The Lebesgue-Poisson
measure )\, is defined by

[ee}

)\Zzzfm —5{@}—|—me

n=0

where m(™) is the image measure of the Lebesgue measure m®” on (R%)” under
the symmetrization-mapping

sym'™ : (@)n — Fén), (1,...,xn) —> {1, ..., 2}

with (R4)" = {(21,...,2,) € RN :  x; # xp, with j # k}. For z = 1 we
will write A = A\;. We call functions F' : I' — R observables and functions
G : Ty — R quasi-observables. The K —Transform, given by

(KGQ)(v) = >, G

nCy, |n|<oo

defines a new function KG : I' — R for appropriate G : ') — R. The inverse
mapping is given by

(K~'F)(n) =Y (=DIMEIE().

£Cn

%A.(R?) denotes the set of all Borel sets with compact closure. In [14] it was
shown that the K —transform is bijective between the space of all polynomially
bounded cylindrical functions F, i.e. F(y) = F(vy,) for some A € %.(R?), and
Bys(Tg). Where G € Bys(Tg) is a bounded function with bounded support, so
there exists N € N and A € %.(R%) such that

N
Gln)=0, ¥ne || T

n=0
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with
TS ={neTo: nCA, [nl=n}

Also further properties of the K —transform were studied in [14]. For a mea-
surable function f : R — R denote by

=[] f@), ex(£.0) =1, neTo\{0}

xren

the Lebesgue exponential e)(f). The general scheme and all necessary calcula-
tions for dynamics on configuration spaces can be found in [10] and references
therein. Given a Markov pre-generator L the dynamics are described by the
Kolmogorov equation

The pairing (F, u1) f F(~y ) for F: T' — R and a probability measure

€ A1 (T) allows to consnder the dual equation for measures

8ut
— = L*u,.
ot Ht

We construe each probability measure p; as a state of the system at time ¢. So
the time evolution is given by (u)¢>0. Unfortunately this equation is difficult
to handle. Using the K-Transform it is possible to look at the evolutional
equation for quasi-observables

oG

t —
= = LG (14)

with L = K~'LK on some set of functions G : [y — R, i.e. Bys(Tg). Given
a probability measure p on I' the K —transform allows to define the correlation
measure p, on I'g via the identity

/(KG /G )dpu(n), G € Bys(Io).
r
Under some general conditions there exist a one to one correspondence between

measures on I' and correlation measures, cf. [14]. If p,, is absolutely continuous
with respect to the Lebesgue-Poisson measure dA then one defines the correla-

d
tion function as the Radon-Nikodym derivative k,, = % Assuming that the

evolution p; has this property p,, = k,,dX then rewriting equation (14) with
the use of

/ (EG)(m)k(m)dA(n) = / Gn)(ZAR) (m)dA(n)
To 1)

we arrive at a strong equation for correlation functions k; = &,

Ok
5 = Lk (15)



28 M. Friesen, O. Kutoviy

One great simplification is that in the last two equations the functions depend
only on finite configurations. Note that (15) is formulated and will be solved
in the strong sense. Since it was originally obtained as a dual equation it is
possible to consider the weak form and dual evolutions kP, obtained by the
strong solution of the equation for quasi-observables (14). This analysis was
done, e.g. in [5], but is not the main goal of this work. The first model will give
a brief outline on how to realize this approach. But even having the solution
to (15) it is not clear whether this k; is a correlation function, i.e. corresponds
to an evolution of states. Some further analysis is required. For calculations
the following two formulas will be essential.

Lemma 3.1. For H : Ty x Ty xTg — R and G : Ty x R* — R such that
the right-hand sides exist for |G| and |H|, the following formulas hold:

[ menenam = [ [ HEnnuoan@am

Iy §Cn To To

and

/ZGm )dA(n //GnUxxdxd)\()

wen To R4

There is another technique which can be used to analyze the time evolu-
tion of such continuous interacting particle systems. This approach is based on
generating functionals. All details and proofs for this approach can be found
in [15] and [11]. For a given state p on I' one can define the so-called Bogoliubov
generating functional by

/H (1+O(x))du(y),

xEY

provided that the right-hand side exists. Of course the domain of those © for
which B,(0) is well-defined depends on p itself. The Bogoliubov generating
functional allows to study properties of p or even the time evolution via func-
tional analytic methods. Assuming p has finite local exponential moments,
ie.

r

then the generating functional exists for all bounded functions © with com-
pact support. According to general results on configuration spaces there is a
connection to the correlation measure p, given by

B,(6©) = / (Kex(©))(7)du(y) = / ex(©, 7)dp, (1),

T To

If the correlation measure is absolutely continuous with respect to the Lebesgue-



On nonautonomous Markov evolutions in continuum 29

Poisson measure we can write

B.(©) = / ex(©, m)k, (1)dA(n)

34 / O(z1) -+ 02 )k™ (1, .., wn)das . .. dan

with symmetric functions k(™ : (R?)” — R, given by

0 Mz, ma ) <n

Ko, 20) = {k“({x““"%h Mooz} =n

For ;1 = m, one has k,(n) = 2"l and hence

B.(©) — / eA(ZG,n)d)\(n)—exp<z / @(:c)dx)

To R4
= Z% / O(z1)...0(xy)dxy ... dzy,
n=0 (Rd)n

for z > 0. If a functional B admits an such a series expansion it is called
entire. In this approach we will be dealing entire generating functionals. As a
reminder we give the exact definition of an entire functional.

Definition 3.1. A functional B : L*(R¢,C) — C is called entire if B is locally
bounded and for all ©y,© € L' the mapping

C> 2+ B(Og+ 20)

is entire. Consequently for each ©g € L' it admits a representation

B(©y +20) =" %d"B(@o; 0,...,0)

n=0
for z € C and © € L', where d"B(0y, -) is a symmetric bounded n-linear form.

In L' spaces it is possible to represent the differentials d”B by symmetric
kernels 6" B € L. Note that a similar result does not hold for LP spaces with
p > 1. The following result was shown in [15].

Theorem 3.2. Let B be an entire functional on L'. Then each differential

d"B(Oy;-) can be represented by a symmetric kernel 6" B(Oy,-) € L>((R)™)

via

0" B(0y, 01, ...,0,) = / 5" B(Og, 21, 2)O1 (21) - - Op ()l ..
(Rd)n

for ©1,...,0, € L. Moreover. the operatornorm of d"B(Oy, ) coincides with

the norm of 6" B(©y,-) and

e n
16" B(©0, )~ gy <t () sup |B(©0+©)
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holds. We call an entire functional of bounded type if the right-hand side is
finite for each r > 0 and ©y € L'.

Applying this to configuration spaces and Bogoliubov generating func-
tionals in [15] the authors showed that the correlation measure is absolutely
continuous with respect to the Lebesgue-Poisson measure .

Theorem 3.3. Let ;1 be a probability measure onI' and B,, an entire Bogoliubov
generating functional (short GF) on L'. Then the correlation functions k,
exists and are given for A-a.a. n € T'g by

ku(n) = 5|T’|BM(O;77).

For an entire GF thus the correlation functions can be interpreted as the
Taylor coefficients. Assuming

[B,(©)] < Cexp (£]©]I1 ) (16)

for C' > 0 and r > 0 it follows

b <o (S)"

r

for A-a.a n € T'y. Therefore condition (16) implies the so-called generalized
Ruelle bound, which can be used to show the existence of an evolution of
states. As it was shown in [15], one can rewrite the equation for correlation
functions to a Cauchy Problem

0B; ~

—— = LBy, Bi|i—o = By,

It t tlt=0 0
which may be solved in some scale of Banach spaces. (16) suggests to consider
a scale of Banach spaces of the form

B/, ={B:L'— C: B isentire and || B, < oo holds}, (17)

——l®ll 1
@ L

where the norm is given by ||B|lo = sup |B(©)]e for @ > 0. To show
ocL!

how this general approach can be realized we will analyse the Sourgailis and
continuous Contact model as one of the simplest birth and death models in the
next section.

3.2 Continuous Sourgailis and Contact Model

The continuous Sourgailis model is the simplest model without interaction.
It can be described heuristically by two elementary events birth and death.
Both events can be described by spaces homogeneous rates m = m(t) and
k = k(t) > 0. Therefore each particle can die with rate m and at each free site
a new particle can be born with rate . The Markov pre-generator for such
model is given by

(LOF)(y) = m(t) Y _(F(\x) = F(7)) + r(t) /(F(W Uz) — F(v))da.

TEY R4
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The corresponding expression for I:(t) on quasi-observables is given by

(LOG)) = ~m(OllG + x(t) [ Glyu)da

for G € Bps(T'g). For correlation functions we likewise achieve

(LA()k) (1) = —m()nlk(n) + £(t) > k(n\z)

xen

for appropriate k. The case of time independent coefficients was studied in [3].
The author gave an explicit formula for the solution of (15) and studied the
long time behavior. More precisely, he has proved that the correlation functions
converge to the correlation functions of the invariant state in some proper
Banach space. We will now give a short analysis of the corresponding model
with the time dependent coefficients m = m(t) > 0 and x = k(t) > 0. For
this purpose we will always assume that m = sup m(t) is finite and m, k are

>0
continuous on Ry = [0, 00).

Lemma 3.4. The unique point wise solution of the equation

ok
Bitt = L2k, kele—o = ko
s given by
ku(n) = e MO N H () ko (1\), n €Ty
&Cn
t
where M(t) = [ m(s)ds and
0

H(t) = //ﬁ(s)eM(s)ds.
0

Define hg = 1 and h,, recursively by the formula
t
hn(t) = n/n(s)eM(s)hn_l(s)ds, n>1.
0
Then, using

t ty tn—1

[ [ ] riere e -

0 0 0

n!

(f() = f(0))"

for a continuously differentiable function f, one can show that h,(t) = H(t)"
holds. Taking into account the definition of the convolution (k1 * ko)(n) =

> k1 (&)ka(n\&), formula (18) takes the form
£Cn

kun) = e MO (B xko ) (1) = (ex(H()e ™ O) xex(e™ ko) ().
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Uniqueness follows from general results on ordinary differential equations and
to show the validity of formula (18) a simple calculation is required, which shall
be omitted.

Let B, = L®(I'g,e~Id)\) with the norm ||k|lo = ess sup |k(n)le=*I",

nelo

which means that each k € B, is sub-poissonian, i.e. |k(n)| < |k||oe*!"!. Since
ex (H(t)e’M(t)) is a correlation function corresponding to ().~ and by
Lemma 3.9 from [3] also ey (e‘M(t)) ko is a correlation function for kg € B, for
ko € B, we obtain that the convolution k; is a correlation function, so formula
(18) defines an evolution of states ;. Fix some ko € B, and assume for this
section £(t) < zm(t) for t > 0 and some constant z > 0. Then we have

)= 107 = ( [t 0as) " ([ opea)” = ey
0 0

[ke(n)] < —InIM(t)Z (MO — 1))¥l ko (n\&)|
£Cn

< kol oMM ® Z (eM® _ 1))lélaln\é]
£Cn
= |lkollae” MO (2(M® _ 1) 4 )l
= |lkolla(2(1 - e’M(t)) + g“efM(t))\n\
< max{z, P ko]
For e > z we obtain |k:(n)| < ||ko|l«€®" and so k; € By with [|klla < [|kolla.

Therefore we have shown that for large a the evolution stays in one Banach
space. In the next step we will show the continuity of ¢t — k; € B,.

Lemma 3.5. Let o be arbitrary and fized. Suppose, that

’

z<e”. (19)
Then for any o € R such that
log(2) + o' < a. (20)

the mapping
Ry >t+— k€ By C B,

18 continuous on B, for kg € By .

Proof. Let t,tg € Ry. Denote by t* = max{t,to} and ¢, = min{¢,¢g}. Then,
for & C n using

H(t)" = h,(t) < z”(eM(t) -1 < 2" e M)
the following holds

e~ M) _ e“"‘M(t0)|h‘§‘(t)

IN

ZAElelEIM ) e

(t) ~ Mto)
] M(0) = M (t0)] ™I

A
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Hence, for n € N
¢ ¢
|, (t) — B (to)| = n/ﬁ(s)eM(s)hn,l(s)ds < n/ﬁ(s)eM(s)z"_le(”_l)M(s)ds.
£ t

Using k(s) < zm(s) the latter expression can be estimated by

*

d
nzn/<eM(s)> e(nfl)M(s)dS
ds

*

+*

— <enM(t*) _enMty _ T 1 /nm(s)e”M(S)ds>

n
ta

_ (enM(t*) _ M@y _ =1 (enM(t*) _ enM(t*)))
n
_ Zn(enM(t*) . enM(t*)) _ Zn|enM(t) o enM(t0)|'

For a,b > 0 we use the inequality

|b™ — a"™| < n|b — a| max{a,b}" !

to obtain
e 1M gy (£) = hyg (to))
<l M (to) | JEIM () _ JeIM (to)
< lElemInIM(to)|g) |M®) _ M(to) max{eM(t),eM(to)}IEI—l
< el ‘eM(t) _ M(to)| plnl(M ()M (to))
< Ly ‘eMu) _ Mo)| gmnllt—to|

Therefore we have

ke (n) — kio (0)]

<D e g 1) — e g 10)| o))
£Cn
< S hyg()]e MO — oMW (\6)|
£Cn
+ 2 eI gy (8) — gy (t0) ko (n\)
£Cn
< Kollar ™It M (8) — M ()] Y 2I¥le Il
£Cn
+lkolla[n] ‘eM“) — M) | gminllt=tol 3™ lel o’ Ine]
§Cn
< llkollar (|M(t) — M(to)| + ’eM(t) _ M(to) ) gl Inlle—tol (Hea')‘”‘_
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Now let € > 0 and take 6 > 0 such that for [t — o] <
|M(t) — M(to)| + |[eM® — M) < ¢
and
log(2) +md+ o' < «
holds. According to (19) and (20) we have
eﬁé—a(z + ea') < 2em5a'_a < 2ea—log(2)—a =1, (21)

which implies ||kt — ki, |l < Const - €]|ko||o and thus the desired result. O
Remark 3.1.

1. Tt is enough to have the strict inequality for either (19) or (20), cf. (21).

2. This proof also shows that for £ C n € I'y

e*‘"‘M(t)\mﬂ(t) — hyg|(s)] < Z‘£‘|77| eM@) _ M(s)| glnimlt—s| (22)

We saw that continuity of the solution requires additional regularity, which
is reflected by the condition o — &’ > log(2). The reason for such difficulties is
due to the fact that we deal with L spaces. In more general models similar
conditions were already used, cf. [5, 8]. To show differentiability we will like-
wise require regularity of initial date, i.e. o — ' > log(2) + m. The precise
formulation is the content of the next lemma.

Lemma 3.6. For kg € B, and (19) the mapping
Ry 2t— k € B,
s continuously differentiable under the condition
m+log(2)+a <a (23)
fort>0.
Proof. Using the notation h_1(t) = 0 we have for each n € T'y
LA (t)ke(n)
= —Inlm(®)ke(m) + £(8) Y ke(n\)

xren

= —[nplm(t)e MO N "B (8)ko(n\E)

£Cn

()Y N e IMOMO R (1) (n)\ (€ U )

z€N £C(n\x)

= —[plm()e” MO b (£)ko(n\E)

£Cn

+r(t)eMD N TN eV O R (#)ko (9\€)

£Cn xze€

= " ko\&) (—Ilm (e MM Ohyg (1) + w(B)eM Ol M Onye (1))
£Cn
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Similar calculations show for A € R such that t + h,t >0

kirn(n) — kie(n)
h

- % <6'"'M(t+h) > higy(t+ h)ko(n\&) — e MM N " py (t)ko(n\§)>

£Cn §Cn

) MM by (¢4 ) — e~ IMM W py (1)
= Zko(n\f) ( h

§Cn

e~ InIM(t+h) _ o—In|M(t) Ry (E+h) — hye (t)
_ —In|M(t) "€l 1€l
5 ko) (it + 1) s o . ).

£Cn

kepn(n) — ki(n) 1A

The difference (t)ki(n) has now the form

h
=M (t+h) _ o—|n|M(t)
> ko(n\€) (hs(H'h)e ’ - <’ +77|m(t)€_'"'M(t)h|g|(t))
£Cn
+ Shatng) (e BRI g mojgieiinon g )
§Cn

and the multiplicant in the first summand can be rewritten to

e~ InIM(t+h) _ o—In|M(t)

h
—InIM(t+h) _ o—In|M(t)
= e ) (e (e )

+|’I7‘m(t)6_|n|M(t)(h‘£‘ (t) — h‘§|(t + h)).

he (t+ h) + [nm(t)e MM Ohyg (1)

Now let £ > 0 and take min{e, 1} > ¢ > 0 such that

M(t + h) — M(t)
h

1. |m(¢t) — ’<5

2. |k(s)eM) — k(t)eMB| < &
3. M) — M| < ¢

4. (I14+0)m+log(2) + o' <«
holds for |t — s| < |h| < §. Then we obtain by (22) for such h

[l (t)e MM O hyg (£) = hygy(t + h)| < [nPm(t)2lee™.
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The first part can be estimated by

e InIM(t4h) _ o~ In|M (1)

hig)(t + h) ; + [pm(t)e” MO
< MM =M () | 4y e*lnIM(tJrh);LrlnlM(t) - 1‘
< lelemlmogy ’m(t) M+ h}z — M(#) ’
z|§| |n|ms i |mk b — MO
< el 4 el |n|m5|h|z %
k=2

o — |n|*m”
< Al (143 e
k=2
< lélgnims (Inl 4 e\n\m) c

Altogether we have shown

e InIM(t+h) _ o—In|M (1)

hig|(t-+h) h

o+ m(t) eI

< A€l glnims (\nl T e|n|m) c

K (n) — k(1) — LA (t)ke(n)

Taking now the sum the first part of the difference W

can be estimated by

o= InIM(t+h) _ o~ In|M(2)

5 ko€ i ¢+ ) . (o) O o)
§Cn
< [kollare (InPm(e)el"™ el (| 4 &) ) 37 2lelee e

£Cn

= |lkollove (|77|2m(t) +|n| + emlnl) oIl (z n ea/)lnl
< hollveelole (m) + g + 1) e el (4 )"
Using (1 4 0)m + log(2) + o < a we consequently obtain
(10 m—a (z n eo/) < ge(I+)+a’ o _

and thus it implies for § > 0

_ NC
| el a+om—a)lnl (Z s ) " < Const

pointwise, which gives the desired result. In the same way we estimate the
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second difference with ¢, = min(¢,t + h) and ¢t* = max(¢,t + h)

‘e—nM(t) hig(t + h) — hig(t)
h

— k()M Ol MO (1)

t+h
_ 1 s
= |¢le”MM®) E/n(s)eM( Ihye—1(s)ds — k(£)eM D hygy (¢)

IN

-tnsecs ] / KM higa(5) — KM Oy (1)},

The integrand can be estimated by

()€™ ey 1 (5) = w(B)EM Dy (8)]

< k(8)eM ) [hig1(8) = hyg—1 (B)] + hyg -1 (t) ‘n(s)eM(S) — k(t)eM®
< R[Sl MO _ M0 (0 L oIt ld ()
—, m(t+1
< LlElemo, (’“()|nenm6 N 2—1)
z
=t
< Llelglive, (“e()m@nmé N 2—1)
z

with = sup «(¢) and thus
>0

e—niM @) 1S |€| /|/€ M(s)h| el 1(s) — K(t )eM(t)h|£|71(t)|dS

et
< el lel lnldr () (’f@;mammé N 21>

() _
< Ll (’%n|2elnlm5 4 z177|>
z

Now taking the sum ) we obtain the assertion analogous to the previous
£Cn
difference. O

We are interested in solutions on some Banach spaces B,. Right now we
have a pointwise solution formula, and under some restrictions, continuity and
differentiability properties for some initial values. It still remains to find some
Banach space such that the solution formula defines a continuous operator,
which is differentiable in some norm on some subspace. From Lemma 3.7 it is
natural to consider this in the norm || - ||, together with some closed subspace.

Theorem 3.7. For each o/ < a with z < e* and m + log(2) + o/ < « there

exists a family of contraction operators (TS, (t))i>0 on B := B By with the

'«
properties
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1. TS (t) is strongly continuous on B

2. [0,T(a,a’)) >t — TS (H)k € B is continuously differentiable for k €
B, with the derivative

aTs, (H)k

_ 1A A
dt =L (t)Ta/a(t)k

on B.

Hence for kg € B, the unique solution of the Cauchy problem

8kt A

— = L2k, ki|li=o = k

ot (t)ke, Feli=o 0

on B is given by k; = Tf;a(t)ko and moreover k; € By C By,

Note that the family (7’3, (t))¢>0 is not a semigroup. Under slight changes
it is possible to give, at least, a heuristic formula for an evolution family
U3, ().

Proof. We have shown ||k¢||o < ||kolla for ko € Bor C B,. Hence the densely
defined operator T'3,(t)ko = k: has a unique extension on B, which we denote
again by T(fza (t). Strong continuity follows from the contraction property and
Lemma 3.5. Strong differentiability was shown in Lemma 3.7 and therefore for
each kg € B, there exists a solution given by k; = Tﬁa(t)ko € By C B. The
uniqueness follows from the uniqueness of the pointwise solution formula. [

Having the existence of an evolution we will discuss some conditions for
invariant states and convergence to invariant states. One special case is the
time independent dynamics.

Remark 3.2. Assume that m is not integrable, i.e. M(t) — oo for ¢ — oo, e.g.
if m is periodic.

1. For some initial condition kg € B,/ one has the solution

ki) = e MO ST () € kg (1\6).

£Cn

In the special case ko(n) = e 1" we obtain
M () o\ 1 _ M) o —M(#) [n]
ki(n) =e™ " (H(t)—i—e') :(H(t)e +e%e ) .
Using £ = min () we obtain
t>0
Kt < H(t) < = (eM(f) - 1)

and hence

/ 7] / Inl
(ﬁte_M(t) +e° e_M(t)) < ki(n) < (z + (e* — z)e_M(t)> .
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For a general initial condition ky € B, we obtain by H(t)e M® < »
using the decomposition

k(n) = e MMOpon) + H(t)Me M@
+ Z H ()&l IEIM @) o (\ €) e~ IMEIM )
£Cn.E#0,87#n

that the existence of the limit tlim ki(n) = k(n) is equivalent to the
— o0

existence of the limit tlim H(t)e M® = g and we have
—00

k(n) = lim ki (n) = al”!

for which 0 < a < z holds. So the condition k(t) < zm(t) and ko € By
for some o € R imply that the limiting state will be always Poissonian,
ie. mg.

2. Now take ko(n) = e !l for some o/ € R and assume that the limit
tlim H(t)e M) = g exists. Then for each a € R, which satisfies a < e®,
— 00

we have k; — ey (a) for t — oo in B,,. To show this, let € > 0 with a # %,

€
a—+ 3 < e® and take ty > 0 such that for each t > tg

M) < g4 S
-2

A

=

=
)

(c) ‘H(t)e‘M(t) e e M) _ a‘ <e
holds. Then the assertion follows from
‘H(t)e‘M(t) + e e M) _ a‘
max {a, H(t)e=M®) + e’ e-M(1)}

k) —all| < o

/ Inl
X max {a, H(t)e M® 4 e e_M(t)}

max {a,a + E}Inl

< enl——————=y
max {a, a— 5}
= ¢ 1 = eIl || (e—alnl(a + E))'"'
2
< Const -eel

for a # 0. The case a = 0 can be shown analogously.

K(t)
m(t)

H(t) :/@m(s)e”f@ds < %GM(t)~

3. The condition t —

is mononically increasing implies

0
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k(%)

Hence lim ——~ = z and moreover
t—>o0 m(t)
d
T H e MO = k() —m(t)H(t)e M >0

implies tlg]élo H(t)e=M® = 2. Consequently we have shown

[

— 4l

lim ki(n) = lim (H(t)e*M(t))

t—o0 t—o00

pointwise for all n € I'y.
K
4. Now take z = — time independent. Then 7, is an invariant state and
m
for ko(n) = e 1"l we obtain

k() = e~ IMIM©) 16l (M®) _ q)lélea’inél = (z e — z)e_M(t))lnl .

Therefore the time evolution is Poissonian and converges to the invariant
state .. We obtain with max{z,e® } > 0

|z — e

ke (1) — Kino()] < e™M® || max{z, e }1"!

max{z, e}
and hence k; — kin, in B, with e® > max{z, eo‘/}.

5. Now consider m(t) = a > 0 and x(t) = e~*, then we obtain

(a—b)t __ 1
e
H) = a—p °7b,
t ,a=1>
efbt _ efat
The expression H (t)e M) = — T converges for b > 0 to 0 and
a—

hence k¢(n) — 0/71, so all particles will die. In the case b < 0 the expres-
sion k; does not have a limit for ¢ — oo.

More generally now let the death rate be space dependent and introduce
some branching, meaning that each particle may produce another new particle.
This model was already described in the introduction and the Markov pre-
generator has for quasi-observables the form

LG = ~mllcon - (X ri )6

xren

/Zat:rf ((n\y) dex+/2afxf G(nUz)da.

Rd yen Rd yen

for G € Bps(I'g). We consider this model under the assumptions

1. m > 0 is a continuous function on [0,T] for some 7' > 0
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2. P :R? — R, with P;(x) = P;(—x) satisfies

P, € C([0,T); L°(RY))

3. 0 < ap € LY(RY) N L>®(R?) with as(z) = a;(—x) for t € [0, 7]
4. [0,T) >t —> a; € LP(R?) is continuous for p = 1, oo.

In such case L(t) can be realised as a bounded linear operator L(t) € L(B.,,B.,)
for all o/ < a, where B., = L*(Ty, eaHd)\) with the norm

1Gllo = /\G eI (n) Z /G(” xy)|day . d,

Rd n

is a scale of Banach spaces of type 2.

Lemma 3.8. The expression given for f/(t) defines a bounded linear operator
L(t) € L(B,,,B!,) such that the mapping

[0,T] 5t — L(t) € L(B,,B.,)

is continuous in the uniform operator topology for o/ < a.

Proof. For o/ < « it is simple to show

m() + [ Pllz= + lladflzr | 4llarfloce™
e(a —a) e2(a—a)?’

IL(#)llaar < (24)

which shows the first assertion. Since the operator L depends linearly on the
parameters m, P, a the continuity follows immediately from (24). O

In order to solve the equation for quasi-observables it would be sufficient
to show that

(A(t) /Zat x—y)G(nUax)dy

R TEN

generates for each t € [0,T] a Cp-semigroup such that Theorem 2.1 and 2.3 are
applicable. The existence of a Cy-semigroup was proved in [5] for more general
dynamics. Therefore we will realise this approach in the section 3.3. Instead
we will turn to correlation functions and solve the corresponding equation for
the particle densities. For correlation functions the following representation of
LA(t) holds for appropriate G' and correlation functions k satisfying k(n) <
[nlCI, cf. [18],

(LAWK ) = —Inlm()k(n) = Pi()

xren

FY Y kRl -y Z/ JE((\a) U )y,

€N ye(n\z) TE€NRY
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Analogous to previous calculations one can show that L”(t) satisfies the same
bound as in (24) and continuity. To analyse the long time behavior of this sys-
tem we will consider only the first correlation function, which can be construed
as a density. For nn = {z} the corresponding equation takes the form

(1) T ) 1
(”’“fo) = —m®)kP (z) — P(a)k(z) + / ar(z — y)kM (y)dy
]Rd
< —(m+ PN (@) + 2 / ar( — y)dy

R(i
= M)k () + 2n(1)
with k(t) = [ ai(y)dy > 0, M(z) = m + P(x), m = tlrzlg m(t) > 0, P(x) =

Rd
t11>1£ P,(z) > 0 and the assumption k;(z) < z. This leads to the bound

t
kt(l)(:z:) < e M@ (z) + zefM(z)t/ﬂ(s)eM(m)sds
0

for the solution k,gl) (x). If k asymptotically has exponential decay, then clearly

k;t(l)(x) — 0, t — oo holds for M(z) > 0. Of course our approach and our
assumptions have simplified the situation a lot. For more specific properties
more detailed analysis is required. In applications one would use computer
simulations instead of solving the equations explicitly or at least asymptotically.
To show the existence of a solution we will work in the space

Xp = C(0,T; L*([RY), |olr=  sup lve(z)| = sup vl (25)
(t,z)€[0,T]xR% t€[0,T]

and denote the closed cone of all non-negative functions v € X by X;: . For
T’ < T one has the natural embedding X7+ C Xp, where X7/ is a closed
subspace.

Lemma 3.9. Let A € X}, 0 < a; € L'(R?) fort € [0,T) and assume (t, x) —

at(x) > 0 is measurable with

sup /at(sc)dx =a < o0.
telo.11 J

Then the equation

akéiz(tx) = —A(t,2)ki(w) + (ar % k) (2), kelimo = ko € L®(R?)  (26)

has a unique non-negative solution k, € L>®(R?) for ko > 0 and t € [0,T) with

B T ,a=0,
T = . 1 . .
min< T, = ,a>0
a

This solution satisfies 0 < k, € C*([0,T"]; L(R%)) for each T' < T.



On nonautonomous Markov evolutions in continuum 43

Proof. Define the mapping ® : X7 — X7 given by
t t t
(Do) (x) = exp(—/A(s,x)ds)kzo(x) —l—/exp(—/A(T,x)dT) (as *vs)(x)ds
0 0 s

for T < T. Clearly @ is positivity preserving and by
(a5 vs)(@)] < (as * |vs]) (@) < [las|| o |vsl| L < @lv]lz

we obtain

[(®v)(2)] < ko(x) + /t eXp<— ] A(T,x)d7'>|as>kvs|(x)ds
0 s

t

n%m&+/mmwm
0

< lkollze + Tl

IN

and hence ®v € X7 for v € X7/, note that t — (®v); € L>°(R?) is continu-
ous. In the same way

[(@0)¢(2)=(Pw)(z)] < /texp<—/tA(T»$)dT> (as*vs—ws)(z)ds < T'allv—w|r-
0

S

implies that ® has the contraction property. Thus the sequence (v("))neN C
X1, given by v = kg and v = ®v(™ is a fundamental sequence and

hence has a limit v = lim v € X;f,. Consequently v = ®v, i.e.
n—oo

ve(z) :exp<— / A(s,x)ds)ko(x)+ /t exp( j A(T,x)dT) (as *vs)(z)ds (27)
0 0 s

for a.a. x € R? holds, which shows the existence of a solution to (26). Since
every solution of (26) solves (27) the uniqueness follows for ¢ € [0,7”] and hence
on [0,T). O

Corollary 3.10. Let A € X} for each T >0 and 0 < a; € LY(R?) fort >0,
(t,x) — a¢(x) > 0 be measurable and assume

sup /at(aj)dx =a< 00
t>0
R
Then the equation
8]4&(1‘)
ot

has a unique non-negative solution k; € L>(R?) for ko > 0 and t > 0. More-
over k, € C*([0,T); L>=(R%)) holds for each T > 0.

= —A(t,l‘)k‘t(l') + (G,t * k‘t)(.f), kit|t:0 = k‘o S Loo(Rd)
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~ 1
Proof. Under this assumption one can take T = — and hence consider itera-

a
tively the same Cauchy problem with initial conditions k¢|;—g = ki with { € N
1
and T/ < —. O
a
In order to apply Lemma 3.11 we need

esssup  m(t) + P(z) < oo
(t,2)€[0,T]xR4

and

sup /at(x)das =a < oo.
te[0,T]

Rd
Both conditions are satisfyied since 0 < m € C([0,T]), P, € C([0,T]; L>=(R%))
and a, € C([0,T); LP(R%)) for p = 1,00. Hence there exists a unique solution
to the equation for densities.

3.3 Bolker-Dieckman-Law-Pacala Model

In this section we will discuss an ecological birth and death model. Each in-
dividual may die due to a space independent mortality rate m and due to
competition of individuals. This competition is described translation invariant
by a competition kernel a™, i.e ¢~ (z,y) = a~ (x —y) = a~ (y — z). High values
for o~ lead to high probabilities of death. Analogously each individual can
produce another individual, where the probability distribution of this elemen-
tary event is given by the dispersion kernel a™. Therefore we can describe this
model by the following Markov pre-generator

ey

(LF)(7) = > _(m+E~ (=, v\w))(F(v\x)—F(v)H/ E*(y,7)(F(7Uy)—F(v))dy
Rd

with m > 0 and E*(z,7) = Y. a*(x — y). This model was discussed in [5],
yEY
where the authors proved local existence of solutions for quasi-observables, and

correlation functions. Moreover the existence of evolution of states was shown.
In this section we will prove the existence of solutions for quasi-observables in
the time dependent case, i.e.

(LOF)() = Y _(m(t)+ E; (2,7\2))(F(1\x) — F(7))

rey

+ / B (y,7) (F(yUy) — F(7))dy
Rd

under the following assumptions for 7" > 0

1. m is a continuous non-negative function in ¢ € [0, T
2. The dispersion and competition kernels i (x) = af (—x) > 0 are contin-

uous as mappings

[0,T] 5t af € L®(RY), [0,T] > t+— ai € L}(RY).
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3. There exists a © > 0 such that
ai (z) < Oay (x) (28)
holds for all ¢ € [0, 7] and almost all z € R%.

The last condition (28) means that the dispersion kernel is dominated by the
competition kernel uniformly in the time ¢ € [0, T]. The corresponding operator
for quasi-observables is formally given by the expressions

L(t) = A(t) + B(t)

with
Al) = A(t) + As(D)
A = —En)Cn)
(As(0G) () = / E (y,n)G( U y)dy
Rd
and
B(t) = Bi(t)+ Bs(t)
BG)0) = -3 Fr(a,n\a)Gn\e)
(Bo()C) () = / S0 (@ — )Gz Uy)dy,
Rd xen

where Ey(n) = Y (m(t) + Ey (z,1\z)) = m(t)ln| + Ey (n) and Ef(n) =

xren

Xe: E£(x,n\x). As usual we will work in the scale B/, = L'(Ig, e®I'ld)), then
z€n
a simple calculation shows the following result.

Lemma 3.11. The above expressions define linear bounded operators A, B €
L(B.,B,) for o/ <« with norm estimates

m(t)  Allag e~ + lag | =)

”A(t)Haa’ < e(a — a/) 62(a _ 0/)2

(29)

and ,
lag lzre™ + llaf ||

||B(t)”aa’ < e(a _ o/)

(30)

In view of Theorem 2.10 we have as a consequence of (30) that || B(t)||qar <

p— for some constant M = M (., a*) if we fix a, < a*, cf. Definition 5.
Since we cannot apply Theorem 2.10 for the operator A4, c.f. (29), the next
step for us will be to prove existence of an evolution family corresponding to
A in order to apply Theorem 2.13. But first we need to show the continuity
of t — A(t) and t — B(t) in the uniform operator topology. For a < o’
consider the mappings

Ry x Xy x Xy — L(B.,B.,), (myat,a”)— L(m,a*,a"). (31)
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with
X={fe L'}RYNL®MRY): f(z)=f(—z), foraa. zcR}.

Here X, denotes the positive cone of X consisting of all elements 0 < f € X.
The previous Lemma shows, that this map is well-defined. Endow X with the
norm

£l = max{[[ fllzr, [ fllz=}

so (X, | - ||x) is a closed subspace of the Banach space L!(R?) N L>(R?) and
thus a Banach space itself. If we define on the parameter space Ry x X x X
the metric

d((m7 a+7 a_)7 (m/v b+7 b_)) = |m - m/| + ||a+ - b+||X + Ha_ - b_HX
the following result holds.

Lemma 3.12. For o’/ < a the mapping (31) is continuous, where L(B!,,B.,)
has the topology induced by the operator norm.

Proof. Since L depend linearly on the coefficients m,a™,a~ we obtain from
Lemma 3.13
1L(m,a™,a7) = L(m/,b%,67) |l aar
Ala= = b7 ||p= +4|laT — bF||pece™™
= e2(a— o)
=l = b e+l — b
e(a—a’) ’

’

The continuity of m,a™*,a™ imply the continuity of
[0,T] >t (m(t),a;,a;) € Ry x X; x Xy
and as a consequence we obtain the desired continuity of
[0,T] >t A(t), [0,T]>t+— B(t)

in the uniform operator topology on L(B.,,B/,). Now we are prepared to prove
the existence of an evolution family corresponding to A(t).

Theorem 3.13. Let av, be such that Oe~* < 1 holds. Then for all a, < o/ <

« there ezists a unique evolution family (U(t, s))o<s<i<r on B, satisfying

oU .

1. W(t,s)G = A@)U(t,s)G on By for G € B, in the case of t = s the
derivative is meant to be a right-sided derivative.
oU - /

2. g(us)G =—-U(t,s)A(s)G on By for G € B.,.

Proof. By [5] for each a, < o there exists a sub stochastic analytic Cp-
semigroup S¢' (1) = e¢”4(®) on B!,,. The generator is given by (A(t), Do (A(t)))
with

Dar(A(t) = {G € Bly : E,()G() €BL}.
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For a, < o/ < a the part A(t) of (A(t), Do (A(t))) on Bl is given by

D(A(t)) = {GeB,NDu(At): E()G()€ By}
{GeB,: E()G()eB,} = Da(A(t))

and hence is a generator of a substochastic analytic semigroup, which shows
the assumptions of Theorem 2.1. Therefore for o, < o/ < a the semigroups
satisfy

S¢(r) = S (T)|s,, Vte[0,T] andT>0.

Concerning the proof of Theorem 2.1, cf. [24], the evolution families are ob-
tained as limits U%(t,s) = lim UZ(t,s) in B,,. Since UZ(t, s) is a composition
n— oo
of S (7)
Un(t,s) =Ug (t,8)B, (t,s)eA
for a, < o’ < «a follows. To show the property

U (t,s) = U (t,5)]s, (32)
consider for G € B,

1T (¢, )G = U (¢, 9)G|av
< Ut 8)G = Ug(9)Gllor + U3 (1, 5)G = U (£, 8)G|or
< Ut 8)G = TR (t9)Glla + U (t,5)G = U (£, 8)Glor
and take n — oco. Hence U*(t,s)G = U® (t,s)G in B,, and therefore by
definition of the norm also pointwise for a.a. n € T'p, which implies (32) in

B/,. Now (32) implies the conditions for Theorem 2.3 and hence the desired
result. O

Corollary 3.14. Let o, be such that Oe~“ < 1 and fix some o > . Then
there exists a continuous function T'(«) monotonically decreasing and for each
Go € B.,. a unique solution Gy of
dG;
dt

in the scale B!, given by Remark 2.15.3.

= f/(t)Gh Gilt=0 = Go

3.4 Glauber-type Dynamics in Continuum

The non-equilibrium Glauber-type dynamics can be described by the heuristic
Markov pre-generator

—m S (P\a) = () + 2 [ (PlyUa) - P(2) exp(~E(z, 7)) da.

xrey R4

Let ¢ : R — R, be an even non-negative function. For any v € ', z € R%\~y

we set E(x,v) = Y. ¢(x—y) € [0,00]. Here z > 0 is an activity parameter and
yEY

m > 0 is a mortality rate. As before each particle may die according to the
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rate m. New particles are influenced by existing particles, which is described
by the potential ¢. Big values of ¢ lead to a small factor e~ #(#7) and hence to
smaller probabilities for new particles to appear in the regions where E(z,~)
is big. The operator for quasi-observables is given by

(L)) = —lnlmGn) + 23 / e PEOG(E Un)er(e?@) — 1, m\€)da.
5C71Rd

The existence of a Cy-semigroup associated to L was shown in [17]. In [6], it
was proven that this semigroup can be approximated uniformly on compact
time intervals using discretization of time. Solutions in scales of Banach spaces
were studied in [4] and [11]. This part will partially generalize the results to
time dependent coefficients. Likewise the evolution of correlation functions and
states will be studied. The evolution equation for correlation functions is given
by the operator

(LK) (n) = —|nlmik(n) + 2 3" e~ Flena) / ex(te, O)((1\x) UEAAE)  (33)

zren To

with ¢, (y) = e~ ?@=¥) — 1. In [6] the existence of correlation function evolution
was proven by discretization and further ergodicity properties were studied.
We will be concerned with the time dependent case z = z(t),m = m(t) and
¢ = ¢¢. Starting again with the equation for quasi-observables in the scale
B!, = L' (T, e®') of type 2 we will impose the following conditions to hold for
some T > 0

1. [0,T) 3> t+— 2(t) >0, [0,T] >t — m(t) > 0 are continuous;
2. ¢1(x) = ¢+(—x) > 0 is a continuous mapping in the sense that
[0, 7] 3t +— ¢y € L=(RY), [0,T]>t+— ¢ € L (RY)
is continuous;
3. there exists a potential ¢(z) = ¢(—=x) > 0 such that ¢;(z) < ¢(z) and
8= /(1 — e ?@)dz < co.
Rd

Note that 3. implies 1 — e~ ?t(@=) <1 - e=%@=) and hence f 1— e ¢t@)dg =
d

B: < B < oo. The last condition is important to have uniform bounds in the
time variable ¢. As a first step we will show continuity properties of

(LOG)m) = ~lnlm®)Gn) (34)

+2(H) Y / e B @OG(E U)er (e ") — 1,9\E)du.
gcan
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Lemma 3.15. Under conditions 1-3. expression (34) defines a bounded linear
operator L(t) € L(B.,,BL,) for o < « satisfying

m(t) + z(t) exp (e",ﬁt) e @

e(a—a)

L) ]laar <
Further the mapping [0,T] > t — L(t) € L(B/,,B.,) is continuous in the
uniform operator topology.
Proof. For o/ < a and G € B, we obtain

/ $ / B ey ([t ], n\O)|G(E U w)e M dzdA(n)

To anRd

- / / / e B @O (|, ] I G(E U )[e e Eldzd () dA(n)

To I'o R4

exp (e 5,) / / IG(€ U z) e €1dzdA(€)

To R4
exp (ealﬁt> e

e(la—a)

IN

’

1Glla

which shows the first assertion. For the second part of the assertion of the
lemma take G € B/, and ¢, s € [0, T, then we have for the death part

) = (o) [ lcles Mare < = g,
r

which has the desired property. The birth part can be estimated by (+)

o) [ [ [lestt= e —exa - e

To I'o R4

x|G(E U z)[e Ml dzdA(€)dA(n)

t)///e)\(l — €_¢S(w_')7’]7) ‘e_Et(xvg) _ e—Es(w,f)‘

To I'g R4
x|G(EUx)|e” ‘"“f'ddes)dA(n)
Tl el '///eA 1— e~ p)|G(E U a)[e” M dzdA(§)dA(n).
I'o I'p Re
Using
‘ek(eiqﬁt(wi') - ]-377) - eA(67¢S(w7.) - 1377)
< Do lent ) e (1 e )
YyeEN

< Y i@ —y) = ds(@ —y)lea(l — e ) p\y)

yen
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we estimate the first part of (+) by

///Z'd’t‘”‘ =~ @u(@ = y)lea(l —e " m\y)

T'o R4 T'g yen
x|G(& U z)|e® MYl dN(n)dzdA(€)
= 2(e g — dallin / / / ex(1— @) el ()
T'o R2 I'g
x|G(EU x)|ea’lf ldzd\(€)
= z(t)e“/H(z)t ¢s|l L1 exp(e //|G§Ux le® ‘f‘dxd)\()

To R4

2(t)]| ¢ — ¢l 1 exp(e® B

e(a —a)

< 6.

Because of

e B0 _ B0 < B, (2,6) — B(w,6)] < [¢lllé1 — sll o

we obtain for the second part of (+)

S0ll6c—dule [ [ [ert—emone et

T'o T'g RE
x|G<£Uw)||§|e“"f‘ddi<£)dA( )
< 261 — b]loo exple® / EP1G(E) e EdA(E)

Az(t)||pr — s loce™

e2(a—a')?

exp(e® B5)[|Glla-

For the last part of (+) we get

2(t) — 2(s)| / / / ex(l — e~ p)IG(E L 2)[e €62’ Mz (€)dA(n)
I'o I'g R4
J2(t) — 2(s)]e=

da—ay o A)IG]

which proves the assertion. O

A M
Since ||L(t)||lara <
o

m = sup m(t) and Z = sup z(¢) we can apply Theorem 2.10 and prove the
t>0 t>0
existence of solutions in the scale B.,. For the time independent parameters

the existence was proved directly in [4].
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Theorem 3.16. Under conditions 1-3. and for fized o, < o there exists
T : [ax,a*) — [0,T] continuous and monotonically decreasing, such that for
each Gy € BL. = L*(Ty, eaHd)\) there exists a unique solution Gy to the Cauchy
problem

0G,

o = L(t)Gy, Gili—o = Go (35)

in the scale B., given by Remark 2.12.3

Proof. Lemma 3.18 implies

m(t) + 2(¢) ex (e ) e

L) laer < @ )
< m+ zexp( aB) e~
< (o —o
with M = sup m(t) and Z = sup z(t), which shows the first assumption
te[0,T] te[0,T

of Theorem 2.10. Since continuity in the uniform operator topology implies
strong continuity Theorem 2.10 is applicable and shows the existence of unique
solutions to (35). O

Likewise using the same techniques we can prove existence of solutions
for the corresponding equations for correlation functions, c.f. (33). First we
show general properties of operators L (t) in the scale of Banach spaces B, =
L®(Tg,e~lldN).

Lemma 3.17. Under conditions 1-3. the expression

(LAWK)) = —nlm(t)k(n)
() 3 P [y (@) L h((n\e) UEANE)
xeEn To

defines an operator L™ (t) € L(Bys,By) for o/ < a such that

m(t) + z(t)e_o‘/ exp(e“/ﬁt) .

A
HL (t)”a’oz < e(a _ o/)

Moreover, the mapping [0,T] > t — L2(t) € L(Bys,By) is continuous in the
uniform operator topology.

Proof. Let o/ < o and k € B, be fixed, then the first summand gives

—alnl < nlo—(a—anlnl < () ,
(@) k(n)le 217 < m(®) e < 20
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and for the second part

2() Y e B / ex(1 = == ) h(n\z U ©)ldA(€)e !

xEen To

z(t)”kHa/e o g—(a=a’ ‘"‘Z/e)\ 1—67‘1" (z—) 5) \ﬁ\d)\(g)

wEnFU

IA

z(t)e_a/ exp(ea/,b’t)

= =(O)kllare™ Inle™ ™M exp(e” ) < == o —C5

1&lar-

Thus the first claim is proved. For the second part let ¢, s € [0,T] be arbitrary,
then the death part can be estimated by

_ oo m(t) — m(s
llm(t)—m (&)l ()] < fm(t)—m(s) e < D=y
Analogously to Lemma 3.18 the birth part can be estimated by

(5)| Y e Brlan\a) / ex(l = e~ ) lk(n\z U )]dA(§)e

xren

+2() S e Bemma) _ - s<z,n\r>

xzen

x / ex(1 — e~ €)[k(n\a U €)|dA(€)eel

To
s) Z e~ Es(zn\z)

zEN

< [ler =m0 a1 = e, ) e U IaA©e .

The first summand can be bounded by

|2(t) = 2(s)le™ [nle™ = exp(e’ 8y) |l
|2(t) — 2(s)|e™" exp(e”

5)
(o= a) Il

and the second one by

2(8) |61 — Bsllooe™ Inf2e M exp(e® By)]| | o
4Z(S)H¢t - ¢)s||oo exp(eo‘,ﬁt

= 2(a—a)?

) -

As a result they have desired property. For the last term we have the following
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estimate
()Y / Y 1oe(x =) = dule —ylea(t — e~ Q) k(m\a UEleMdA(E)
;L'Enro ye€
<z(s)[kflare @Ml gy — pyll L D [ ea(t — e 27 €)e ¥l ()
xEnFO
6o = bellr ep(eB)
- e(a— o) O‘
which shows the continuity. O

As a consequence, by Theorem 2.10 we obtain the existence of local solu-
tions.

Theorem 3.18. Fix some o, < o, then there exists T : (a*,a*] — [0,T]
continuous and monotonically increasing such that for each ky € B, there
erists a unique solution ki to the Cauchy problem
ok,
ot
i the scale B, given by Remark 2.12.3.

(t) = L2k, kele—o = ko (36)

To have the existence of a solution via evolution families it is sufficient
to show that the operators L2 (t) generate contraction semigroups T/ (s) for
t € [0,T]. Since the scale B, is of L*®-type it is not straightforward. The
general approach is to consider the dual semigroups and show the existence
of appropriate invariant subspaces. This analysis could be done, but is not
the purpose of this work. Instead we will consider the evolution of Bogoliubov
generating functionals. The fact that

ehr —1
h

sup =00, Vh>0

zER4

— X

causes difficulties in many calculations. Therefore we will only consider the sim-
plified model with the time independent potential ¢. Let m and z be continuous
functions on some interval I = [0,T] and ¢(z) = ¢(—x) > 0 be integrable, i.e.,

5= / | — o)y < / o(x)de = [|¢l|1:-
R4 R4

In [11] it was shown, that the generator L(t) for fixed ¢ € [0, 7] is given by
(L(t)B)(©) = _/@(x) (m(t)aB(@; z) — 2(t)B(0e~?@=) - m¢l@) 1)) da
R

— m(t)(LoB)(©) + 2(t)(L, B)(O)

with
(LoB)(©) = —/@(x)éB(@;x)dx
Rd
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and
(L1B)(©) = /@@)B (@e—W—') + e _ 1)) da.

It is a simple matter to show that

a* (m(t) + 2(t)a* exp(”q;[Ll - 1))

12 (0) e < —

(37)

where the norm of the operator is taken in L(B/,,B.,) with a, < o/ < o < a*
and B/, is defined in (17). This bound was shown in [11] for the case m = 1.

Theorem 3.19. Let m,z be continuous on [0,T] and 0 < ¢ € L'(R?) be
symmetric. Then for each fired 0 < a, < o there exists a continuous and
monotonically decreasing function T : [a, @) — [0,T] such that for each
By € B, there exists a unique solution By of the Cauchy problem

0B,

=t — L#)B,, Bili—o= B
5 (t)B:, Bili=o o

in the scale B, given by Remark 2.12.3.

Proof. Previous results, cf. (37), show that || L(t)|laar < for some con-

a—ao
stant M > 0 independent of ¢ € [0,T]. Strong continuity follows from the

inequality
IL(t)B = L(8)Bllar < [m(t) = m(s)||[LoBllas + |2(£) = 2(s)[| L1 Bl o

for o/ < a, t,s €[0,T], B € B, and the fact Lo, L, € L(B,,B’ /), which was
shown in [11]. An application of Theorem 2.10 shows the existence of a unique
evolution By in the scale B,. O

3.5 General birth-and-death dynamics

The aim of the last section is to prove the existence of solutions for the evolu-
tion of quasi-observables for the general birth-and-death dynamics heuristically
given by the Markov pre-generator

(LOF)() = m(t) Y dz,7\2)(F(1\e) = F(7))

xTEY

a(t) / b(a,7)(F(y U ) — F(y))da.
Rd

For time independent m and x this model was discussed recently in [8]. Un-
der some conditions the authors proved the existence of evolution for quasi-
observables via semigroup techniques. We will use this result together with
Theorem 2.3 to construct an evolution of quasi-observables for time dependent
coefficients m = m(t) and k = k(t). The assumptions on the model are the
following



On nonautonomous Markov evolutions in continuum 55

1. m, k are non-negative, continuous on Ry and bounded.
2. d(x,v) > 0 and b(z, ) > 0 are locally integrable in n € Ty, i.e.,
/ d(x,m) + bz, n)dA(n) < oo
T
for all n € N, A € %.(R%) and z € R?

3. There exists a* € R and a; > 1 such that for all £ € Ty and = € R?

S [ 1 it U@ AN < D)

xEEFO
4. There exists ag > 0 such that for all £ € Ty and z € R¢

) / K b(z, - U&\a)| ()e” dA(n) < azD(€)

IEEFO

5. There exists a constant v > 0 and A > 0 for which
d(z,n\z) < Ae¥Inl
holds for each n € Ty and x € R%.

The bound on d implies the bound

D(n) = d(z,n\z) < Alple” (38)

xrEn

on D. Of course 5. can be replaced by d(z,n\z) < P(|n|)e’!" with P a
polynomial. The expressions for quasi-observables are given by

e
= —m(t)Y_ GO (K d(x,- U&\x))(n\&)
£ECn FASIS
- / G U ) (Kb, - U E)) (\E)da
§CTIRa

= m(t)Lo+ L1 (t)

with Ly (t) = L(t) — m(t) Lo and (LoG)(n) = —D(n)G(), where

D(n) =) d(w,n\z).

xren

As a first step we will show that I:(t) can be realized as bounded linear operators
on L(B.,B ).
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Lemma 3.20. L defines a bounded linear operator L(t) € L(B.,,B.,) for
o +v<a<a* with

m(t)ay + k(t)aze
a—ao —v ’

IL(#)||aer < A

(39)

Moreover Ry 5t +— IAJ(t) is continuous in the uniform operator topology.

Proof. In [8] the authors have shown that Ly is relatively bounded with respect
to L. Similar calculations show that

IZ1(8)Gllar < (m(t)ar + w(t)aze™ —m()|[ oG o

Using (38) we obtain for G € B], with o/ < «

LGl < [ DG aAm)
ITo
< A / (G () e ple= (@~ MlaA ()
o
A
< —2 Gl
8] (8 14

for a > o + v. Therefore

m(t)ay + k(t)aze

a—ao —v

Hi(t)llaa’ < m(t)”ffOHaa’ + Hill(t)Haa’ <A

shows L(t) € L(B.,B/,). Continuity follows from the continuity of m, x and
the linear dependence on the parameters. O

(38) shows that it is possible to realise Ly and L(t) as an operator with
the domain

Dom(L), = {G € B}, : D()G() € B}
for a < a*.

Theorem 3.21. Assume there exists o, < o satisfying

a1 + aske” < 3

where m = sup m(t) and & = sup k(t). Then there exists for each o, <
>0 >0

o <a<at;a—d > v aunigue evolution family (U(t,s))o<s<: on B,

Consequently for each G5 € B, the equation

oG,

o i( )Gy, s<t, Gi|i=s =G

has a unique B.,—valued solution Gy = U(t, s)Gy on B,
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Proof. Last lemma implies that by [8] for each a, < a < o thiere exists a
unique holomorphic Cp—semigroup (S5 (s))s>o with the generator (L(t), Dom,(L)).
The same arguments as in the proof of Theorem 3.15 show B/ ,-admissiblility

for a < &”. The proof in [8] shows that this semigroup is a contraction semi-
group on R which implies Kato-stability. Theorem 2.1 implies the existence

of a unique evolution family and using again the same arguments as in the

proof of Theorem 3.15 one can show that Theorem 2.3 is applicable. O

Remark 3.3. The reason to consider this simple case for the time dependent
birth and death coefficients is the continuity of ¢ — L(t). For more gen-
eral coefficients d; and b; one needs different assumptions, especially for the
continuity.

3.6 Conclusion

Concerning correlation functions the major part is to construct an evolution
family corresponding to the operator A(t), which does not satisfy the bound

M
JA®) lara < —
it is not possible to apply Theorem 2.1 or Theorem 2.3. To overcome this
problem in the time independent case it is possible to show via perturbation
techniques, that A generates a Cp-semigroup S(t), cf. [6] and [5], and afterwards
consider the dual semigroup S*(t). Since the Banach spaces we are dealing with
are not reflexive, the semigroup S*(¢) will be in general only weak*-continuous.
As shown in [21], one can restrict S*(¢) to some invariant subspace D(S®)
and obtain again a Cp-semigroup, the so-called sun-dual S®(t). To tackle
the problem in the time dependent case we would propose to realize a similar
approach for evolution families U(¢,s). One difficulty is that A(¢)U(t,s) =
U(t, s)A(t) does not hold in general. The major question is how to characterize
some invariant subspace D(U®) such that D(U®) C () D(L(t)) holds.

tel

;. Since the embeddings B, C B,, are not dense for o <a

To show existence of global solutions we use general results for evolution
families. Since they are not applicable for correlation functions further analysis
is required. Special properties of the Banach spaces B, and of the operators
[A/(t) and L (t) might be useful to prove approximation formulas in the spirit
of [13, 22] and [23]. Consequently, such formulas might allow us to show the
existence of an evolution of states. We should stress that only sub-poissonian
solutions were considered, but in many applications clustering may appear
and therefore the time evolution should also be considered in other classes of
functions. Further steps can be dealing with Vlasov-scaling and existence of so-
lutions for the corresponding equations. A next step of generalization is to deal
with randomness in this models, meaning that the coefficients z,m,a®, d and b
should be random variables. One motivation is the fact that in applications it is
not possible to precisely measure the corresponding rates, but also fluctuations
could be taken into account. For applications it is important to understand
the properties of the solutions of our equations. Like in [?] one could analyze
properties of solutions to integro-differential equations of the form (26) or even
non-linear versions. The case of periodic coefficients play a special role in the
understanding of the behavior of the solutions. Also other spaces than (25) can
be taken to show the existence of solutions, e.g. X = C([0, T]; Cy(R%)).
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Abstract. With the use of the general variational principle of self-
organization of systems with varying constraints, namely the principle of
dynamical harmonization of systems presented in the first work of the cy-
cle, we advance an approach to the control over the evolution of systems
of many particles. The geometric nature of this principle is analyzed. On
the basis of the de Broglie-Bohm representation of the Schrédinger equa-
tion, we establish a connection of the nonlocality and the coherence of
the systems of many particles with mass entropic forces. The defining
role of a coherent acceleration and a space-time curvature in the control
over the synthesis of new structures in systems with varying constraints
is demonstrated. The basic criteria for electromagnetic fields to initiate
the processes of self-organizing synthesis and for the quantum properties
of a nonlocality on macroscopic scales, which are necessary for the self-
organizing synthesis, are formulated.
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1 Introductions

This work is a sequel of the cycle of works (see [1-2]), where some approach to
the control over the evolution of the systems of many particles on the basis of
the general variational principle of self-organization (the principle of dynamical
harmonization of systems) is presented. The purpose of the cycle is the de-
velopment of foundations of the theory and the technology of the synthesis of
final states of a system of particles with desired structure and energy binding,
which are attained from a given initial state with the help of the initiation of a
natural evolution and the control over an evolutionary trajectory of the system
at the expense of its internal power resources at a minimal use of the energy
of external drivers.]

The purpose of the present work is the determination of criteria of the
initiation of the self-organizing synthesis, classification of needed drivers, and
development of the theory of control over the processes of synthesis on the basis
of using the geometric nature of the evolution in the frame of the variational
principle of dynamical harmonization.

As is known, the variational principles are the most general and brief
means to formulate the laws of the Nature. For example, the equations of
dynamics of a system of particles follow under very general conditions from
the Gauss least-compulsion principle [3], and the equations of Maxwell and
Einstein can be derived from the principle of least action [4].

Our purpose requires us to solve a strongly nonlinear optimization prob-
lem. In this problem, it is necessary, in fact, to optimize the trajectory of
a system and to appropriately modify the conditions of optimization of this
trajectory. Here, we will substantite a possibility of the power-informational
control over the evolution of an ensemble of many particles in a noninertial
reference system.

In the case under consideration, the essential point is a control nonlinearity
related to the fact that the evolution of a system of particles (changes of its
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structure and the energy of constraints) and the space-time metric are mutually
dependent. The theory of evolution of the systems with regard for their internal
and external geometries, which will be developed in the present work, can
be called the geometrodynamics of the evolution of the systems with varying
constraints.

The principle of dynamical harmonization [1, 5] asserts that the self-
organization of a system of particles, being under the action of mass forces
leading to coherent accelerations of all particles of the system, is directed al-
ways to the realization of the transition from the initial state to a state with
maximally free dynamics by means of changes of the structure of the system
and its inertia relative to mass forces.

According to the Gauss least-compulsion principle, we should vary the
accelerations of particles at a fixed velocity lying in a plane tangent to the
trajectory. Hertz noticed that the varied accelerations can be related to inertial
forces (mass forces) and showed for some simple cases that the minimum of the
Gauss compulsion function is equivalent to the minimum of the curvature of
the trajectory of a particle. This look at one of the most general variational
principles of mechanics allowed one to develop the geometric interpretation for
it: the trajectories of particles are geodesic lines in a space.

The idea of the geometrization of the laws of physics was intensively devel-
oped in the last century. The most remarkable example of the geometrization
of physics is Einstein’s general relativity theory, which established the continu-
ous connection of geometry and matter. The fields of gravitation (it is a mass
force) induce coherent accelerations and form a curvature of the space-time,
where the particles are moving freely and are simultaneously the sources of
the curvature of this space-time. In other words [6], “matter tells space how
to curve, and space tells matter how to move.” It is of importance that such
an approach to the field theory allowed one not only to describe the fields of
gravitation, but also to deduce the equations of motion of particles directly
from the field equations [7,8], if the idea of particles as the singular solutions
of the field equations is used.

The idea of particles related to singularities was somewhat earlier intro-
duced by L. de Broglie, who tried to interpret the quantum-mechanical dynam-
ics of particles in the frame of his theory of double solution [10-11] on the basis
of the Madelung hydrodynamic representation [9] for the Schrodinger equation.
In this quantum-mechanical theory, it is proposed to represent the dynamics
of a particle by the sum of two solutions of the Schrodinger wave equation,
namely the smooth and singular ones.

The importance of the notion of nonlocality for the theory of self-organiza-
ltion was indicated in the first work of the cycle [1]. Here, we will refine the
connection of the property of nonlocality of the wave functions determined
from the Schrédinger equation (see [12]) with mass and entropic forces and will
show that this property is also revealed in classical physics as a result of the
geometrization of the physical processes of dynamics and evolution.

In the frame of classical physics, the geometrization of the dynamics of
particles, which is garmonically associated with the property of nonlocality,
was first realized by A. Vlasov. He constructed a nonlocal statistical theory
[13-15] and obtained kinetic equations on the basis of the geometry of a space
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of support elements. “The space of support elements” includes the following
notions:
1) Coordinate space.
2) Tangent space and the tangency order.
3) System of vectors loaning on the tangency point and lying in the tangent
space.

The space of support elements joins the coordinate space (as the space
of the possible values of the centers of mass of particles) and as the space
of the possible values of kinematic parameters of particles, for example, their
velocities, ans also can include the vectors of accelerations of an arbitrarily
large order, which depends on the tangency order.

The validity of the space of support elements consists in the exact for-
mation of a new understanding of a particle, which is characterized by the
continuum of the possible values of coordinates and velocities (and also accel-
erations of any order), as distinct from the classical image of a localized particle
with definite values of coordinates and velocities [14].

2 Schrodinger equation and entropic forces

The most efficient apparatus for the analysis of states of the system undergoing
coherent accelerations is presented by the Schrodinger equation and covariant
kinetic equations.

The Schrodinger equation for the wave function ¥ (7,7, ..., 7N, t) de-
scribing the ensemble of N particles,

OV (P, T, .. TN, T) h? S
h - _ T N v2y . t
G ot anzz:l n (7’1,7‘2, y TN )+
+U(F137727"'7FN)\II(F13F27"'7FN,t)7 (11)
0~ 0~ 0 - . SN .
where V,, = ¢ —i+ —j+ =—k;, and U (71,7, ...,7n) is the potential

of external forces acting on particles, arose from the attempt to solve some
problems of the dynamics of particles on small spatial scales. The linear equa-
tion for complex-valued wave functions, which was obtained as a generalization
of the classical dynamics of particles characterized by real variables, has shown
a very good agreement with experiment. The transition from complex-valued
variables in the Schrédinger equation conversely to real variables in the frame
of the de Broglie-Bohm representation (see [9, 11, 16]),

GRRR
U (71,7, 7y t) = /P (F1sT2s - T, D) -eXD (z (”’”’h )TN >), (1.2)

where p—probability density, and J—action, allowed one to show that the dif-
ferences between classical and quantum mechanics are reduced to the appear-
ance of an additional potential U, (71,72,...,7n) in the system of equations
for real variables. It was called the “quantum” potential (see the details in
Section 2).
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In the present work on the basis of the representation of de Broglie and
Bohm for the wave function of a system of particles with regard for the po-
tential U,, we will obtain the equations for the entropy and the formulas for
coherent accelerations in electromagnetic fields. We will analyze the solutions
of kinetic equations with regard for quantum statistics for an ensemble of par-
ticles undergoing the coherent acceleration and obtain the solutions of kinetic
covariant equations in noninertial reference systems.

Recently, the more and more attention was paid to the macroscopic ob-
jects possessing some quantum properties (in particular, the properties of co-
herence and nonlocality). In 2001, the Novel Prize in physics was awarded
for the creation and study of the Bose-condensates of atomic complexes [17].
In view of the importance of the notion of a “macroscopic quantum object”
(MQO), which is considered as a set of particles forming a collective system of
macroscopic sizes and possesses the property of nonlocality typical of quantum
objects.

The basic property of the evolution turns out to be the space-time aniso-
Itropy related to the fact that the factor defining the evolution is an accelera-
tion, and the properties of the space in the directions along the acceleration and
perpendicularly to it are obviously different. Such an anisotropy corresponds
to the obtained solutions of covariant equations that have power asymptotics
and define the fast localization of the domain of existence of the system in
the direction of action of a mass force and its fast delocalization in a subspace
orthogonal to the direction of the acceleration.

In this case, the natural geometry of the space-time is the geometry of
the space of support elements (the support elements are the kinematic ele-
ments on the trajectory of a particle), namely the Finsler geometry. Such
a viewpoint combines, in fact, the approaches of L. de Broglie, J.-P. Vigier,
A. Einstein, and A. Vlasov concerning the geometric nonlinear nature of the
physical laws of dynamics and evolution. The role of a support is played by
the four-dimensional space-time. The tangent bundles are the planes of ac-
celerations of all orders and the space of the internal structure of a system,
i.e., the space with coordinates characterizing a structure of constraints in the
system (e.g., such as the fractal dimension or the order parameter, deforma-
tions, etc.). The tangent bundles and the support, which is a space-time with
Riemann geometry, are coupled by the vector of acceleration or the space-time
curvature.l

As for the relationship of a self-organizing system and the space-time, we
note that

e the systems of particles, by undergoing the coherent accelerations during
the evolution, make the space-time, where they are placed, curved;

e in turn, the space-time becoming curved indicates the directions of free
motion for particles and the directions of evolution of the internal struc-
ture of the system.

The obtained solutions of covariant kinetic equations under a fast exten-
sion of the space-time becoming curved are similar to the accelerated cosmo-
logical extension in the general relativity theory (see [18]) with cosmological
constant. As became clear in the 1960s [19-21], such an extension is continu-
ously connected with the physical vacuum, which has the antigravity properties
corresponding to the cosmological term in the Einstein equation.
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The physical vacuum has many significant properties. In particular, it was
established that vacuum is homogeneous on scales from centimeters or meters
up to cosmic scales. On the “ordinary” and subatomic scales, the homogene-
ity of vacuum can be broken with the appearance of experimentally observed
macroscopic effects related to the polarization of vacuum (Casimir effect) and
to the coherent acceleration (dynamical Casimir effect) [22-24]. Near (and in-
side) the systems that undergo phase transitions and coherent accelerations,
the space-time becomes curved (see the Vlasov theory [13-14]), and the light
velocity is changed (see experimental results in [25]).

Here, we consider the possibilities to use the electromagnetic fields and
the fields of entropy gradients for the control over the evolution of a system,
i.e., over the evolution of its constraints. In this case, the space-time curvature
arises, and, hence, the resonances of mass forces producing a inhomogeneity
of the space-time and the physical vacuum can appear. These resonances are
analyzed, and their parameters are determined.

The application of these resonances to the control over the synthesis of
systems with varying constraints can become a promising element of the future
technologies with “guided evolution”.

The natural consequence of the space-time curvature is the difference of
the intrinsic time from the laboratory one. The former depends not on the
velocity of the reference system, but on its acceleration, which leads to a change
in the lifetime of particles [26].

Similar effects were noticed by Vlasov [14] and Kozyrev [27], and the
influence of the growth of crystals on the light velocity was experimentally
discovered as early as 1905 [25].

It is especially interesting that Kozyrev was able, starting from his theory
of time, to fabricate a special gage on the basis of resistors forming a bridge
scheme and to observe the motion of stars at a laboratory on the Earth in real
time (see, e.g., [28]). In our opinion, these effects are related to the appear-
ance of a local space-time curvature determining the ratio of the intrinsic and
laboratory times, as well as the impedance of electrotechnical elements (see,
le.g., [29]).

The close ideas were developed in works by S. Podosenov (see [29]), where
he showed how the constraints in a system determine the Riemann space-time
curvature.

In the present work, we will show that the variational principle of dy-
namical harmonization leads to the geometrization of the physical processes of
evolution and to a generalization of the theory for any fields of mass forces. We
give the experimental results obtained with the use of the Kozyrev detector. We
consider that they demonstrate, under laboratory conditions, the resonances
of electromagnetic radiation with the inhomogeneity related to the space-time
curvature initiated by the action of electromagnetic drivers described below.

The resonances caused by the propagation of longitudinal waves amplify
the fluctuations of vacuum under conditions of the scale invariance and, act-
ing on particles, initiate their complicated motion, which can develop into a
dynamical chaos. As was shown in [30], it is convenient to apply Tikhonov’s
methods of regularization of the states with dynamical chaos to the description
of the dynamics of particles. The scale invariance of vacuum implies that the
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operators of regularization can be given in terms of quantum [31] and fractional
[32] integro-differential operators. The developed model of the interaction with
vacuum describes naturally the openness of the system and the processes of
creation and decay [33].

The equations of the dynamics of particles at their interaction with the
scale-invariant vacuum after the regularization can be modeled with electro-
physical curcuits: operational amplifiers as a model of the operators of reg-
ularization and branched equivalent resonance schemes as a model of fractal
medium. The developed model is especially useful for the optimization of elec-
tromagnetic drivers.

We emphasize once more that a specific feature of the considered tech-
nology of the control over the evolution of systems is the use of the internal
mass-defect energy in order to change a structure of the system, rather than the
energy of external drivers. The low energy of external fields must be spent only
for the control and the initiation of the processes of self-organization with de-
sired structural and energetic directedness. In what follows, we will show that
namely the nonlocal entropic fields determine the main properties of MQO.

2.1 The de Broglie-Bohm representation for the Schro-
ldinger equation and entropic forces

The main property of MQO (i.e., a quantum system with constraints) consists
in that the wave function describing it cannot be represented as a product of
one-particle wave functions in the form

U (7,79, ..., TN, t) = U (7,1) U (72, t) ... U (7N, t). (2.1)

For this function, the normalizing integral is reduced to product of independent
integrals:

/\I'* (M, )W (F1,t)dry - ... /\I' (Fn, )W (P, t) dry = 1. (2.2)

V1 VN

Each integral in this expression is separately equal to 1. In other words, the
behavior of each particle in the ensemble is described by the own wave function
independent of the states with other wave functions. Hence, the coupling of
particles in the single ensemble is ensured only due to the potential of external
fields U (71,75, ...,7n) and to the quantum potential Uy (1,75, ...,7~) [34].
This coupling is supported by quanta ensuring the given interaction. The rate
of exchange by quanta does not exceed the light velocity, as distinct from the
entangled states representing MQO, where the information propagates, as will
be shown below, instantly. This can be easily seen from the formula for the
probability to find MQO in a given volume V:

/\I/(’Fl,f'z, e 777]\7,75)*\1’ (7:'17’/_"2, e ,FN,t) d’l"ld’l“g e d?“N =1. (23)

In this case, the wave function describing MQO depends on the time, but
the probability to find MQO in the given volume is conserved. This implies
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that any change in the position of any of N particles placed in a volume V
affects instantly the positions of all remaining bound particles.

Thus, the instant rearrangement of the positions of all particles reflects
the presence of strong constraints in MQO and, hence, strong correlations in
it. MQO is a macroscopic formation (most probably, a quasicrystal), which is
described by the quantum Schrédinger equation.

A bound dynamical system tends to instantly become self-organized and
to pass in a state with maximal probability. For the viewpoint of the principle
of dynamical harmonization, the system chooses optimally the direction of a
change of the structure formed by entropic fields. This reasoning can be easily
generalized to the case of a partially bound dynamical quantum system.

With regard for the de Broglie-Bohm representation (1.2), Eq. (1.1) yields

o 1op. 1 & 2 Lo
~ i/ Y hQ 8t\IJ %;(Vm]) U+ U (f1,72,...,7n) U—
N rvp
2 _ n LU
ZVJ\I/ 2m;<p>(an)\If
2 2 N 2
R <Vnp)\p+h (v"p> v (2.4)
2m ot 2p 2mn:1 2p

We note that the probability density and the action are real functions. We
can separately collect the real and imaginary terms and obtain two nonlinear
equations corresponding to one linear Schrodinger equation:

aJ

N
1
_— 72 V J +U(T1,T2,.-.,FN)+
ot 2m £~

- Vap\®  V2p
+2mg<(2p> -22). e

S (), 20

S (71,72 ..., TN, t) = —ln|\11(r1,r2,...,rN7t)|2
=—In(p(71,72,..., 7N, 1)), (2.7)

Let us transform formulas (2.5) and (2.6), by substituting entropy (2.7) in
them. In this case, we take into account that p~!Vp = VIn p. We have

07 1 & s B )
~ %Z(Vm]) — > (Va8)*+
n=1 n=1
e
+U(ﬂ,f2,...,m)+m2vis. (2.8)
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We note that the modified Hamilton—Jacobi equation (2.8), which passes

into the classical Hamilton-Jacobi equation at the standard limiting transition
h? X

as i — 0, contains the term B > (V,S)® = E,. This term is an analog
m p=1

of the entropic-type kinetic energy E, and is expressed through the gradients
of entropic fields. The physical meaning of a kinetic energy of the entropic
type consists in the binding of a system of particles, which causes a decrease
of their total kinetic energy. The action of the entropic force is directed on
the optimization of the system of constraints in dynamical system, by leading
it to the most probable state. In other words, the system evolves to a new
configurational state with maximal stability. The density gradients of entropic

fields are a quantitative characteristic of the probabilistic laws and forces.
2 N

In the modified Hamilton—Jacobi equation (2.8), the last term f—m S V2S
corrects the potential energy of the system. The sign of the Laplace (T)Lpelrator
in this expression reflects a decrease or increase in the potential energy of the
bound system on the whole. Thus, the direction of the flows of entropy density
gradients determines the final value and the shape of the potential of interaction
between particles.

Thus, it becomes clear that the entropic field is related to the fields of
constraints in any quantum system, in particular, in MQO. Moreover, the in-
troduction of entropic forces makes the separation of quantum and classical
mechanics, which has born always a sufficiently indefinite character, to be con-
ditional. The border between them is eroded, if we consider the dynamics of
classical systems with regard for the evolution of their internal constraints in
the presence of the corresponding entropic fields.

From our viewpoint, it is significant that formula (2.8) contains quantum
terms together with classical ones. The former can be expressed in terms
of the operators of mOIQnentum and kinetic energy of particles of the system:
Dn = —thVy, T, = —;—mVZ.

Using these operators, we can transform Eq. (2.7) to the form

oJ 1 N 2 1 al ~ 2
o %nﬂ (Vo)™ + %;(pns) +
1L
+U(F1,F2,...,FN)—§;TnS. (2.9)

Formulas of the type (2.10), which include classical terms and the oper-
ators of physical quantities, describe the macroscopic quantum objects. Thus,
MQOs reveal both classical and quantum properties.

The equation of balance of the entropy follows simply from Eq. (2.6):

- 1 <
7 . —_— 2 =
5 +n§:1 (tUp - V5n95) - § VvaJ =0. (2.10)

n=1

The knowledge of solutions of the system of nonlinear differential equa-
tions (2.8), (2.10) for the action and the entropy allows us to write the wave
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function, being a solution of the Schrédinger equation, in the form

\IJ(F:[’FQ, . ,’I?N,t) = exp (72),
G N A G R ) (2.11)
—1 .

Z= 2%k h

Here, we write the Boltzmann entropy in the form S = —kpgln p, where kg is
the Boltzmann constant. The function Z is a complex-valued function with
nonzero real and imaginary parts.

Let us consider the action of the operators of momentum and kinetic
energy on the entropy:

R 1 1, 1 .
P = o (q, Bu0) - o (m)) . (2.12)

If the eigenvalues of the operator of momentum are real numbers, then
the action of the operator of momentum on the entropy is equal to zero, but it
is possible only in the case where the wave function of the system of particles
can be expanded in a product of wave functions.

The action of the operator of kinetic energy on the entropy is given as

follows:
N N N 2 p2
§ :E E:T:z:E_Tm' (2.13)

In this case, the eigenvalues of the operator of kinetic energy are real. We
denote such an eigenvalue for the n-th particle as E,, and the total momentum
of particles of the system as P.

It is seen from (2.13) that the action of the operator of kinetic energy
2

P
on the entropy of the system is since £ = —. This result is possible only

w\»—A

under the condition that the wave function o%nthe system of particles can be
expanded in a product of one-particle wave functions, which breaks MQO. In
this case, the generalized quantum-classical Hamilton-Jacobi equation passes
into its classical analog.

The performed calculations allow us to assert that the quantum cor-
rections related to the entropic fields appear only in the presence
of long-range correlations in the systems of particles, i.e., if MQO
arises.

By analogy with classical mechanics, it is easy to determine the momenta
that are determined by the mass entropic fields. As is seen from the formula
for the entropic-type kinetic energy, each entropic momentum py,, acquired by
the n-th particle is proportional to the entropy gradient.

gvns. (2.14)

The entropic momentum transfers each of the particles of MQO in the position
that corresponds to the maximum of the probability of a state for the given
MQO. Thus, the dominating mass force (general dominating perturbation) [5]
supplies coherently the momentum psg, of a directed motion to all elements of
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N

the ensemble of particles, which meets the condition | > psn| > Pr,.., where

ax?

Pr_.. is the maximal absolute value of the mornenttrllm1 of the intrinsic heat
motion of any of the elements of the ensemble (MQO, in this case).

The principle of dynamical harmonization [1] implies that the evolution
of a self-organizing system is possible only in the presence of the coherent
acceleration of the entire system, when all particles of the system acquire the
same momentum increment due to the action of the entropic force arising under
the nonzero entropy gradient. In this case, it is necessary that the regular
component of the change in the momenta of particles Apg at the expense
of the entropy exceed the chaotic heat component pr ~ mur. We call this
requirement as the condition of domination of a driver.

It is convenient to introduce the coeflicient of domination of a driver ag as
the ratio of the momentum increment of a particle due to the action of a driver
to the heat component of the momentum. Then the condition of domination
of a driver takes the form

ag>1, oy = ar (2.15)
pr

The rate of transfer of a momentum to the system of particles allows us to
estimate the mass force F, stimulating the system to the coherent acceleration
and the evolution due to a change of the internal structure.

Thus, the analysis of the Schrodinger equation implies that the pertur-
bation of MQO related to the appearance of the entropy gradient (mass force)
at any point of the volume occupied by MQO causes a change of the momen-
tum of each particle of the given object, since even an insignificant external
entropic perturbation acts at once on all particles, which are located at the
points {71, 72, ..., 7N}

Such properties of the system indicate the existence of a nonlocality of
MQO in the general case. It becomes clear that the physical entropic field (field
of mass forces) is the reason for the appearance of the fields of constraints.

If condition (2.15) is satisfied, and if the system undergoes the action of
an entropic dominating perturbation (i.e., if V.S > 2Pr_ . [k is satisfied), the
value of “quantum potential” becomes essential for the evolution of the system
irrespective of its scale. In other words, under the action of a dominating
perturbation, even a classical system becomes nonlocal and acquires quantum
properties.

It is seen from Eq. (2.13) that the entropic fields acting on the system of
particles decrease always its kinetic energy. For such systems, we introduce the
definition of the degree of nonideality ©, which shows a share of the decrease
of constraints of the system:

F—-F
0= s, 2.16
- (2.16)
Here,
1 1
E=——> (Va))’=5-> 1}
2mn:1( nt) 2mn:1p”

is the kinetic energy of the system of N particles with the same mass, and
Dn = V.
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For © = 0, the system is completely bound, has the maximal ideality, and
possesses, as a whole, a field of entropy gradients such that leads to a minimum
of the kinetic energy. Based on this, we can estimate the mean entropy gradient,
due to which the ideality limit and the maximal coherence are attained in the
system, i.e., F = E; or (ps) =~ (p):

2
(VS) ~ 7 (p) . (2.17)
For © = 1, the fields of entropy gradients are absent, and the system becomes
completely nonideal.
The introduction of the entropic momenta (2.14) leads to a new formula
for entropic forces in quantum mechanics,

—

. n .
Fy =, = 58, (218)

where the dot stands for the differentiation with respect to the time. Hence,
the entropic force is proportional to the entropy production gradient og = S
(see also [1]) in the system. This formula differs from that obtained by E.
Verlinde [35], who used the equations of equilibrium thermodynamics of closed
systems and obtained

F, =TVS. (2.19)

This formula does not involve the entropy production and, hence, cannot be
applied to the description of nonequilibrium systems.
Knowing the entropic force, it is easy to set the entropic pressure into the

theory:
(Fs, 1)

K )
where K is the area on which the entropic force acts, 7 is a unit vector of normal
to the surface with area K. The physical meaning of the entropic pressure
is that it forms structures at all hierarchical levels of the system (clusters,
molecules, atoms, nuclei, etc.) by changing the space-time structure of the
physical vacuum. In the case of a spherical surface with a radius R, the entropic
pressure equals:

Py =

(2.20)

_h VS
T 247R%

In order to estimate the entropic pressure in the shell with the thickness
d the following formula may apply:

. 1 /A AS 1
VSz(S), I (2.22)

Px (2.21)

d\ 7 T 24rR2d 1

where 7 is the time for the formation of a spherical shell structure at all levels
of the hierarchy, AS is the entropy change in the spherical shell of radius R
and thickness d.

Taking into account that the entropic pressure has the same value at all
levels of the hierarchy, one can determine the change of energy of constrains
of the nuclear component of the system. For this to be done it is necessary to
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equate the work done by the entropic force on the structuring of a spherical
shell at nuclear level and the change of the energy of constrains:

PgdV =de,  dV =47wR*dR. (2.23)

Thus, the change of the energy of constrains is proportional to the pro-

duction of entropy:

I )
de = 5d(0s), o5 =5 (2.24)

and for the estimation of change of energy of constrains of the system, a relation
may be applied:

_ hAS
27
This estimate provides a basis to generalize the Heisenberg uncertainty princi-
ple for energy and time in systems with varying constrains (due to the change
of energy of AE):

Ae (2.25)

AtAE ~ SAS. (2.26)

Now it is clear that the transition to classical mechanics does not occur
while 4 — 0, which is not actually logical for the constant, but through vanish-
ing of entropy gradient cnange in the system. We now estimate the mass forces
and the domination of a driver in the frame of the “shell” theory of evolution
(see [1]). Let the action of a driver on the system of particles have lead to the
separation of a subsystem of particles (shell) with mass number Ay, where the
mass force acts.

The coefficient of domination agg of the action of an entropic driver on a
single particle can be represented as

aS:h(VS/Am):<h>(AS/M

my, my Urlesf
h/ (mpUT) Ap_B\ AS
~1 = T 2 JAS=10| —=—= 2.2
0 < Rsh S 0 Rsh Ash ’ ( 7)

where Ap_p is the de Broglie wavelength corresponding to a heat pulse:
Ap—p =~ h/pr. (2.28)

To obtain the final result, we need to estimate a change of the entropy
(AS), due to the development of physical processes with a change of constraints
in the system. On the initial stage, a subsystem of Ay, particles is separated.
In it, the initial shell structure with the coherent part of Asncoq particles and,

A
sh€og s created. Then we take

hence, with the input order parameter 7, =
sh
into account that

e the break or creation of one constraint consumes the erasure energy of
one bit of information e, ~ T'In 2 (Landauer theorem [36]);

e the number of constraints at the formation of a cluster with with mass
number A, coq is equal, by the order of magnitude, to Nycoq ~ 0.5(AShCog)2;

e the probability of the creation of a cluster with the number of particles

Ashcog is proportional to Peog = 1/1/Ashcog;
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L AshCog ~ nshAshZ;
o T(AS), = WshcogZ, V =const , Wgpcog is the energy of the formation
of the coherent part of a shell;
° sh ~ PcongcoggbZ~
The above relations imply that, at the formation of a structure, the en-
tropy is changed by

1 1 1
(AS)b ~ 7WshCog ~ 70~5(AshC()g)27T1n2

T T \/ AshCog

In2
~ 7(AS,LCOL,])?'/2 ~ 0.038(nsn Asp)™2. (2.29)

In this case, the specific change of the entropy per particle is

(AS),
Ash

~ 381072242 (2.30)
Substituting this formula in that for the coefficient of domination (2.27), we
obtain X

ags ~ 0.38 ( g‘hB) Al (2.31)

If the conditions of domination (2.14) are satisfied, the drivers transfer
the nucleus of a shell from the quasiequilibrium state in the inertial reference
system in a strongly nonequilibrium state in the noninertial system formed un-

dA
der the action of mass forces Fgy = d—tp The mass forces cause the coherent
acceleration
1 d 1 aqpPT ur
Ueog  — — (Ap) = — ( ~ag (2.32)
my dt My \ Teff Teff

and the evolution of a structure of the system (see the principle of dynamical
harmonization [1]).

We note that the basic relations have been obtained from the Schrédinger
equation in the nonrelativistic case without external electromagnetic field.

2.2 Electromagnetic drivers of mass forces

We now show that the electromagnetic fields can be dominating perturbations
for a system of particles. As is well known, the Lagrange function of a system
of particles in electromagnetic fields is transformed ([37]). Without electromag-

netic fields, the momentum of a particle with charge ¢ and mass m is connected
mu
with its velocity @ by the well-known formula p = ———. At the mo-

L= (ufe)?

tion in an electromagnetic field with the vector potential A (and in the fields

- - = 0A
defined by the potential: B = rot A, E E)’ the total momentum of the

particle changes due to the vector potential. Even if there is no magnetic field
at the point of the space, where a particle is located, the total momentum of
the particle is determined by the formula
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—

P=——— t¢A (2.33)
1— (u/c)®

Similarly to the connection of the electrostatic potential and the energy,
the vector potential reveals a connection with the momentum. The vector po-
tential supplies the additional electrodynamic momentum to all charged parti-

cles Apgy = eA.

d(A dA
The mass force of the electromagnetic origin, Fg = w =4 is a
force acting on a charge and is given by the derivative of the vector potential
with respect to the time in the standard formula for the electric field intensity

in terms of the four-dimensional gradient of a four-dimensional potential:

E=-Vo-=—. (2.34)

We note that the contribution of the rate of variation of the vector potential

e can essentially exceed that of the electrostatic potential gradient for short
pulses;

e can be present in the system even without gradient electric fields and
transverse magnetic fields (rot/_f ~ 0, and the potential is frequently
called a zero-field potential in this case);

e by determining an alternating electric field E if the condition rotA ~ 0
holds, generates no alternating magnetic field, but can ensure the appear-
ance of sources of a vector potential that are concentrated in the regions
with divA # 0;

e defines the localization of the magnetic field and sources of a vector po-
tential in spatially remore regions;

e can be present in the system in the case where the electrostatic potential
is the same at all points of the system.

There are many means to generate the fields of a vector potential, but such
sources as the toroidal coils on a core with magnetic permeability x and with
current Igmper flowing on n windings are most convenient. For such drivers,
the amplitude of the vector potential is given by the relation

Ho _
A Eﬂ'n IAmper =10 7//”” IAmper

(in IS units) and ensures the coefficient of domination

10 Tn. (L) Lamper (2.35)
H my ur

agA =
mpur

In correspondence with the equations Maxwell, the component of the elec-

- 0A
tric field intensity £ = —— exists also in a homogeneous system of particles,

i.e., it can be an electromagnetic mass force acting directly on the charged
component of a system of particles.

We now mention one of the simplest drivers. The collective properties
of a system of particles are usually revealed, first of all, in the hydrodynamic
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behavior of the system. It is clear that if the system is affected by a hydraulic
impact, then, at its high intensity, the particles receive a momentum increment
Ap,, exceeding the thermal momentum. Moreover, a nonlinear wave moving
with supersound velocity appears in the system of particles. It is clear that, in
this case, the condition of domination is satisfied on the front of this nonlinear
wave is satisfied.

We now summarize the above-performed analysis of the Schrodinger equa-
tion: the particles undergo the action of a nonlocal mass force causing a change
in the momentum of particles by a value bounded by the sum of the correspond-
ing contributions of basic drivers (mechanical, electromagnetic, and entropic
ones): |Ap| < [Apm| + |AFa| + | Afs|.

Here, we consider the following main channels of transfer of a momentum
to particles:

e macroscopic hydrodynamic impact leading to increments of the momenta
of the particles (the impact can be realized, in particular, by longitudinal
acoustic waves in a medium)

Apm ~ mAug; (236)
e direct impact increment of a momentum in the electromagnetic field
(Ap), ~ gA (2.37)

(in IS units);
e increment of a momentum in the field of entropy gradients

(Ap)g ~ i (VS). (2.38)

It is clear that the action of sources of impulsive excitation on a system
of many particles leads to a nonequilibrium state. As was shown in the works
of A. Vlasov [13-15], the kinetic equation for the collective states of a system
of particles with distribution function f (7,,t) can be presented in a closed
divergent form in the Finsler space.

Usually even in the case of a strong deviation from the equilibrium, the
system is described within the Prigogine method of locally equilibrium distri-
butions [38] with parameters depending on the spatial coordinates. In this
case, the kinetic theory describes the evolution of both a state of the system
of particles and the distribution of particles in the configurational space. In
this case, the sources are usually positioned on boundary of the region under
consideration and act on different particles of the system differently. The main
parameter of a driver defining the kinetics is the power flow density on the
boundary of the system.

In the cases where a driver initiates the action of a mass force on the
system, it renders, by definition, the practically identical action on all particles
irrespective of their location in the system. In other words p particles in unit
volume receive the same momentum increment Ap for the time At. Therefore,
the parameter defining the openness of the system is, naturally, the bulk density
of a power absorbed in the system, Pay = Vesrpw -
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In the case of the action of a nonstationary vector potential, the relations
ExvepA and pyw = (ueffA)2 are satisfied, and we have
A2
2 (2.39)
ef f

Py~ Veff\EA| ~ VeffAeff ~

It is seen that the force action efficiency increases as the third power of
the frequency with the corresponding decrease in the impact duration.

We now construct a dimensionless parameter characterizing the degree
of “impactness” of an action. To this end, we estimate the dissipation power

P,is and consider the dimensionless ratio Qimp = (impact factor or the

lfey
. . . Pdls . . . .
coefficient of impactness) of the power density of the driver to the dissipation

power density Py;s ~ p—. In view of (2.32), the parameter of impactness
Tdis

A% 7456 Tdis Ry 7 a \?
szp pT TJ;;, ( s > ( e > <5T adis) s ( O)

is the classical radius of an electron, and Ry z is the radius

where r, = 5
meC
of a Wigner—Seitz cell.

The distinctive property of the parameter of impactness is its reciprocal
dependence on the cube of the characteristic duration of an impact action.

For the system of particles, the bulk density of a consumed power char-
acterized by the parameter of impactness is the nonequilibrium source in the
kinetic equation for the distribution function of particles, which is the equa-
tion of continuity in the space with coordinates (7, @) for the effective medium
represented by the probability distribution:

af (7,1 o . o
f(gtu D 4 dive (@ f (7, 7,0)) + divg (@ Fan)=v@p).  (@41)

. d b _’7 7t .
Here, <1I> J i ii (f ( 5 ) is the acceleration averaged over the whole

ensemble of partlcles and the distribution function is defined in the space of
support elements, the Finsler space. It will be described below. We will show
that the properties of the space, where the distribution functions are defined,
are of great importance and allow one to naturally describe the self-organization
of the systems of particles even without explicit presence of forces of the fun-
damental nature.

Consider a system of particles under the action of a dominating perturba-
tion of mass forces without any dependence on the coordinates: ¥ (r,p) = ¥ (p).

It is clear that if all positions of particles in the system are equivalent
for the action of a mass force, and if the condition of domination is satisfied,
then the good zero approximation is a nonequilibrium system with spatially
and statistically homogeneous properties, so that its principal evolution runs
in the energetic conponent of the phase space.

The source or sink of energy V(p) = Qimpd(p) (mass force), which is
homogeneous in the wholespace, is characterized (by the Heisenberg uncertainty
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relation) by a strong localization in the momentum space. So, we may consider
a linear combination of k delta-functions as sources and sinks concentrated near
certain points of the momentum space py.

For the isotropic part of the distribution function, it is convenient to pass
from momenta to energies with the use of the dispersion law ¢ = ¢ (p) and to
present the kinetic equation in the form [39-40)

of(e,t) 1 0 _ 1
T + g (E) & (H (67 {f})) - ; (lep)kmd (6 - gk) ’ (242)

where we used the density of states g (¢) and the flow of particles in the phase
space I (g,{f}). In the Vlasov equation (2.45), the flow in the phase space
corresponded to classical statistics:

T (u, { f}) = (@) f (7, ,t). (2.43)

Let the particles of a substance be fermions. Taking the properties of quan-
tum statistics into account, we will use, first of all, the fact that the mean
acceleration of fermions <12’>
1) is proportional to the number of free sites for the evolution in the energy
space, i.e., to the quantity (1 — f (¥, d,t));
2) is caused by mass forces and is determined, as is seen from the analysis
of the Schrodinger equation, by the entropy S ({f}) =~ In (f).
In view of this, we restrict ourselves in the expansion of the acceleration <ﬂ'>
by terms up to the first derivative a—s Then the flow in the kinetic equation

Oe

for fermions takes the form

e =a® (T va-ns). e

In the regions between sources and sinks, Eq. (2.42) ensures the constancy of
the flows with the corresponding sign. For the zero coefficient of impactness,
the solution is the Fermi-Dirac function

1

f(e) = :
)

EFR —€
1+exp<— ;ff
€

If the impactness is nonzero, the distribution function generalizes the equilib-

rium distribution: )

fq (e)= cr—c\
1+ exp, (— )
Teyy

(2.45)

where the parameter of nonequilibrium ¢ is determined by the parameter of
impactness, and the exponential function is replaced by the functions [36] with
power asymptotics,

q

exp, (—z) = <1 + % (:c)> ﬁ, q=\/1+ar(Qimp),- (2.46)
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The quantity a; in the formula for the parameter ¢ is determined by the in-
formation transfer rate along a communication channel between the scales and
can be evaluated by the Shannon—Hartley theorem:

A
22 gy (14 Qu) = S l0g 14 Q). (247)
eff Q

Here, Aw is the transmission band of a communication channel, wes; is the
effective frequency representing the action of a driver (frequency of electro-
magnetic signals, inverse duration of the front of pulses of the electromagnetic
field, etc.), @ is the quality of the oscillatory system, and the function & (¢)
represents a possible modulation of information.

Using the distribution function of particles (2.40), we can write the dis-
tribution functions f,q (¢) over energies for holes (antiparticles):

oy =~

exp (—EF _8)

q

Jog(€) =1—fq(e) = T;ff_ - (2.48)
1+ exp, (— ;ff )

This formula can be used for the determination of the levels of fluctuations
and excitation of the vacuum state of particles, for example, electrons and
positrons.

Having defined the main parameters of drivers, we pass to the analysis of
the general evolution of systems with constraints and to the clarification of its
nature and mechanisms.

3 Geometrodynamics of systems with varying
constraints

The main element of kinetic theory, namely the distribution function of parti-
cles, is practically the same as the probability density distribution (the squared
modulus of the wave function), which is determined by solving the Schrédinger
equation. However, there exists a difference between kinetics and quantum
mechanics. It consists in that the Schridinger equation and other equations
of quantum mechanics contain nonlocal terms (which is confirmed in numer-
ous experiments), whereas the ordinary approaches to kinetics based on classical
dynamics involve no nonlocality.

The absence of a possibility to describe the nonlocal effects observed ex-
perimentally is the main shortcoming of practically all approaches to kinetics.
A generalization of kinetics to nonlocal processes would erase these differences
between classical and quantum descriptions of systems.

This purpose was attained, in the basic part, by A. Vlasov on the way of
the geometrization of kinetics in the nonlocal mechanics developed by him. An
analogous approach is used in our theory of evolution.

3.1 Space-time with Finsler geometry

The geometric interpretation of mass force action on objects of any nature is
that the mass force creates a structure of space-time wherein the further evo-
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lution of the system occurs. Naturally, there is a need to consider the physical
processes in Riemann spaces, the fiber spaces with different bases, Cartan and
Finsler spaces, etc.

The geometries of Euclid and Riemann, which are usually applied to
physics, concern only local properties. To describe the nonlocality of a sys-
tem, A. Vlasov used the geometry of support elements (the geometry of a
stratified space) [14-15], whose advantage consists in that the kinematic char-
acteristics of the dynamics of particles become inherent internal characteristics
of the system and are not imposed from outside. Any particle is characterized
nonlocally, i.e., by the whole spectrum by the own geometric and kinematic
properties for every time moment ¢: 7, u, U, U, U, ...

The differentials of the independent coordinates, 2° = ct, z!, 22, 23, are
infinitely small intervals basing on a current point M in the four-dimensional
Riemann space-time, i.e., in the space-time with metric properties that are
determined by the metric, namely the elementary interval written in terms of
the differentials of coordinates of the space:

ds® = gpda'da®,  i=0,1,2,3, k=0,1,2,3. (3.1)

Sometimes, it is convenient to separate the spatial coordinates, the time
coordinate, and the spatial interval with the corresponding metric:

ds® = gaﬁdxadx’@ + 2g0ada’dz® + QOO(dxo)zv
de = ’yalgd.’l/‘admﬁ,
90ag0s

Yap = —Y9ap T+
op o goo

The differentials lie on different surfaces and, therefore, are independent
vectors. The point of the space-time and the collection of differentials of dif-
ferent orders (support elements) form a space with larger dimension, namely
the Finsler space (the space of support elements). The kinematic quantities
are expressed in terms of the corresponding differentials:

o da° dt o dz®
u = -_— :c—’ u = -,
dr dr dr 3.9
2, 3.« ( : )
o Aoz o A’z
u” = P u” = g3 a=1,23.

Here, 7 is the intrinsic time of particles, which is invariant relative to changes
of the reference system and the laboratory time ¢. If the reference system
is changed in the space-time, the values of coordinates are connected by the
relations with nonzero Jacobian:

oz

57| %0 (3.3)

x* = p* (mo,xl,x27x3), det

Seven degrees of freedom in the Finsler space are physically obvious: they are

four coordinates of the four-dimensional space-time, 2%, ', 22,23, and three
L. . dxt dx? dz?

velocities in the coordinate space, u! = ——, u? = s ud = s The def-
T T T

inition of 4-dimensional velocity includes a new element, the intrinsic time.
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Moreover, the eighth degree of freedom with dimension of velocity, u® = ¢
appears.

Since the eighth degree of freedom u° is directly related to the flow of the
physical time inside the ensemble of interacting particles, it is natural to assume
the connection of this eighth degree of freedom with the physical properties of
irreversibility of the system, degree of its “openness,” and flows of the entropy
in the system of particles. This point will be clarified in the subsequent study
of the connection between the geometry and the processes of evolution.

The curvature of the stratified space-time is defined by the coherent ac-
celeration of the system (and, hence, by mass forces). The category of motion
of particles is included in the space of support elements on the same primary
level as the category of space-time. Moreover, the forces are considered as a
factor forming the properties of the space-time and the possible motions, which
are already connected continuously with the image of a particle.

The ordinary phase space differs from the space of support elements in
the following. The velocities in the phase space occupy the whole region in a
vicinity of the corresponding point of the coordinate space, whereas the veloc-
ities in the space of support elements are in the plane tangent to the world
lines passing through the given point of the space-time and are obtained by the
differentiation along the world lines of particles.

This results in that the velocities in the Finsler space of support elements,
as distinct from the Riemann space, are transformed always by a linear law,
even for the arbitrary nonlinear transformations of coordinates (3.3).

In other words, the 8-dimensional Finsler space with coordinates (330, xb, 22,

23, ul, vl u?, u3) is characterized by the transformations

Ea

!
o o 0z
Ox®

¢ = <p°‘l (xo,xl,zz,x?’) , u® =u (3.4)
Elements a® = a® (z%,u?) form a contravariant vector, if they are trans-
formed as the vector of velocities u®(see (3.4))

’

’ oz®
a® =a%——, 3.5
9 (3-5)
and ag = ag (¢7,u”) form a covariant vector, if they are transformed with the
help of the relations

P
CLB/ = aﬂw. (36)

According to the Hausdorff theorem of the metrics of topological spaces,
the general metric of the space ds? = ds? + ds? can be set by a sum of the
independent metrics of the space-time ds® and the metric of the tangent bundle,
i.e., that of the space of velocities ds? = qg.duldu®.

In this case, the metric of the space-time part can be of two basically
different types:

1) metric tensor of the space-time depends only on coordinates and the time:

Jik = Gik (ﬂcl);

2) metric tensor of the space-time depends on velocities (and, possibly, ac-
celerations) implicitly, as on parameters: g;x = gir (:vl, {[[7 i'[, zj', 11’, .. })
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In the first (isotropic) case corresponding to a weak deviation of the collec-
tive system from the equilibrium without rearrangement of the internal struc-
ture, the metric depends only on coordinates.

In the second case, we have an anisotropic scenario corresponding to the
collective system with self-organizing internal structure. The dependence of
the metric coefficients on velocities (and/or accelerations) leads to a specific
anisotropy of the space-time: in any infinitely small region, the space-time
18 anisotropic, and its properties depend on the direction of motion and the
acceleration of particles.

Namely the anisotropy of the space-time, which arises obviously at the
coherent acceleration of the system, is the main reason for the formation of
macroscopic quantum (coherent, nonlocal) objects of the shell type.

The particles of a shell, which are organized in a collective state, i.e.,
MQO, form a noninertial reference system. The acceleration of this collective
reference system is reflected in the space-time curvature resulting in the differ-
ence between the intrinsic and laboratory times, which can cause, as will be
shown below, the explosive change of space-time scales.

3.2 Geodesic lines in an evolving system

Under the action of mass forces on a system of particles, the particles are iden-
tically accelerated and form a noninertial system. In a vicinity of the arbitrary
point of the space-time, the dynamics of the system is set by covariant ac-
celerations and, hence, by covariant derivatives of the velocity. In turn, the
covariant derivatives of the velocity are given by the tensor of accelerations.
As follows from the Gauss principle and the principle of dynamical harmoniza-
tion, the constraints in the system are changed with the help of a variation of
accelerations. Therefore, the constraints between kinematic quantities and the
limitations imposed on them are determined by coherent accelerations. It is
clear that, in this case, one of the significant quantities is the covariant velocity
differential Dgu®, whose value is set by the tensor of accelerations af (27, u?)
and is determined by the structure of constraints:
ou®

Dgu® = 928 +Cgu” = ag (27,u”). (3.7)

Here, 3, are the generalized coefficients of connectedness, which coincide with

1 ag g . .
the Chistoffel symbols s, = 59%° <895 9901 — 995 7) in the simplest

2 dxy  0xP  0Oz°
case where af (27, u?) = 0 and can be expressed in terms of the space-time
metric. Let us now calculate the covariant acceleration by using the covariant
velocity differential:
Du®  (Dpu®)da? dz?

ar dr =Y (3.8)

If ag—— # 0, then there exists a nonzero external covariant acceleration,

and the system undergoes the action of external forces. But the situation
dxP

where a,‘g)‘d— = 0 can be also realized; i.e., the covariant acceleration of the
T
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system is zero, and no external forces affect the system. However, the coherent
acceleration can be present, nevertheless, inside the system, the constraints,
ag (7,u%) # 0, can hold, and the influence of the motion of particles on the
space-time metric can be revealed in a change of both spatial and temporal
scales.

Let us set the tensor of accelerations in the simplest form:

a 504 uauﬁ « 2 .
ag=a|d5 ——5— |, uuy = ¢, a = const. (3.9)

In this case, the force action on the system is absent. Indeed, for tensor (3.9),

we have
daP u*u daP u*u
af=—=a(6§ - —52) == =a(8f - —52)u’
dr c? dr c?

a B
_(_B> —0. (3.10)

Relations (3.7) are 16 equations for four unknowns u®; i.e., these equations
have no solutions in the general case with arbitrary generalized coefficients
of connectedness Cg. . The condition of existence of solutions of Eqgs. (3.7)
imposes certain limitations on the quantities C’g‘7 or I'g, and, hence, on the
metric.

The dynamics of particles occurs along the geodesic lines in the Finsler
space, whose geometry varies in the general case in correspondence with the
running evolution of the internal structure of particles and the system on the
whole according to the equations

d*z ;. dad dz
- 4 —— ——
dt? B dt dt
E. Cartan and J. Schouten showed that, by the differential equations (3.11),

it is possible to restore the geometry, i.e., the metric. Conditions (3.8) are
consistent with a nonstationary metric:

+F'=0. (3.11)

ds? = (d:z:o)2 —o? (9:0) Jap (9:1,1'2,:E3) d:z:o‘d:vﬁ, a,f=1,2,3,

0 (3.12)
o x
7 () = e, (CTeff> ’
where gog (2!, 22, 23) is the spatial part of the Riemann metric. In this metric,
2 0 2
a €T a
K10,10 = % exp, ( - ff) ) k=2 ézg (3.13)
€

are the main independent component of the curvature tensor and the scalar
curvature of the space-time, which depend on the parameter ¢ closely connected
with the order parameter and the coefficient of impactness of a driver.

As was shown in Section 2, the controlled change of the entropy of the
system can be an efficient driver. In other words, it can induce a coherent
acceleration of the system and, hence, the space-time curvature. The strongest
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changes of the entropy initiate the explosive processes of growth or decay of
structures. Let us consider an important example of the explosive clusterization
in the system of monomers (see [1,5]) and calculate the entropic forces and the
space-time curvature created by the process of clusterization.

The system of particles aggregating as a result of binary contacts is a
set of clusters of various sizes. The distribution of clusters over sizes, i.e., the
concentration of clusters with size k (clusters consisting of & monomers) as a
function of the time is described by the system of reactions Agy 4+ Axg — Asko,
Ago + Aoko — Aspo. ...

In this case, the equation for the concentrations Cy of clusters including &
monomers can be written in the form of the Smoluchowski coagulation equation
[41]. This equation involves the competition of two processes: the sticking of
a cluster with monomers, i.e., the increase of the size of a cluster, and the
breaking of clusters, i.e., the growth of the number of clusters with low masses.
For the probability K;; of the sticking of clusters with sizes ¢ and j, we take the
approximation such that this probability is proportional to the product of the
surface areas of the input clusters: K;; (i7)*/3. According to the solution
of the Smoluchowski equation, the time dependence of the mean size s (¢) of a
cluster manifests the explosive behavior:

S0

s(t) = W (3.14)

Here, t. is the time moment of the phase transition into the state of a global
cluster. By the order of magnitude, this time is equal to several collision times.
The explosive growth (3.14) of a cluster is directly related to the change of the
number of constraints in the system and, hence, to the change of the entropy.
The particles, which are organized into the collective state (i.e., MQO), form
the own reference system. The acceleration of this collective reference system
arosen due to the action of a mass force is reflected in the space-time curvature
and, in particular, in the difference between the intrinsic and laboratory times.
In this case, the local time and its intervals differ from the corresponding values
in the laboratory reference system in agreement with metric (3.12):

1

(i () e (2)). s

The parameter ¢ is connected with the order parameter n with the help of
relations obtained in [1]. It follows from formula (3.15) that the laboratory and
intrinsic times coincide for the nonequilibrium parameter equal to 1. As the
degree of nonequilibrium and the deviation of the parameter ¢ from 1 increase,
the intrinsic time rapidly decelerates or accelerates as compared with the labo-
ratory one, by depending on the sign of the acceleration of the nonequilibrium
reference system (NRS) (and, respectively, on the direction of the deviation of
q from 1).

Dependence (3.15) of the ratio of the intrinsic time to the laboratory one
on the laboratory time for various values of the parameter of nonequilibrium ¢
is presented in Fig. 3.1.
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Fig. 3.1. Ratio of the intrinsic time to the laboratory one versus the laboratory time

for values of the parameter ¢ = 1.001, 1.01, 1.1, 1.30, 1.90. Curves correspond to

values increasing from top to bottom. For g=1, the laboratory and intrinsic times
coincide, and their ratio is equal to 1.

The variation of the intrinsic time as compared with the laboratory one
leads, in turn, to a decrease of the light velocity in the region occupied by the

growing cluster. The decrease of the light velocity ¢ = \C—} manifests itself as
n

the effect of increasing the refractive index

b @)

near the growing cluster. It is worth noting that the described effect of in-
creasing the refractive index and decreasing the light velocity in a vicinity of
growing crystals was discovered, in fact, experimentally as earlier as 1902 and
was described in work [25].

We note that the geodesic world lines of particles, along which the par-
ticles move in correspondence with the principle of dynamical harmonization,
are, in fact, the characteristics of a kinetic equation of the Vlasov type. This
allows us to write the very kinetic equations and to realize the connection be-
tween the dynamical and statistical descriptions of the evolution of systems
with varying constraints. Below, we will analyze the solutions of covariant ki-
netic equations, which allow one to answer the majority of questions posed by
the “shell” model of self-organization (see [1]) and to obtain the equations of
dynamical harmonization for it.

3.3 Covariant kinetic equations for particles and their so-
lutions

In order to describe the many-particle interactions, the mean accelerations of

. 1 -
particles <1‘[> = — Fp in the Vlasov equation (2.36) are usually determined by
m

self-consistent electromagnetic fields. As follows from Section 2, the analysis
of the evolution of MQO should consider not only the fields of fundamental
interactions, but also the entropic forces, which modify, in fact, the Vlasov
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equation, supplementing it by the collision integral in the divergent form:

of (r,a,1)
ot

v, (wefqu)) [, t); (3.16)

1 - 2

Teff

The action of a mass entropic force on the system of particles and the
continuously related acceleration compel the system to reconstruct its internal
structure and, thus, to evolve in a tangent bundle of the space-time according
to the variational principle of dynamical harmonization.

A change of the structure causes variations of the distribution functions
of particles of the system, which are related to the processes of localization or
delocalization and, in turn, affect the dynamics of particles through the entropic
forces. The interrelation of the evolution of a system in the corresponding layer
and the four-dimensional basis of the Finsler space-time is realized through the
accelerations and the distribution functions.

The kinetic equation (3.16) for the particles composing MQO can be rep-
resented in the 8-dimensional space of support elements in the covariant form

Div, (@ f) + divy <<§f> f) —0. (3.17)
Since

Div, (@ f) = u*Da f + fDau®,

(G 1) = (7))

= of of
D.f=—=—-T% u" ,
! oz o Gue
1 09ua = 09y 09a
o _ Mo £ mY 2
Lo 27 (8907 e T Dan )

we can write (3.53) by components:

0 0 0 Dii\«
uaan;_Fg’Yu’ya,L'Lfa +8u”‘(<d7‘> f—|—P5) :O (318)
Let us analyze the solutions of the kinetic equation in a significant partial
case where the explicit contribution of the divergence divgz(.) to the kinetic
quations can be neglected. Then the covariant equation of quasistationary
states takes the form
. Of OF

u—— —-T7 u
oz~ T Que

(3.19)
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This approximation is valid in two cases:
e if the external forces are completely absent, and the flow in the phase
space, Ps = 0 (this case corresponds to the full equilibrium of the system);
e if the external forces do not act directly in the system, but the flows of
energy, particles, or the entropy are constant in the phase space, Ps =
const (this case corresponds to a strong deviation from the equilibrium).
In the nonequilibrium case, the kinetic equations for systems with varying
constraints have quasipower and power solutions [39—40]. In this case, the
exponent of a solution depends on the flows created in the system [40], the
external forces inside the dynamical system of particles can be neglected, and
the whole action of mass forces is determined by the entropy flows that are
generated on the boundary of an MQO-shell and disappear in the orthogonal
direction, where the delocalization and the growth of a structure in the system
occur.
Consider the solutions of the kinetic equation (3.19), which are isotropic
in the space of velocities and stationary in the laboratory time, i.e., we assume
that

of)0x° = 0; 0gap/02° =0, goi =0, i=1,2,3.

We emphasize that this stationary state does not assume the independence of
the intrinsic time. In the indicated approximation, we have

1 dgoo . i 1 9Jgoo

F80 = F?k =0; Ffo =0; ng = % Ozt 00 = —§gikw~

Separating the variables, we present the distribution function in the form

f (xa,ua,uo,t) =f (mo‘,uo‘,uo) =p(x*)Y (uQ) (N (uo) , (3.20)

(1-q)€ = gupe®®, €= -

u 2

, u® = uqu®.  (3.21
AV (1 - Q) goouO “ ( )

Substituting (3.21) in (3.20) and (3.19) and separating the variables, we
obtain the system of equations, which is exactly solvable:

1= (22). w0
g er — 1 (3.22)

¥ (€%) = (exp, (=€7))".

The obtained solutions reflect the fact that, in the absence of the entropy
flow (i.e., for ¢ = 1), the homogeneous equilibrium case is realized, since the
distribution function ¢ (£?) over velocities (or energies) transits in the Maxwell
distribution function, the distribution function p (z*) becomes the Boltzmann
distribution, and the function 1 (u°) is constant, so that there is no difference
between the local and laboratory times. If the entropy flows are present in
the system (q # 1), the exponential distribution functions over energies and
coordinates become the quasipower ones.
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3.4 Anisotropy of states in a noninertial dynamical sys-
tem

The action of the entropic fields of mass forces initiating the coherent accel-
eration of particles transforms the whole system into a noninertial reference
system (NRS). The inertial reference systems (IRS) are associated with the
absence of flows and coherent accelerations in the reference system, i.e., with
equilibrium systems without evolution. On the contrary, namely the action of
mass forces on IRS and its transformation in NRS with some coherent accel-
eration and flows in it compel the particles to the evolution, i.e., to a change
of the internal structure of constraints between particles, energy of constraints,
and mass defect of the system.

In the general case, the system (like a spheroid), which is isotropic at
the initial time moment and has a spatial distribution of particles with char-
acteristic scale /g in the inertial system, evolves in the noninertial system in a
deformed anisotropic state with the number of external space scales more than
1 and becomes similar to an ellipsoid- “pancake”. In a sufficiently general case,
we may distinguish two basically different orthogonal directions:

e along the direction of the acceleration;
e in the plane orthogonal to the acceleration.

By controlling the anisotropy of the wave function of a quantum system, it
is possible to control the localization of the system and, hence, the probabilities
of the processes of evolution related to the overcoming of energy barriers. This
is obvious even at the analysis of pure states.

The Heisenberg uncertainty relation for one degree of freedom takes the

h
form AzAp, > 5 In the complete phase space (e.g., for three degrees of

freedom), this relation determines the size of its minimal cell:

53
AQpp > 5 (3.23)

In the simplest case, we will take the anisotropy of the evolution into
account, by introducing two scales as macroscopic geometric characteristics of
the system instead of its single radius:

e [_ <lp, in the direction of the “flattening” of the system;
e [, > lpy, in the orthogonal directions, along which the “flattening” hap-
pens.
The less scale [_ can be called a scale of spatial coherence of the system, which
characterizes the “pancake” thickness. The larger scale [ is a characteristic
scale of the interaction, which characterizes the maximal length of correlations
in the system.

Consider the case of a strong deviation from the local equilibrium. Though
the external forces do not act directly in the system, the entropy flow is constant
in the phase space, and the density distribution in the bounded system and the
erosion of the boundary happen in agreement with a distribution function of
the type (3.22), rather than with equilibrium distribution functions.

The density distribution in the system with mass number A that consists
of monomers with mass number and characteristic size ., is described at a
distance Ar from the center by the squares of the corresponding wave functions
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ntl
A >3+77,

with characteristic scale Iy (n) = lstr(
Astr

A 2
° exp(— (Tr) ), for the equilibrium noncoherent part of the system;
0

A 2
® exp, ((l(r)> >, for the coherent part of the system with regard for
o4
the action of entropic forces.

Without the entropy flow (for ¢ = 1), a homogeneous equilibrium state
is realized. In this case, the distribution function over velocities (or energies)
transits in the Maxwell distribution. If the entropy flows are present in the
system (g # 1), the exponential distribution functions over energies and coor-
dinates becomes quasipower one.

The processes of self-organization essentially depend on the direction of
the entropy flow, since there exist two types of behavior of the distribution
function: localization and delocalization. They correspond to different charac-

A 2
ters of the behavior of the function exp, <_(l(2)> > for ¢ <1 and ¢ > 1.
0

The parameter ¢ is determined from (2.41)—(2.42) and is connected with the
order parameter 0 < 1 < 1 by the relations

g-=1-mn, ¢<1

q(n) = 1 . (3.24)
= — 1
9+ =7 7’ q>

As the order parameter increases, the character of decay of the wave
functions in the space passes from exponential to power (see 3.22). The depen-
dences of the scales on the order parameter in the directions of delocalization
and localization take the form

1

n
B N e :
3 n )'Ystr 0 ( nmax)

l+ ~ lo
(1

(3.25)

Thmax

Vstr = 1-837 Thmax = 0.5.

The phase volume is a product of volumes in the coordinate and momen-
tum spaces, and the volume in the coordinate space is a product of volumes in
the coherent direction AQ_ and in the direction AQ, orthogonal to it. Thus,
we have AQ,, = (AQLAQ_) AQ,.

The volume in the plane orthogonal to the direction [_ can be estimated
as AQy ~ ml3. We consider that the minimal size of a cell [_ is attained in

the coherent state: (I_) . Since the volume in the momentum space

min%%

1 /hN\? [ 3
Lz—(—) /= 2
" 27T<pf> 81 (3.26)

These relations are valid, if there are no correlations between coordinates
and momenta. However, if the system of particles turns out in the state with

4
AQ, ~ gﬂpg’c, we have
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coherent acceleration, then, as is seen from the above discussion, the space-time
metric is changed. Hence, the geodesic lines and the dynamics of particles are
changed as well. It is clear that, in this case, due to the anisotropic space-time
curvature (and to the coherent acceleration), the strong correlations appear:

rap 2 20D/, (3.27)

In the general form, the correlations 7, between momenta and coor-
dinates were considered by Robertson and Schrédinger [42], who wrote the
uncertainty relation in the form

h

2,/1—12,

Let us return to relation (3.23). With regard for the correlations r,,, we
can transform it into the form similar to (3.26):

AxApy, > (3.28)

3/2

1 h 1
l+>L?M§ z (3.29)
m Pri= /1 =12, (acog)

As was shown in [1], this relation at the coherent acceleration of the system
of particles yields the explosive delocalization of a state of the system in the
direction orthogonal to the direction of the acceleration. As the shell thickness
decreases, the energy becomes quantized in the direction perpendicular to the
shell surface. In other words, the dispersion of momenta of particles around
the momenta localizing themselves is decreased. In this case, the dispersion of
coordinates of particles along the surface is sharply increased.

It was shown in [43] that, on the basis of estimates (3.27), it is possible
to develop a model of the overcoming of barriers by an oscillator located in a
nonstationary external field ensuring the growth of correlations.

3.5 Equations of dynamical harmonization of a system
with varying constraints and the geometry of a strat-
ified space-time

The most general representation of the laws of dynamics and evolution of the
systems of particles is given by the variational principle of dynamical harmo-
nization [1], which is a generalization of the Gauss and Hertz principles for
the systems with varying internal structure and binding energy. It assumes
that the self-organization of a system occurs as a result of the variation of the
structure of constraints between its particles (elements) as a response to their
coherent acceleration.

By the Gauss principle, those positions that will be occupied by the points
of the system at the time moment ¢ + 7 in their real motion are distinguished
between all positions admissible by constraints by the minimal value of compul-

N
sion measure Zg = Y. m;s? (here, s; (da) is the length of a vector between the

i=
points representing the true and any possible positions of a point; it depends
only the acceleration variation da).
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The optimal variations of accelerations, as was shown by Hertz, corre-
spond to the minimal curvature of the trajectories of particles. This means
that the dynamics of particles is realized along the geodesic lines correspond-
ing to definite constraints. The notion of motion includes also a rearrangement
of both the structure of the system and the field of constraints of its structural
elements. While the system moves, its fractal dimension Dy and binding en-
ergy B (Dy) [1], which are determined by the packing of monomers composing
the system, are changed.

Changes of the structure and constraints in the system vary obviously the
masses of the system and its components (i.e., the inertia or sensitivity of the
system relative to the external forces acting on it).

As was shown in [1], the evolution of an internal structure of the system
is determined by the principle of dynamical harmonization, which involves the
possibility of a change of constraints in the system: under the action of external,
F;, and mass, Fg., forces, the system varies its trajectory and the structure
i order to be consistent with the external medium and external actions, by
minimizing the generalized compulsion function,

N
Zan =Y (mi (D) w; — (Fi + (Far),))’,
i=1 (3.30)
mi (D) = (mao — om, (Dg), bm,(Dg) = 22D

with regard for the variations of all constraints in the system (respectively, with
regard for the variation of the binding energy B; (Dy)).

In other words, the system tends to make the trajectories of its compulsory
motion under the action of mass forces to be maximally close to the trajectories
of the own nonperturbed motion.

Since a change of the internal structure of the system is regularly related
to a change of its mass m; (Dy), the processes accompanied by a change of the
structure are most efficient at the evolution of the system, because they can
serve as both a source of energy and a means of its accumulation for the very
evolution. It is obvious that the control over a system on the basis of the laws
of evolution of its constraints (the principle of dynamical harmonization of the
systems with varying constraints) is the unique efficient way o the realization
of desired transformations in the system due to the use of its internal energy
resources, rather than due to the direct “violence” with the use of only the
external energy.

The tool to initiate the processes of self-organization of a structure of
constraints in the system is a general dominating perturbation specially selected
for the given system and the appropriate coherent acceleration of the ensemble
of particles composing the system.

Because a change of the structure is continuously connected with changes
of the entropy and the information, the principle of dynamical harmonization
describes simultaneously the targeted exchange by information and the entropy
between the system and the environment. This means that the space-time
geometry (curvature) and the evolution of an internal structure of the system of
particles are indivisible. Such a situation is a natural continuation of properties
arising in the dynamical systems with varied constraints between elements of
the system under the optimization of their control.
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In this case,

e the state of the system is set by a vector in the configurational space of
a dynamical system,

e the constraints are set by a matrix of the constraint coefficients,

e the control is realized by the external vector of control, being the vector
of forces acting on the appropriate components of the system.

An analogous situation arises also at the evolution of the system repre-
sented by a collection of monomers:

e the state of such a system is set by the positions of particles in the four-
dimensional space-time and their velocities, which are tangent to the
trajectories of particles at the given point and, hence, belong to a tangent
bundle of the space-time;

e the constraints between monomers are characterized by their energies de-
pending on the structure of the system, which is characterized, in turn, by
the dimension (the dimension of a structure of constraints in the system)
and the entropy (information);

e the evolution of the system occurs in the tangent bundle of the space-time
and is governed by the equations of dynamical harmonization in a non-
inertial reference system with given coherent acceleration. The evolution
forms the entropic forces that define the dynamics of the system of parti-
cles with varying constraints in the space-time. The coordinates in layers
are the accelerations of all orders; additionally, we have a layer with the
fractal dimension of a system of constraints (or with their entropy) as a
coordinate;

e the dynamics of the system of particles occurs in the anisotropic space-
time with a curvature that is determined by the acceleration of the non-
inertial reference system depending on the entropic forces;

e the control is realized by the external vector of control, which sets the
contributions to the appropriate components of coherent accelerations of
the system.

As was shown in the previous section, the action of mass forces on the
system causes the rapid (as compared with a quasiequilibrium case) “fattening”
of the distribution function, which corresponds to the presence of the negative
flows of entropy in the system (or, what is the same, the flow of information
in the system), ensures an increase of the volume, and, by this, modifies the
dynamics of scales. In the general case, as the order parameter increases and
the fractal dimension varies, let the localization scale [_ be decreased, and
let the scale [ be increased as compared with the equilibrium values by the
relations

- =g-(Dy,6); I+ =9+ (Dy,9). (3.31)

The estimation of these functions was mase above (see (3.25)). In agree-
ment with the principle of dynamical harmonization, the equations of evolution
are determined by a minimum of the dynamical harmonization functional Zg,
at the variation of the accelerations of the scales of localization and delocaliza-
tion of the system (respectively, w_ and w4 ):

1 1
Zdh = §(m’w+ — F+)2 + §(m w— — I‘—‘,)27

m =mqo — Ba (n,0) /c*.

(3.32)
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The variation by Gauss assumes the tangent plane to a current point on
the trajectory of a particle to be fixed, and the transition from the dynamics in
the coordinate space to that in the Finsler space is very simple. Then the vari-
ations by Gauss look as those in a tangent plane with second-order tangency
at the fixed plane with first-order tangency. The variations of accelerations
(i.e., of vectors in the corresponding different planes) of all orders are inde-
pendent. Therefore, the variations by Gauss lead to that the relations for the
variations of accelerations are similar to those for the variations of the corre-
sponding coordinates. Hence, the below-presented relations for accelerations do
not incliude the first derivatives of the constraint equations:

d? .. . 0%q1 0%q,
=1, =~vuD 5 = I =~ 7L
w1 a2 Y1u1yg + 7120, Y11 92D, Y12 925 5.33)
2= et 21y 220, 21 anQ, 22 925
Here,

index 1 corresponds to the direction of delocalization x, and the
scale of delocalization I,
index 2 corresponds to the direction of localization x_ and the scale
of localization [_.
Substituting the formulas for the accelerations in Zg,, we obtain the dy-
namical harmonization functional depending on the accelerations of the fractal
dimension and the deformations of scales:

Lo 1 . . F (Dy,6) 2
Zan (Df,5) =3 (711Df + 7120 — m (Dy,0)
1/ = . Fy(Dys,0)\?
+ 5 <721Df + ’)/225 — nj((l);é))> . (334)

The condition of minimum of the dynamical harmonization functional
with respect to the accelerations of the fractal dimension and the deformations
of scales,

0Zag(Dy,9) _
dDy

0Zag(Dy,9)
)

leads to the system of differential equations determining the evolution of a
dymanical system with varying constraints:

:O’

)

a22G1 — a1nGy —a1G1 + a11Ga
)

Df — —=. 5 = (3.35)
a11a22 — G12021 11022 — A12021
an = ((’711)2 + (’721)2) ) a1z = (Ymz + 721722)
F F:
G = ’Yll*l +’Y21i,
m m (3.36)

as1 = (Y1712 + Y21722) , g2 = ((712)2 + (’)’22)2) )
Vi)

Ja
Gy = ’712*1 + Y22 —.
m m
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The obtained equations for the order parameter and a deformation of the
probability density distribution of the system and the very variational principle
of dynamical harmonization, from which the equations are deduced, are the
basis of the theory of self-organization of systems with varying constraints.

In the simple situation where the deformation varies much more slowly
that the internal structure, we may consider the deformation to be given. The
equation describing the evolution of a structure, which has always time to tune
itself to a given deformation, was obtained in [1]. In this case, the order param-
eter and the fractal dimension evolve according to the equation of dynamical
harmonization, which has form of the Lagrange equation describing a change
of the structure of the system with the use of the corresponding Lagrange

function L,
i aLstr _ aLStT =0
dt an an o

D2
Lty = Mty (Dy) RO% + 8B4 (Z,Df) A—Ug, (Dy).

(3.37)

Here, sBa(Z,Dy) is the specific binding energy of a cluster per nucleon,

Matr (Df) is the structural inertia of the system, up, = Dy is the rate of
aLstr
dD;
momentum of the system corresponding to its structurization.

Analogously to the Hertz principle, the principle of dynamical harmo-
nization can be represented as the requirement of a minimum of the functional,
being the length of a world line of particles in the Finsler space-time. As a
result, we obtain the following statement of the variational principle of evolu-
tion: the evolution of a system with constraints occurs along geodesic lines in
the Finsler space-time with the curvature tensor corresponding to the evolution
of internal constraints of the system, which are harmonized as a response to
the coherent acceleration caused by the action of mass entropic forces.

variation of the fractal dimension, and pp, = = M (Dy) Roup, is the

4 Electrophysical aspects of the interactions of
particles and radiation with vacuum

First, it is pertinent to present the citation from [44]: “A reasonable staring
point at the consideration of the problem of many bodies would be the ques-
tion about the number of bodies for the problem to be posed.... The persons
interesting in the exact solutions can find the answer, by looking at the history.
For the Newton mechanics in the 18-th century, the problem of three bodies
was unsolvable. After the creation (about the year 1910) of general relativity
theory and quantum electrodynamics (about the year 1930), the problems of
two bodies and a single one became unsolvable as well. In the modern quan-
tum field theory, we meet the unsolvable problem without bodies (vacuum).
So that if we are interested in the exact solutions, the zero number of bodies
is too much”.
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We note that the system of particles in a longitudinal electromagnetic
field can form a noninertial reference system under a coherent acceleration,
if the coefficient of domination exceeds 1. In this case, the system becomes
nonequilibrium and open, in particular, for the interaction with vacuum.

The gravitational force acting between all bodies is the most known mass
force. The modern theories of gravitation are based on general relativity the-
ory developed by Einstein in 1915 [45]. The Einstein theory of gravitation is
founded on the following assertions:

e The density and the pressure of a substance make the space-time curved;

e the motion of particles in a curved space-time occurs along the geodesic
curves and reflects the influence of the gravitation on the dynamics of
particles.

The space-time is curved in volumes of the space occupied by matter, but
it becomes also curved in a vicinity of bodies due to the elasticity of the space-
time. The equations for R;; (the tensor of space-time curvature) were obtained
by Einstein firstly in the form, where the source in these equations was only T
(the tensor of energy-momentum of matter). Then the equations were modified
by the introduction of an additional source Ag;; that is a cosmological term
describing the antigravity:

1 87G

R, — igikR - Agik = CTTik- (4~1)

In the middle of the 1960s, E. Gliner associated the Einstein cosmological

term with vacuum, whose observed energy density py is determined by the
4

cosmological constant A (see, e.g., [20-21]): py = 2% The value of A is not

given by theory, and it can take any value that is consistent with experiment.

In the last decades, the cosmological consequences of the introduction of
A were experimentally confirmed, and the following assertions are considered
to be proved:

e Vacuum (dark energy) dominates in the Universe; by the energy density,
vacuum exceeds all “ordinary” forms of matter taken together;

e dynamics of the cosmological expansion is guided by the antigravity;

e cosmological expansion accelerates, and the space-time becomes, in this
connection, static.

In the worls by E. Gliner, the processes of accelerated expansion of matter
were first connected with the antigravity of vacuum, and the creation of matter
with quantum fluctuations of vacuum, which are caused by the acceleration.
Vacuum should be considered as a medium occupying all the space uniformly
with good reliability from the cosmological scales down to centimeters.

The equation of state of vacuum, i.e., the connection between the pressure
py and the energy density py,

follows from the theory of quantum fields and the thermodynamical reasoning.
Let us use the thermodynamical identity dWy = T'dS — pydV and represent
the total internal energy of vacuum in the form Wy = py V. For the adiabatic
processes in the homogeneous vacuum, dS = 0, and dWy = pydV. Hence,
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py = —py. By the Friedman theory [46], the gravity is created not only by
the density of a medium, but also by its pressure according to the relation
peys = p + 3p. For vacuum, the density of its effective gravitational energy
pc = py + 3py = —2py is negative for a positive density. In connection with
the unique equation of state (4.2) (see [21]), vacuum possesses several important
properties that distinguish this medium among all others:

1. This medium cannot serve as a reference system. If there are the reference
systems moving relative one another, then vacuum with the equation of
state (4.2) accompanies every reference system. Hence, the nonacceler-
ated motion and the rest relative to this medium cannot be distinguished.

2. The medium with the equation of state (4.2) is unvariable and eternal.

Its energy is the absolute minimum of the energy contained in the space.
. The medium with the equation of state (4.2) creates the antigravity.

4. Vacuum creates a force, but it does not undergo (as a macroscopic medium)
any action of external gravitational forces or the own antigravity (because
the densities of the inertial mass p; = p+ p and the gravitational mass of
vacuum pg = p; are equal to zero).

5. Vacuum is a medium uniformly filling the space on all scales from cosmo-
logical to small (by the data of modern experiments, down to scales of the
order of centimeters). Experimentally, some manifestations of an inho-
mogeneity of vacuum were observed at the creation of nonhomogeneities
of the medium on scales of the order of one micron and less (Casimir
effects).

By virtue of the above-presented properties, vacuum plays the key role
not only for the gravity, but also for any mass force, by revealing itself only
in the noninertial accelerated reference systems. Therefore, substantiated is
the assumption that the most important role in the interaction with vacuum is
played by the electromagnetic field (vector potential) and the fields of negen-
tropy (information) that transfer momenta to particles through the appropriate
perturbations of the probability density distribution of particles in the space
and create noninertial reference systems.

The violation of the condition of adiabaticity of the equation of state of
vacuum on macroscopic scales of the order of meters or centimeters or less
with the help of electromagnetic and entropic drivers will allow one to control
its properties on these scales and to pose the question about its implication in
energetic processes.

Changes of the entropy and the energy density on the scale of a pertur-
bation of vacuum appear due to the action of mass forces and, hence, changes
of the impactness:

a8 oS )
AS = 5 =0q~ a1 20Qimp:  Spv = (Tafaqvéczimp) pv- (43)

w

4.1 Resonances at the interaction of longitudinal waves
with vacuum

All main properties of vacuum are qualitatively determined from the equation of
state and the uncertainty relation. Namely this relation reflects the peculiarities
of vacuum, since it does not allow the conjugated quantities (e.g., a momentum
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and a coordinate or an energy and e time interval) to have simultaneously some
exactly determined independent values. In this connection, the vacuum state
cannot have the zero value of energy density, though it is defined as the state
with minimal energy. The fluctuations of the vacuum state energy exist always,
and it is impossible to get rid of them.

In a simple one-dimensional model, the fluctuational oscillations of vac-
uum are a collection of ideal oscillators with all frequencies. The energy density
of elastic oscillations of vacuum with any frequency w is

p?) /m  mw? (a?)
3 T2

W, =

where z is the coordinate, and p = mu is the corresponding momentum at
oscillations of an oscillator with effective mass m. Considering the formula
for the energy, as the arithmetic mean of two terms, we obtain a chain of
inequalities

W, = <p2> /m n mw? <x2> > /02 (p?) (22)

2 2

= (VI VE) > (14

. . h
where we use the uncertainty relation: AzAp, > 3 on the last stage.

It follows from (4.4) that the energy minimum for oscillations of the os-

cillator turns out to be Wi, = —. The total energy density of all oscillations

Wy is equal to the integral contribution of all real frequencies from zero to
infinity and, naturally, is infinite. Let us introduce a large, but finite scale L
along a separate direction. Then the continuous set of frequencies becomes a

. . . Tc he &
discrete infinite sequence w, = n—, and Wy (L) =7— >_ n.
L 2L =

Under the action of mass forces, the adiabiticity of vacuum can be broken,
and an inhomogeneity [r can appears. It will lead obviously to resonances due
to a change of boundary conditions. As a result of the appearance of resonances
between an electromagnetic field and vacuum, the infinite discrete sequence wy,
is separated from the continuum of frequencies. In this case, the total energy
density of vacuum is infinite as before, but it is equal now to the infinite sum

me e
over all discrete frequencies w,, = nl— or over all wavelengths A\, = — (with
R Wn

. !
regard for the resonance conditions A, = —R)

Wo (Ig) = i > . (4.5)

Thus, the appearance of the space-time curvature causes a change of the
energy:

AW = Wy (L) — Wo (Ir) ZZR - f: (;h;n) - f: (gf;n) (4.6)

n=1 n=1
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The subsequent calculations are carried on within a regularizing proce-
dure, which allows us to find the infinite sums with the help of the introduction
of the efficient “cutting” of high harmonics and the use of the relations

oo oo

Z W, — ;ig%gzlexp(—/\wn) W,
Zne n 1 1 1 + x2 T,
Xp (—T —- — ==
P(=21) = 1050 w50 \ 22 240

n=1

(4.7)

First, we calculate difference (4.6) with a finite parameter A. Then, by
passing to the limit, we obtain the formula for the difference of energies in the
one-dimensional case:

AW ~ — 22 (4.8)

In the three-dimensional case, the similar calculations were first performed by
Casimir [22], who considered two plane surfaces with area Ss,,f, which are
placed at the distance d from each other, and obtained th formula

AW 2h
~ o (4.9)
Sourf 720d3
and, respectively,
m2he
Fr/Seurt =~ ——- 4.1
R/ Ssurs R —500 (4.10)

for forces acting on the unit area of a plate (Casimir forces).
The longitudinal electromagnetic waves With Wavelength A that realize

cur
~ 8aqg— ~ 8 ~ 8 f
Ters ad - Oéd)\ og—— b\ [©)

the separated subsystem of particles induce, in correspondence with (3.13), the
space-time curvature with characteristic scale [g:

the coherent acceleration acoq ~ oq

c? A Ap e-A
=~ ~ , aqo (A) = — = . 4.11
R \/Eacog \/5 -8 oo (A) ﬁT 0 ( ) pr pr ( )
l
Using the resonance conditions for wavelengths A\, = £ and formula (4.9)

for the space-time curvature scale, we obtain the formula for the resonance
frequencies:

14 1 2 23/2
LGP 23/2ﬁmd< T ) R . (4.12)
C

Won =~ — Qcog =~ —
n n Teff n
The coefficient of domination is proportional to the amplitude of the electro-
magnetic field in the medium and must take the growth of the amplitude at

the resonance interaction of the field with the medium into account. At a
resonance, the frequency dependence of the amplitude is as follows:

Qldo N Qudo

A N £ 7 S PR N
wgn Won wgn 40‘)377, Q2

g ~ (413)
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Here, dcr¢ is the damping coefficient, Aw is the width of a resonance, and
w

Q =~ A—O is the quality of a resonance. From whence and (62), we obtain the

formula for frequencies

N 2%/2 B Qo
Won =~ wo

N PR R
Wy, dwi,, Q2

25/2ﬂT 25/25T
agoQuo =~

agoQuo,

Q

which yields

CT, ff 1/3
wo, = (=TI ) s, 1.14
0 <\/§adOﬂT5d> I (4.14)

Hence, we can conclude that, for large values of the coefficient of domination
4o, the resonance frequency shifts to the lower frequencies.

Curvature and impedance.

It was mentioned in the previous section that, near a growing crystal and in
the region of phase transitions or in the noninertial reference system in a more
general case, the refractive index (or, in other words, the impedance directly
connected with this physical quantity) is changed in the space. In the works by
Podosenov (see [29]), the influence of constraints in electrophysical systems on
the radiotechnical (electrophysical) elements entering their composition such
as capacities and inductances were analyzed in details.

As was discussed above, vacuum in a noninertial system can be repre-
sented by a countable number of ideal fluctuating oscillators which can be
modeled by circuits including capacities and inductances. These oscillators
depend on the space-time curvature.

For a spherically symmetric motion of a system of charged particles with

constraints, the Riemann space-time metric is determined by the acceleration
ek 0A
ag = o where ¥ ~ ——— is the intensity of a longitudinal electric field on

m
the surface of a sphere. The metric takes the form

ds® = exp(v) (dy°)” — exp (\) dr® — 12 (d6° + sin® (6) dg?) , (4.15)
where

_ £\ 12\ N (g>1/2d
exp(v) = (1+( ) d) : exp( )_ r . (4.16)

: GENOLY

The dependences of capacities and inductances on the space-time curva-
ture x were studied in [29]. In particular, the capacity C (loss, k) with charac-
teristic spatial size l.yy and with characteristic surface area S.ys was obtained
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as

~ Cy (1 n (;)1/216){,@) ~ Cy (1 + ‘;Cg leff) , (4.17)

We now determine a change of the impedance AZ (k) of an oscillatory
circuit with the capacity C and the inductance L at the given frequency w
near a resonance at a change of the space-time curvature k. We take into
account that the active part of the impedance tends to zero. Hence, we can
approximately write

AZ (k) =~

1( OL 1 8C>A ~ 1 oC N lefs Ak, (4.18)

2 \Yor T wC (k) Ok wC (k) Ok wrKl/2

The significance of relations (4.17) even for small values of currents and
voltages consists in that the devices including these electrophysical elements
become basically nonlinear objects such as parametric oscillatory systems. At
the certain choice of the excitation frequencies, such effects as an extension of
the spectrum and the amplification of a signal can be revealed.

On the other hand, a more important circumstance can possibly consist in
that a deviation of the impedance from the values determined by the capacity
and the properties of a dielectric in the frame of linear electrodynamics can
serve a measure of the space-time curvature.

On the basis of his theory of the time as a physical quantity possessing
a density [27], Kozyrev constructed a very exact device (Kozyrev’s gage) to
measure the changes in the time density with the use of a bridge scheme con-
sisting of resistors and a sensitive galvanometer. By essence, the changes of
the time flow in the space-time are inseparably connected with a change of its
curvature. In our experiments, we used a modified scheme of Kozyrev’s gage
with amplifiers instead of a sensitive galvanometer (see Fig. 4.1).

In the experiments carried out by Kozyrev with the use of its gage, one of
the resistors of a balanced bridge served as a detector of the time flow and can be
placed at various points of the region under study. A change of the impedance
of this resistor was at once registered with a galvanometer. Kozyrev’s gages
were used as a tool in astrophysical studies by Kozyrev himself [27] and by
other researchers [28].

In our studies, Kozyrev’s gage was used as a sensitive meter of the space-
time curvature and the appropriate resonance phenomena described above at
the interaction of longitudinal electromagnetic fields with vacuum.

We have carried out the experiments on measuring the space-time curva-
ture with the use of electromagnetic fields. As a source of longitudinal eelctric
fields, we took the toroidal coil with a winding, on which a high-frequency
current was flowing (see Fig. 4.2).
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Fig. 4.2. Toroidal coil as a source of the variable vector potential and, as a consequence,
of a longitudinal electric field.

As was expected, the maximal values of the rate of variation of the vector
potential were observed on the axis of the toroidal coil.

The amplified signal from the bridge, which was proportional to a change
of the impedance in the studied region where we mounted a detector, was
supplied to a computer through an analog-digital unit. The changes of the
impedance and, hence, the curvature were essentially different at different fre-
quencies of a longitudinal field. The resonance frequencies were clearly distin-
guished.

The switching-on of a generator was naturally accompanied by an increase
of the temperature in the region, where Kozyrev’s gage was located. In Fig. 4.3,
we show the time dependence of the measured voltage on the bridge, as well
as the time dependence of the temperature.

The plots indicate clearly the complete absence of correlations of the tem-
perature and the readings of a gage. At the time moment of the switching-on
of a current in the coil, we observed a sharp change of the impedance. At the
switching-off of the current, the values of signals from a bridge approach the
initial values, whereas the temperature varies significantly slower.

The amplitude of variations of the impedance and, hence, the curvature
demonstrated a strong dependence on the frequency of a current flowing along
the emitter. The resonance behavior of the amplitude as a function of the
frequency is shown in Fig. 4.5.
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Fig. 4.3. Temporal dependence of Fig. 4.4. Behavior of the tempera-
a signal from Kozyrev’s detector. ture during the measurement.
The signal is proportional to a
change of the impedance and the

space-time curvature.
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Fig. 4.5. Resonance curve for one of the resonances in the region of frequencies of the
order of 29 MHz.

The values of the resonance frequency and the quality of resonances ob-
served in experiments are in good agreement with (4.11) and (4.12).

4.2 Regularized wave equations as a model of vacuum

The physical vacuum, as a medium with specific properties, interacts with
particles located in it. This interaction can accelerate particles or decelerate
them. In the last case, we can say that the particles moving with acceleration
undergo the action of friction due to the fluctuations of vacuum.

As was shown above (Section 2), the system of particles evolves mainly
in NRS, and the efficient driver of mass forces initiating NRS is an electro-
magnetic driver. Below, we will study some peculiarities of the evolution of a
system of charged particles at the interaction with vacuum under the action of

= 0A
electromagnetic fields with electric field intensity £ = o V. Only the

first term in this formula is responsible for the initiation of mass forces in the
system (see Section 2), since only this term represents the electric field inside
a homogeneous system. We consider the action of the first and second terms

—

- 0A
on charged particles as the mass force F,, = —e— and the Coulomb force

ot
F, = —eV, respectively.
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It is known [47] that the account for collisions between charged particles
(electrons) in the approximation with the Landau collision integral allows one

to describe the appearance of the friction force (from the side of ions), which
— m ;
rapidly decreases with increase in the velocity of electrons Fy, ~ —4—6Le/ —
T U
for velocities larger than the thermal one. In this case, it is significant that
2
e
the friction force has a maximum over velocities, max Fy, ~ —0.2—-, after the
™D
averaging.
For low fields, the condition of domination (2.16) does not hold. Then the
charged particles obey the phenomenological equation of charge transfer or the
equation of motion (7.s¢ is the effective duration of the momentum transfer in

collisions) in terms of ordinary derivatives:

di _
me— = ek, —
dt Teff

(m@) . (4.19)

For a quasistationary state of charged particles from the noncoherent part
that are characterized by a constant velocity and satisfy the condition

ek, —

(met) = 0,
Teff

Eq. (4.19) yields the Ohm law for the current density j = peet:

2
_ PeCTeff (4.20)
Me

j=ogk, oE

The presence of homogeneous longitudinal fields in a system of charged
particles satisfying condition (2.16) corresponds to the appearance of mass
forces Fy,. In fact, the condition of domination of the action of an electromag-
netic driver (2.16) corresponds to the presence of an electromagnetic force in
the system particles, which exceeds the critical friction force (ﬁm > max F r)-
A part of charged particles (particles forming a coherent subsystem), whose
share is equal to the order parameter 7, are unboundedly accelerated. Another
part of particles (1 — ) turns out noncoherent, is decelerated by the friction

force ~ — (met), and obeys the equation with ordinary derivatives (4.19).

Teff
In the system, two components appear in the general case: the coher-

ent component with density pco.y and the corresponding velocity uc.y and the

noncoherent one with density p and velocity u. The ratio of components deter-

cog

mines the order parameter n = , and the velocities of the components

pcog
satisfy different equations of motion.

The differential equations with ordinary derivatives (Riemann deriva-
tives), which were used for the description of the processes of transfer, are
based on the fact that the translations in the space-time are characteristic
ttransformations for IRS.

The satisfaction of the condition of domination (2.16) and, hence, the
transition into a state with sharply decreasing resistance correspond to the
appearance of a motion of the coherent part of the system as the whole with
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explosively increasing drift velocity (in other words, to the formation of NRS).
In NRS for the systems in coherent states, the characteristic features are the
presence of many scales and the self-similarity of the processes of evolution,
which is reflected in a complicated (fractal, in the general case) structure of
the space-time. In this case, the use of alternative definitions of the operators
of differentiation, which appear due to the regularization, for the description
of the dynamics of a physical situation seems to be more adequate [30].

As was shown above, the physical vacuum under conditions of the action of
mass forces is characterized by a discrete set of frequencies and, hence, scales
of the time. The coherence appearing in vacuum can possess the properties
of similarity (fractal properties). In this case, the Jackson derivative is the
most natural generalization of the notion of derivative for the description of
the evolution of all quantities with the properties of similarity [31]. Let us
consider the definition of this derivative, which is used, in particular, for the
determination of the rate of processes. The operator of shift is replaced by the
operator of scaling (with the coefficient of similarity ¢;) passing in the limit
into the ordinary derivative D;:

fgst) — (1)

Dqsf(t): gst — 1

. Def ()= lim Dy f (1) (4.21)

The eigenfunction of the Jackson operator is the scaling generalization of the
exponential function, namely

=3
eqs = 1’
k=0 [k]qs .

which satisfies the relation D, egs = efls. Here, the Jackson g-number

n_1
nl, :i]; =" L

The coherence of a state of the system (scaling invariance) is revealed,
naturally, in the oscillatory processes. It is easy to verify that the functions
that depend on the scaling parameter ¢, and are defined by the relations

1z —1Zz 1z —1Zz
cosq, (2) = u sing, (2) = e "% (4.22)
2 2

satisfy the relations characteristic of ordinary trigonometric functions and are
the solutions of the equation for a fractal oscillator with Jackson derivatives.
These generalized scaling functions pass into ordinary trigonometric functions
as ¢s — 1. Respectively, the difference between the former and the latter
increases with the deviation of the scaling parameter from 1.

The deviation of the parameter of similarity ¢ from 1 reflects a degree of
openness of the system, despite the absence of an explicit dissipative term in
the equation. Now, the openness of the system is characterized by the indices
of differential operators of quantum analysis, rather than the parameters of
dissipation. In open systems, the oscillatory processes are dissipative for the
parameter of similarity ¢s < 1 or are unstable for ¢; > 1 (see Appendix 3).
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The parameters of similarity ¢s, nonequilibrium ¢, and damping § are
connected by the relations that can be found from the condition of maximal
coincidence of phase trajectories in the quadratic metric. The result of such an
optimization in the region of values of the parameter of similarity 0.7 < ¢, < 1.5
give the function (see Appendix 3):

2.023 — 1.5608¢, + 0.5380¢%, ¢, < 1
q(gs) = { (4.23)

1.7005 — 0.9234¢g, + 0.2223¢%, ¢s > 1

Let us consider the influence of the coherence of a state on the processes
of transfer of charged particles in the physical vacuum under the action of
mass forces. More exactly, we will obtain a generalization of the Ohm law,
which will be valid for the coherent states with the coefficient of similarity

—

_, 0A
¢s in homogeneous longitudinal fields F = ——— created by a nonstationary

ot
vector potential A ().

It is clear that, with the use of the scaling transformations, the equation
for the velocity of charged particles u in the case under study can be written

in the form 94
e

Acting by the integral Jackson operator qu = Dq_s1 (see Appendix 3) on both

. . . . e - 0A .
sides of this relation, we obtain u = —1, (— . From whence, we arrive
m

ot

at the relation between the current density j = ep.u and the vector potential
A(t):

o~ e (—A(t)) (4.25)
MTeff ’ '
The proposed model of the phenomenon of transfer and oscillatory processes
in fractal media on the basis of the apparatus of quantum derivatives can be a
mathematical foundation for the development of new radiophysical devices us-
ing the specific properties of nonlinearity and irreversibility of the fluctuations
of vacuum in NRS.

We now consider the alternative phenomenological description of the mo-
tion of the coherent part of a system of charged particles without the use of
quantum operators, but with the direct application of the interaction with vac-
uum in NRS. As was shown above, the friction of permanently accelerating
particles satisfying the condition of domination caused by collisions with other
particles can be neglected. However, by virtue of the fact that these charges
move as the whole and form NRS, the force of their interaction with the physical
vacuum turns out to be nonzero.

The situation is similar to the motion of a body in the ideal fluid. The
motion of a body with constant velocity occurs freely, and the body does not
feel the presence of the medium (see the d’Alembert paradox). The motion with
acceleration leads to the appearance of an associated mass and the interaction
with the medium, which is proportional to the acceleration.

The motion of particles in the physical vacuum subordinates the analogous
laws. The motion with acceleration leads to the interaction with vacuum and
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—

- du
the appearance of forces Fi . = &MCE' In this case, the equation of motion

of the coherent part takes the form

di oA di 0A
ma = 76@ + Fyae oOT (m - 5vac) E 76@7 (426)

which yields the Ohm law for the coherent part of charged particles:

2
= 1 e€
J=044, oa= 7(771’: o)’ (4.27)

It is seen that the obtained Ohm law coincides with the London equa-
tion [48]. On the whole, the model of the interaction of particles with vacuum
under the action of mass forces is similar to the two-fluid model of supercon-
ductivity: in the coherent state, the currents of particles arise in the absence
of the difference of potentials.

The value of mass defect 0,4 at the interaction of particles with vacuum is
determined by the explosive local expansion of the space-time with a curvature
corresponding to the resonance frequencies (4.10) in metric (3.12).

4.3 Coherent acceleration of the reference system and cri-
teria for the initiation of a collective synthesis

As was shown above, the basic physical quantity that initiates the processes
of synthesis in an ensemble of particles in correspondence with the principle
of dynamical harmonization is the coherent acceleration of this ensemble of
particles.

Let us find the conditions for the acceleration of NRS that will ensure
the intiation of MQO from the strongly nonequilibrium shell—i.e., the condi-
tion for the initiation of a instability leading to the reconstruction of a state of
the system such as the phase transition from the stable neutral substance to a
quasineutral electron-nucleus plasma. For the first time, the conditions for the
appearance of a positive feedback with respect to the density in a plasmoid were
found by A. Vlasov in the frame of his nonlocal kinetic theory [15]: “The bind-
ing energy is released at a decrease of the radius of the formation and turns out
to be sufficient for the support of the processes of ionization. The mechanism of
the processes of ionization consists in the creation of intrinsic inhomogeneous
electrostatic fields, which is a consequence of the oscillatory change of the po-
tential of interaction of ions in the space through an intermediate system”.

As is clear from the above, the efficient model for the description of the
action of mass forces in the system of many particles is given by the Schrédinger
equation and the de Broglie-Bohm representation of it in the form of a system
of equations for real functions. The use of the Dirac equation for an electron in
the Coulomb field of the kernel and its reduction to the Schrédinger equation
allows us to describe the mechanism and the conditions for the self-ionization
of an ion on the basis of the initiation of the processes of collapse of electrons
with regard for relativistic corrections (see [5, 49-50]).

The conditions of stability of a dense substance (e.g., a metal) are mainly
determined by properties of a degenerated electron gas. The ionization equi-
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librium can be changed, by varying the thermodynamical parameters such as
the temperature and the density.

The increase of the degree of ionization of a substance Z due to a de-
crease of the number of electrons shielding the nucleus causes a decrease the
corresponding radius of outer electron shells.

A decrease of the size of these shells due to a change of the Coulomb
repulsion leads to a decrease of the equilibrium distance between ions and,
hence, to a growth of the density as compared with that in the stable state
PstabZ:

Dstabz ~ 3.784 72049 (4.28)

The increase of the density of a substance alone can cause the ionization (figu-
ratively, we may say that the pressure “crushes” and breaks the outer electron
shells). However, this process requires very high critical densities,

Peritionz = 5.10°Z7, (4.29)

and the appropriate pressures. These critical densities are approximately by
two orders larger than those appearing at the increase of the degree of ionization
by 1. The ratio of densities perion/pstap as a function of the ion charge Z is
shown in Fig. 4.6.

Thus, the instability in the ordinary state does not arise, since the increase
of the density due to the previous stage of ionization is unsufficient for the
further increase of the ion charge, which ensures the stability of the substance
arrounding us relative to its spontaneous collapse under equilibrium conditions.

There are the external actions on a system, at which this stability is
broken. In connection with that the compression of a substance is hampered
by the repulsion of like charges, all physical situations that ensure a decrease of
the Coulomb repulsion due to the renormalization of the Coulomb interaction
increase the equilibrium density of a substance and can induce the loss of
stability.

z

0 20 40 60 80

Fig. 4.6. Ratio of the density leading to the increase of the ion charge by 1 to the
density orresponding to the current ion charge.

The main contribution to the conditions of equilibrium is given by the
energy of degenerate electrons. The system of particles in a thin layer (shell)
becomes nonequilibrium even only due to the geometry, since two basicall dif-
ferent states of motion can be realized:
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e perpendicularly to the thin plasma layer, the motion is bounded and,
hence, has a clearly expressed discrete energetic structure;

e the motion along the layer is not bounded and has, hence, the continuous
values of energy.

In order to initiate the positive feedback leading to the collapse, it is neces-
sary to decrease the critical density approximately by 5.102/3.784 = 132 times
or to delocalize the ion approzimately by a factor of 5.1. Such values are avail-
able if the order parameter satisfies the following condition:

1\ /R
0> 0.5(1 - (5—1) ) ~035 or g¢> 154 (4.30)

The satisfaction of the conditions for existence of a positive feedback leads
to the explosive process of ionization and to the appearance of an electron-
nucleus plasma with the density

10
Pen = —Z cm ™3, (4.31)
mp
At such a density, the mean distance between nucleons R, and the character-
istic size of nuclei Ry, in a fluid are, respectively,

3 \1/3

Ry = ( ) . Rpue=1210"134}7% (4.32)
AT pen

Let the pressure in the environment be py. Then the collapse time of a shell can

be estimated by the Rayleigh relation (the more general Zababakhin relation

can be used as well):

tew ~ 0.9R | 2L ~ 9,107 Ry, | L2 (4.33)
Po Poatm

The behavior of the radius tending to zero is determined by the relation

QAm
1—t> , am%(liﬂ, 0 < Kk < o0. (4.34)
Here, pj4 is the density of the environment in gr/cm3, poasm is the external
pressure in atm, and the shell radius in cm.

For the interaction characteristic of Maxwell molecules and hard spheres,
k=~ 4/3 and a,, ~ 7/6. The analysis of solutions of the equations of dynamics
of a shell yields the “scaling” relations between characteristic macroscopic scales
of shells (between radii and thicknesses) and their mean densities at two time

moments: s/14 e
me(n) - a=(n)
Ry P2 Ty P2
o &N <R2>14/3 @N (1%2>8/3
P2 Ry ’ dq Ry .

Thus, the density at the collapse of a shell increases explosively, and the
shell thickness decreases. Their behavior is described by the relations:

Rsh = RshO(

tEI

l

(4.35)

0 ¢ 8 /3
Psh =~ Tdo,, /37 dsh ~ dsh(] (]- - ) : (436)

)
teac
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The density corresponding to an electron-nucleus plasma p,, is attained
at the time t., given by the formula

3
ten = (1 - (pﬂ) 14am>tex7 (437)
Po

and the acceleration during the collapse increases with time.

The process of collapse of shells occurs under conditions of a dominating
perturbation along the radius from the very beginning of the process (the accel-
eration of a coherent motion is more than the acceleration of the dissipation),
whereas a decrease of the thickness acquires large accelerations only at the end
of the process. At at the end of this stage, the acceleration of electrons is
Aeog = 102 cm/sec?, and the space-time curvature attains values of the order
of 10'8, which corresponds to the atomic scale less than 1072 <+ 10~8cm.

The process of collapse in the electron-nucleus plasma, which is the fall
of electrons in a Wigner—Seitz cell onto its Coulomb center (the nucleus with
charge Z), is accompanied by the subsequent increase of the coherent acceler-
ation up to the limitedly high values of the order of a.,y &~ Z?% - 102%cm/sec?.
These accelerations can already ensure the space-time curvature to be more
than 1022, which corresponds to characteristic scales < 107! cm.

The attained scales approaching the nuclear ones correspond to the high
rates of change of the entropy gradient and ensure the flattening of the wave
functions of all particles of the system and the formation of MQO with the
scaling from the macro- down to nuclear scales.

Thus, the self-consistent ionization of a substance due to the loss of sta-
bility caused by the action of mass forces occurs explosively and is accompanied
by a change of the number of constraints in the system. The explosive change
of the entropy in time and space leads to the existence of accelerations of all
orders. The mass force appearing in these processes in a self-consistent way
causes the explosive “flattening” of the wave functions of nuclei. If the effec-
tive size of a nucleus tends to the mean distance between nuclei, then the order
parameter approaches 0.5, and MQO is formed. The formation of MQO initi-
ate the collective synthesis of new structures, whose efficiency depends on the
dynamics of a coherent acceleration and, hence, on the space-time curvature.

5 Conclusions

The present work is a part of the cycle of works [1-2] devoted to the description
of the theory of self-organization of the systems with varying constraints and
the control over the synthesis. It is made in the frame of the development of the
conception of self-organizing synthesis (see [1], [5]) on the basis of the principle
of dynamical harmonization.

In the work, we have presented the geometric approach to the variational
principle of dynamical harmonization, which allows one to solve the problems of
self-organization and control over the directedness of the evolution of various
complicated systems, basing on the single viewpoint from the very general
positions of the theory of dynamical systems with varying constraints.



Control of multiscale systems with constraints. 3. Geometrodynamics 109

The comprehension of the geometric nature of physical laws was started
by Clifford [51] and was developed by Hilbert, Einstein, and Wheeler [52-54].

In his mathematical works concerning the work by Riemann [55], Clifford
wrote as early as 1876: “I consider that

1. Small parts of the space are really analogous to small hills on the surface,
which is plane on the average, namely: the ordinary laws of geometry do
not valid there.

2. The property of curavture or deformation continuously passes from one
part of the space to another one like a wave.

3. Such a change of the space curvature reflects the real phenomenon called
by the motion of matter, which can be the ether or a weighty substance.

4. Only such changes obeying (possibly) the law of continuity occurs in the
physical world”.

Einstein analyzed the gedanken experiment with particles in the field of
mass forces [53] and made conclusion that the light velocity is changed in the
field of gravitational mass forces, and, hence, the space-time curvature appears.
In 1919, the phenomenon predicted by Einstein was discovered experimentally
during Sun’s eclipse.

We note that the single property of the field of gravity, which was used
in the theoretical reasoning [53], was its mass character. The analysis of the
principle of dynamical harmonization and the basic positions of the conception
of self-organizing synthesis [1, 5] allowed us to generalize the idea of general
relativity theory of the curved space-time in the field of gravitational forces to
any mass forces.

The assertion that the mass forces of any nature (satisfying the condition
of domination) decrease the light velocity and curve the space-time is basic
for the geometrization of the theory of evolution and control. It is worth to
mention that a decrease of the light velocity in the region, where the coherent
acceleration is present due to the growth of crystals, was experimentally discov-
ered much earlier (see [25]) than a decrease of the light velocity near massive
gravitating bodies.

In the frame of the theory constructed by us, we have obtained the con-
nection between a change of the space-time curvature in quasihomogeneous
electromagnetic fields and a change of the impedance (see (4.16)), which was
registered in the experiment with the help of Kozyrev’s gage (see [27], [28]) in
the modern version.

The important circumstance for the construction of the geometrodynam-
ics of many-scale systems with varying constraints is the following: the most
important notions joining all the scales are the space-time and the entropy (or
information), and the mass forces of various nature act, as usual, on the own
interval of scales, but ensure the nonlocality of processes.

The comprehension of the geometric nature of nonlocality allowed Vlasov
to construct a nonlocal statistical theory [14-15], which is based on the geom-
etry of support elements — the Finsler geometry [56]. The above-presented
foundations of the geometrodynamics of evolution and control for the systems
with constraints belong to the series of available theories (general relativity
theory and nonlocal statistical theory).

As usual, the control over dynamical systems and the optimal synthesis
of new structures is realized for the system, whose state is set by the vector
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in the Buclid configurational space with a given matriz of the constraint co-
efficients. In this case, the control that is a vector of forces acting on the
appropriate components of the system can be optimized on the basis of the
solution of a variational problem with given functional.

In the many-scale shell model of self-organization, the situation is signifi-
cantly more complicated.

1. Evolution of the systems with varying constraints occurs in the Finsler
space-time. The state of the system is set by the positions of particles
in the anisotropic four-dimensional Riemann space-time (base space) and
by their velocities, which are tangent to the trajectories of particles at a
given point and, hence, belong to the corresponding layer of the tangent
bundle of the space-time. The evolution of the system, i.e., the evolution
of constraints of the system, runs also in the own layer of the space-
time, where the coordinates characterize the structure of the system (such
coordinates are, e.g., the fractal dimension of the system or its entropy);

2. On all stages of the process of synthesis, the evolution of systems obeys
always the general variational principle for the systems with varying con-
straints, namely, the principle of dynamical harmonization. In the ge-
ometric statement, it asserts that the system evolves always along the
geodesic lines in the Finsler space-time with regard for of the constraints
in the system. In this case, the optimization functional is the space-time
metric defining its curvature.

3. The defining role in the efficient control over the evolution is played by
the coherent acceleration (in the general case, the tensor of accelerations)
in the basic Riemann space-time. The current coherent acceleration in
the basic Riemann space-time determines the constraints in a system (see
(3.28)) and the evolution of the system in the tangent bundle (with the
fractal dimension Dy as a structural coordinate in the layer) in agreement
with the equations of dynamical harmonization in the Euler—Lagrange
form with the corresponding Lagrange function

D2
Letr = masr (D) ROTf +5Ba (Z,Ds) A—Usg, (Dy)

d aLstr aLstr =0
dt 8Df an e
4. Evolution of the system chabges the metric of the basic space-time (see

(3.12), (3.27), (2.37), and (2.38)):

ds? = (da°)” — 0° (1) gap (21,27, 2°) dada”,

0 z°
o (%) = exp, (m”) ,

g-=1-m, ¢<1

(see (3.39)):

1
= —, >1
4+ 1—7 q

Hence, we may assert that the order parameter 7 controls the space-time
metric.



Control of multiscale systems with constraints. 3. Geometrodynamics 111

The control is realized by the external vector of controlling mass forces,
which sets the contributions to the appropriate components of coherent acceler-
ations of the system. The examples of mass forces that are the most important
for the self-organization (evolution) are as follows:

1) forces of gravity and inertia;

2) entropic forces related to the entropy production gradient;

3) drift forces in a plasma involving the runaway of electrons in an electric
field;

4) forces arising at the polarization of vacuum, including forces of the Casimir
type.

It is possible to assert that the harmonized (nonforce) control creates the
space-time curvature, which is necessary for that a configuration of the system
and its state will “roll down,” like free ones, into the regions optimal for the
realization of the process with a desired energy directedness.

By using the de Broglie-Bohm reprentation for the Schrodinger equation,
we have shown the connection of nonlocality and coherence for the systems of
many particles with the entropy production and mass forces. We have demon-
strated that the entropic field is integral with the fields of constraints in any
quantum system, in particular in MQO. Moreover, the introduction of entropic
forces induces a nonlocality similar to the quantum one even in macroscopic
systems. We have also analyzed the various means to create mass forces in the
system and have obtained the relations for their calculation.

In a certain meaning, the space-time curvature is a hidden parameter.
Since the separation of variables at the solution of the Schrodinger equation
does not cause the disappearance of correlations between coordinates and mo-
menta 7, (k) (due to the curvature), the Schrédinger-Robertson uncertainty
relation (3.25)

h

24/1 =72, (k)

is valid and can be used for the control over many physical processes. For
example, it would be used for the development of methods of a sharp increase
of the transparency of Coulomb barriers and, hence, the probabilities of nuclear
reactions [43].

The conducted studies allowed to generalize the Heisenberg uncertainty
principle for energy and time in systems with variable constrains and thus
with change of energy of constrains AFE, so that this ratio is directly includes
the entropy change of the system (i.e., a degree of openness (see 2.26))

AzAp, >

AtAE ~ gAS.

It is now quite clear that the ratio of the classical and quantum properties
of the system is determined not only by the value of the Planck’s constant A,
but also over the production of entropy in the system.

The developed theory of self-organization of open systems differs from
the traditional nonequilibrium thermodynamics by the role of dissipation in
the processes of evolution. Usually, the irreversibility of processes in a system
is determined by the transition of the energy of a regular motion into the energy



112 S. Adamenko, V. Bolotov, V. Novikov

of a thermal random motion. In the theory with the principle of harmoniza-
tion, the constraints and the structure of a system vary continuously at each
hierarchical level, and the evolution is running without significant transition of
energy into heat. It is obvious since one of the most important requirements
to the external actions initiating the self-organizing evolution is the excess of
the values of momenta of particles, which are formed by the controlling mass
forces, over their thermal momenta in the system.

In the frame of the constructed geometrodynamics of the systems with
varying constraints, the results obtained in works of the cycle substantiate
theoretically all basic positions of the conception of self-organizing synthesis
presented in [5]. Thus, the sequence of the basic processes at the evolution of
the system can be presented as follows:

1. Separation of an ensemble of particles that will be evolved in the future.

2. Coherent acceleration of the ensemble and the formation of NRS as a
result of the action of a dominating perturbation (creation, e.g., by elec-
tromagnetic or entropic mass forces).

3. Explosive self-consistent formation of MQO (usually of the “shell” type)
when the coherent acceleration exceeds the threshold value.

4. The running of the processes of synthesis with energy directedness cor-
responding to the attained coherent acceleration (and, hence, to the at-
tained space-time curvature),

5. Termination of the self-consistent process of evolution and the fixing
(hardening) of products of the synthesis as a result of development of
an instability on the very small scales.

6. Initiation and development of the explosive processes as a result of the
release of the free energy of the synthesis of new structures.

The relations obtained in the theory of self-organization can be applied
to the control over the optimal synthesis of systems with variable constraints
of completely different nature and with different scale levels from nuclei and
the interaction of particles with the physical vacuum to social and biological
systems with complicated organization.

In many cases, a nuclear reaction is impossible because of the Coulomb
repulsion of the nucleus. But the internuclear Coulomb barrier prevents only
in the case when the distance between the nucleis is much greater than their
de Broglie wavelength. If the de Broglie wavelength App for the nuleus is
longer than the distance between the core nucleis, then the MQO in quantum
multipart system is being formed, and as it shown in the work, the Coulomb
barriers can effectively be decreased. The possibility of increasing of the de

Broglie wavelength Apg = (up to infinity) for each particle (monomer)

of the ensemble, as seen, is| assfgithed with the presence of the entropy pulse
ps in them.

‘We emphasize once more that the base of the presented theory were main
positions of the self-organizing synthesis of nuclei (see [5]), which allowed us
to develop at once the means to initiate the nucleosynthesis by electron beams
in a plasma diode [57]. The realization of this means allowed us to synthesize
a wide spectrum of nuclei and their isomers (see [5, 2, 58-60]), and the use

of electromagnetic drivers gave possibility to efficiently control the lifetime of
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radioactive nuclei. The experimental results concerning the electromagnetic
control over the synthesis of nuclei and the rates of nuclear processes, as well
as their comparison with the theory of self-organization of the systems with
varying constraints, will be considered in the next article of the cycle.

The developed theory becomes rapidly a foundation for the creation of new

technologies of the control over the synthesis, in particular, over the synthesis
for the production of isomers-accumulators, and for the design of powerful
environmentally safe “on-line” sources of nuclear energy.
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Appendix 1. Thesaurus of the self-organization
of complex systems with varying constraints

Action. The action is the quantity

to ta
S = /dtL (g,g,t) or S= /dt (ZP@‘%‘ - H(qgj,t)),
t1 ty i

where t — time, ¢ = {q1, ...,qn} — complete collection of coordinates charac-
terizing the dynamical system (its configurational space), ¢ = {¢1,...,4n} —
collection of velocities (derivatives of ¢ with respect to the time), L — Lagrange
function depending on N coordinates, N velocities, and, sometimes, explicitly
on the time. In classical mechanics, the action coincides with the difference of
kinetic and potential energies; H — Hamilton function that is the total energy
of the system depending on N coordinates, N momenta conjugated them, and,
sometimes, explicitly on the time.

Bifurcation point — point of branching of possible ways of the evolution of
a system. In the differential formalism, the solutions of nonlinear differential
equations are branched at such a point.

Blow up:
e Duration of the blow-up — finite time interval, during which the process
is developing with a superhigh rate.
e Blow-up mode — mode possessing a long-term quasistationary stage and
a stage of superfast growth of the processes in open nonlinear systems.
The dynamics of basic quantities in the blow-up mode is described by

—v

an explosive function = <1 — ) diverging at the blow-up time mo-
T

ment 7.

Coherence — from the Latin word “cohaerentia” — internal connection, con-
nectedness. The behavior of elements inside the system that is consistent in
time and space. In physics, it is the consistent running of several oscillatory or
wave processes in time and space. Coherent behavior of elements — base for
the appearance of space-time structures. Coherence is continuously connected
with correlations of the basic quantities in the system.

Coherently correlated states. Coherently correlated states (CCS) are a
complete collection of nonstationary states, in which the process of delocaliza-
tion can be expanded. The equilibrium CCS usually used for the description of
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the systems weakly deviating from equilibrium ones (with small accelerations
and flows). To describe the processes of delocalization with limitedly large ac-
celerations, it is necessary to use the expansions in the eigenstates of systems
that are in strongly nonequilibrium states, namely nonequilibrium CCS.

In quantum mechanics, coherent states are states with minimal disoersion
(states with the probability distribution in the form of a Gauss distribution),
i.e., they are states that are the closest to macroscopic states of the system.

Dimension of a system:
e Dimension of the embedding of a system — minimal number of parame-
ters completely describing a state of the system.
e Fractal dimension — fractional dimension characterizing the self-similarity
and the scaling invariance of systems.

Dissipation — processes of energy dispersion, its transformation in less orga-
nized forms (heat) as a result of dissipative processes such as heat conduction,
diffusion, etc.

Dominating perturbation — mass force creating the coherent acceleration
of particles of a system and, hence, a flow in the phase space. The value
of constant flow in the phase space determines the dominating perturbation
intensity for the system.

Flow in the phase space. Usually, the flow of a physical quantity is the
amount of this quantity transferred in unit time through any area in the space.
For the coherently accelerating systems, whose properties are identical over
the whole volume, the significant parameter is the amount of such a quantity
transferred in unit time through an area in the energetic or momentum space
irrespective of the coordinates. The flow in the phase space (like the coherent
acceleration) is related to the degree of deviation of a state of the system from
the equilibrium one corresponding to the zero flow (or, what is the same, to
the zero coherent acceleration).

Fractal objects — objects possessing the properties of self-similarity or scaling
invariance.

Ill-posed problem — problem, whose solution is unstable with respect to the
initial data or to a perturbation of the operator.

Information. It is intuitively assumed in the Shannon theory that information
has content. Information decreases the total uncertainty and the informational
entropy. The amount of information can be measured. However, Shannon
warned as for the mechanical transfer of notions from its theory to other fields
of science: “The search for ways of applying the theory of information to other
regions of science ios not reduced to the trivial transfer of terms. This search
can be realized in the long-term advancing of new hypotheses and their exper-
imental verification.”

Instability by Lyapunov — instability with respect to the initial data, which
leads to the exponential divergence of earlier close trajectories.

Lyapunov indices — increments of the instability with respect to the initial
data (instability by Lyapunov).
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Mass. Mass defect. Mass is mainly determined by the binding energy of a
system. The mass defect is a change of the mass as a result of the change of
the structure of the system and its constraints. For example:

e Mass of nucleons is determined by the binding energy of quarks;

e Mass of nuclei is determined by the binding energy of nucleons;

e Mass of a “shell” is determined by the binding energy of electrons, nu-

cleons, and nuclei;
e Mass of atoms is determined by the binding energy of nuclei and electrons.

Mass force — force acting identically on all elements of a system and creating,
in this case, the coherent acceleration of the system.

The example is the gravitational force acting on all particles proportion-
ally to their masses. It is usually considered that the mass force is the reason
for the appearance of a flow in the configurational space of the system.

However, in many cases where the mass force acts identically on all ele-
ments of a subsystem (separated from the whole system in some way), such a
subsystem, being homogeneous in the configurational space, accelerates, i.e., a
flow appears in the momentum subspace of the phase space.

The example of such a situation is given by the subsystem of electrons of a
plasma in an electric field, whose intensity is more than some critical value (the
runaway threshold). In this case, the plasma passes in a state with electrons
running away, i.e., all electrons are coherently accelerated, and the electric field
acting on the plasma plays the role of a dominating perturbation, which acts
on the plasma and transfers the subsystem of electrons in a coherent state.

If a flow in the phase space of the system (or coherent acceleration) is not
constant and is in the state with positive feedback, the blow-up mode arises.

Nonlocality — main characteristic of a system, being in the mode of coherent
acceleration (the blow-up mode). In this case, the state of the system cannot
be set by the expansion in a vicinity of the given point in infinitely small values
and, hence, by the acceleration of a single order. The system is characterized by
the accelerations of all orders. The property of nonlocality is characteristic of
the systems in the blow-up mode, systems near a phase transition, and MQO.

Phase portrait — possible states of a system in its phase space; the set of
trajectories of the system in its phase space.

Phase space (space of states) — multidimensional space, whose coordinates
serve as parameters completely describing a state of the system.

Reference systems:
e Inertial reference system — reference system, in which the bodies not
subjected to the action of forces move along straight lines.
e Noninertial reference system — reference system moving with accelera-
tion relative to an inertial reference system.

Regularization. Operator of regularization. To obtain a stable solu-
tion of an ill-posed problem, it is necessary to use some special methods called
the methods of regularization. It is possible to define the spaces, where the
solutions of a problem become proper or, by applying the operators of regular-
ization (the operators of special averaging), to change the operators defining
the problem or to introduce new observable variables.



Control of multiscale systems with constraints. 3. Geometrodynamics 119

Resonance excitation — correspondence of the spatial and temporal struc-
tures of an external action to the internal structures of an open nonlinear
system.

Self-organization — process of spontaneous ordering, formation, and evolu-
tion of structures in open nonlinear systems.

Space-time curvature — physical effect revealing itself in a deviation of
geodesic lines, i.e., in the divergence or convergence of the trajectories of freely
moving bodies launched from close points of the space-time. The space-time
curvature is characterized by the Riemann curvature tensor.

Strange attractor — set in the phase space attracting the trajectories to
itself. A strange attractor has fractal structure.

Structure — set of elements of a system with a set of stable constraints
between elements:

e Dissipative structure — stable state of an open system, which arises as
a result of the dissipation of the energy continuously supplied from out-
side. Prigogine developed the theory of dissipative structures to explain
the behavior of systems, being far from the equilibrium. In this case,
the properties of the system in small regions of the space are described
by locally equilibrium functions with the values of macroscopic parame-
ters strongly different from equilibrium ones. The strong deviation from
the equilibrium in dissipative structures means large spatial gradients of
macroscopic parameters of a locally equilibrium system. In this case, the
moving forces of the evolution are the gradients of physical quantities.

e Nonlocal structure. Structure, which arises as a result of the process
of self-organization, i.e., the evolution of constraints in the system in
its whole spatial volume, and differs from the equilibrium system even
locally. The self-organization of the system is initiated by mass forces
leading to the coherent acceleration (in the absence of significant gradients
of macroscopic parameters inside the system). The reconstruction of
constraints and their energies in nonlocal structures occurs namely due
to the coherent acceleration at the dissipated energy and the gradients
inside the system tending to zero.

Synthesis — process of formation of new structures, i.e., the process of for-
mation of new constraints.

System:
e Open system. System, which exchanges with the environment by energy,
mass, and information.
e (losed system. System, which does not exchange with the environment
by energy, mass, and information. Energy and information in the closed
systems are conserved.

Variational principles of the evolution of a system:
e The Hamilton principle of least action (the variational principle of the
dynamics of closed systems)
e The Gauss principle of least compulsion (the general variational principle
of the dynamics including the dynamics of the systems with constraints).
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By the principle of least compulsion, the system with ideal constraints
chooses the motion with the minimal “compulsion” Z among all motions
admitted by constraints, which start from the given position with given
initial velocities. The free material point with mass m under the action
of a given force Fon itwill have the acceleration equal to F/m. If some
constraints are imposed on the point, then its acceleration under the
action of the same force F will be equal to a different value w. The
deviation of the motion of the point from free motion due to the action of
a constraint will depend on the difference of these accelerations F//m —w.
The quantity Z proportional to the square of this difference is called

1
“compulsion”. For a single point, Z = im(F/m —w)®

e Hertz least-curvature principle (the variational dynamical principle, which
is the closest to the Gauss principle and the most convenient for the sys-
tems with constraints). From all trajectories admissible by constraints,
the trajectory with the least curvature will be realized. This principle is
also called the principle of straightest path and is closely related to the
principle of least compulsion, because the quantity called the “compul-
sion” is proportional to the square of the curvature. For ideal constraints,
both principles have the same mathematical representation.

e Principle of minimal entropy production (Prigogine principle of evolution
for dissipative systems and structures). In 1947, 1. Prigogine introduced
the notions of entropy production and entropy flow, gave the so-called lo-
cal formulation of the second origin of thermodynamics, and proposed the
principle of local equilibrium. He showed that, in the stationary state, the
entropy production rate in a thermodynamical system is minimal (Pri-
gogine theorem), and the entropy production flor irreversible processes in
an open system tends to a minimum (Prigogine criterion).

e Principle of dynamical harmonization (the most general principle of dy-
namical evolution of systems with varying constraints)

Appendix 2. Basic notation

1 — order parameter

Dy — fractal dimension

q — parameter of nonequilibrium

qs — parameter of similarity

ag — parameter of domination

Qimp — parameter of impactness

Tefr — effective duration of the operation of a driver
Tqis — effective duration of the dissipation

Gcog — coherent acceleration

F,, — mass force

Fst» — mass force initiating the formation of a structure
og — entropy production

J — action

S — entropy

up, pr — thermal velocity and momentum
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Mgy — structure inertia (structure mass)

m — mass

B, sB — binding energy and specific binding energy per nucleon
L — Lagrange function at the formation of a structure
Zan — dynamical harmonization functional

/T, (o — vector and electrostatic potentials

A, Z — mass and charge of a nucleus

l4+ — delocalization scale

l_ — — — localization scale

6 — deformation

0 (¢s) — damping decrement or increment of the instability
D,, — Jackson operator with the parameter of similarity g,
@@ — quality of an oscillatory circuit

K — space—time curvature

gir, — space—time metric

R;ir — Riemann curvature tensor

Appendix 3. Main relations for the Jackson
operators (integro-differential operators of
quantum analysis)

The fractal media are characterized by the properties of the similarity of ba-
sic quantities at a variation of the space scales. Therefore, The most natural
generalization of the notion of derivative is the Jackson derivative [4], in which
the scaling operation (with the coefficient of similarity gs) is used for the de-
termination of the rate of a process instead of the operators of shift:

fa2) = f ().

Dqsf(af): 4o — T

(1)

In the limiting case, the Jackson derivative passes to the ordinary one: Df (z) =
qlsiinl Dy, f (2).

The question arises: Which functions are the eigenfunctions of the oper-
ators of Jackson g-derivatives? On the basis of the development of the notion
of g-derivatives, the so-called quantum analysis was constructed, in the frame
of which the generalizations of many significant mathematical relations were
found. For example, let us calculate the quantum g¢-derivative of a power func-
tion:

(QSx)n - QSn -1 n—1

Dy, z" = = 2"t =1[n] 2"t 2
qs (q§_1)$ qs_l []qs ()
qsa -1
where [a], = is the Jackson ¢-number, whose limits are lim [a] = «
& gs — 1 qs—1 &
a—1

and qslgnoo [a,. =4

. It is simple to calculate the derivative of a function

S

possessing the property of similarity. Let f (¢sz) = ¢ f (x), then

Dqs f(a?) _ (QSaf (l‘)) —f(l‘) — QSQ -1 f(l‘) _ [a]%@.

(QS - 1) z gs—1 = (3)
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The eigenfunction of the Riemann derivative is the exponential function e®,
o0

which can be expanded in a power series e* = 3 R where k! is a factorial.
k=0 K

Quantum analysis uses widely the g-generalization of the exponential function
ey, whose power expansion contains the generalization of k!, which is replaced

by [k]qs..
1 k=0
Fla!= {mqs k=1, oot K1 Y

In other words, the power series for the g-exponential function takes the form

. S "
el]s - Z [k‘} !' (5)
k=0 ds

It is easy to see that such a definition implies that the function ey is the
eigenfunction of the operator D:

qs — — 1 -1 T
0 !xk 1:2ka =€y (6)

The quantum derivative is a linear operator. Therefore, the g-derivative
of a linear combination of functions can be presented in terms of the derivatives
of separate functions by the ordinary relation. However, the g-derivative of a
product of functions has already some specific features.

Definition (1) yields the relations for the derivatives of a product of func-
tions that differ from ordinary relations by the absence of symmetry. Namely,
two different relations are simultaneously valid for the derivative of a product
of functions:

Dy, (f (2) g (x)) = [ (gs7) Dg,g (x) + g (x) Dy, f (z), )
Dy, (f (2) g (x)) = [ (2) Dg,g (x) + g (qs) Dy, f ().

For the functions possessing the similarity, f (¢sz) = ¢:“f () and g (gsx) =
¢s%g (z), we obtain

Dy, (f () g (2)) = f (z) Dg.g (¢) + ¢5"g (z) Dy, f (2) (8)

= [ (¢) Dy, (x) + g () Dy, f (z) + (a5” — 1) g (x) Dy, f ().

Hence, the parameter of similarity ¢s of the quantum differentiation character-
izes simultaneously the degree of its asymmetry.

In addition, quantum analysis considers the operators, which are inverse
to the derivatives — the operators of ¢-primitives. The function F' (z) is called
the g-primitive for a function f(z), if D F () = f(z), and is denoted by
[ f(z)dgx. Tt is easy to see that if a function f(x) is set by a power series

fz)= Z arpz®, then
k=0

J S @hne =30 gttt e Q
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Sometimes, it is convenient to use the formal definition of the Jackson
integral for the g-primitive of a function f (z):

/f(m)dqsm =(1-gs) quskf (g:"z). (10)
k

=0

We note that the Jackson g-numbers [z] 4.» Which are expressed in terms
of the parameter of similarity ¢, are closely related to the Tsallis nonextensive
entropy for the states with the parameter of nonequilibrium g:

1= pf
K3

Sq = _Zpglnq(Pi) = —1

In the definition of entropy, we apply the generalized logarithm

11

In.o—
Ilq.T q—l

b

which satisfies the relation

Ing (zy) = Ing(z) + Ing(y) + (1 = ¢)Ing (z)Ing (y).

The main property of the generalized entropy S, consists in that it is not
already the extensive function. If the system is divided into two independent
subsystems A and B, then

Sq(A+B) :Sq(A)+Sq(B)+(1_q)Sq(A)Sq(B)- (11)

Deviations from the symmetry and the ideality in this relation are deter-
mined, like that in (8), by the deviation of the relevant parameter from 1.

The majority of equilibrium physical parameters of closed ideal systems
are expressed via ordinary exponential functions coinciding with their general-
ized analogs for the coefficient of nonequilibrium ¢ ~ 1 and the coefficient of
similarity gs ~ 1. The degree of deviation from the thermodynamic equilibrium
and the ideality is determined by the deviation of the mentioned parameters
from 1. The nonideal states of the system must manifest themselves, naturally,
in the oscillatory processes, which are realized in fractal media.

A model of oscillatory processes in fractal media on the basis of
quantum analysis

To study the peculiarities of oscillatory processes in fractal media, we consider

the generalization of the trigonometric functions on the basis of g-exponential

functions (5). In the frame of quantum analysis, the following new functions
are introduced:

eiz+e—iz ez _ e

q a . q a

Co8y (2) = —— sing (2) = ———. 12

L]( ) 2 q( ) 2Z ( )

Using relations (6) for the quantum derivative of a generalized exponential

function, it is easy to obtain that the functions introduced with the help of
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relations (12) satisfy the relations similar to the relations for trigonometric
functions:
Dycos, (2) = —sin, (2) , Dsing (z) = cosq (%) . (13)
These g-functions pass into the ordinary trigonometric functions as ¢ — 1.
However, the deviation of the former from the latter increases with the devia-
tion of the parameter of nonextensity ¢ from 1. In Fig. 1, we present the plots
for the g-trigonometric functions sin, (¢) for various parameters of similarity.
qSin
3

b

1F

nvn 1Vu 2. g uT
_1k
_at
-3F
—4F

Fig. 1. Simplest oscillatory process in a fractal medium. Plots of the functions sin (t)
and sing (t) are given for the parameters of similarity gs=0.95 and ¢gs=1.05

As is seen from Fig. 1, the oscillatory process described by g-trigonometric
functions has character of a dissipative process. Let us analyze this analogy
in more details. Consider the simplest self-similar oscillatory process, which
is described by the simple equation for a fractal oscillator with the use of the
Jackson derivatives:

Dy (Dyf (2)) +w2f () = 0. (14)
By the direct substitution, it is easy to verify that the general solution of this
equation is the function f (x) = Cising (wx) + Cacosy (wz). The case shown
in Fig. 1 corresponds to the initial conditions f(0) = 0 and D, f (0) = 1, for
which f (x) = sing (wz).

In practical applications, it is convenient to approximate the Jackson g-
functions, which are represented by infinite series, by their finite algebraic
expressions. It is natural to make it with the use of nonequilibrium quasipower

generalizations of the exponential function, exp, () = (1+ (1 —q) ) l-gq,
which allow us to write the quasipower generalizations of the trigonometric
functions:

exp, (iz) + exp, (—iz) exp, (iz) — exp, (—iz)
2 ’ 21
We now consider the generalized exponential functions exp, (—z) and [

on the interval 0 < z; < 4 and define the connection between the parameter
of nonequilibrium ¢ and the parameter of similarity ¢s from the condition of

qCos (z) = qSin (z) = . (15)

minimum for Zé\;l (exp, (—2x) — e;zz’“)z. As a result, we obtain

2.023 — 1.5608¢, + 0.5380¢2, ¢, < 1
q(gs) = { ° y (16)

1.7005 — 0.9234q, + 0.2223¢%, ¢s > 1"
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In Fig. 2 on the left, we show the self-similar oscillatory process f (z) =
sing (wz) and its approximation with the generalized exponential functions
exp, (—2), for which the parameter ¢ is determined by relation (16). We indi-
cate a sufficiently high accuracy of the approximation. On the right, we present
the phase portrait of this self-similar oscillation.

Fig. 2. Simplest oscillatory self-similar process, its approximation wlith generalized ex-
ponential functions (on the left), and the corresponding phase trajectory (on the right).

It is seen that the oscillatory process with the coefficient of similarity gs
corresponds approximately to the unstable oscillatory process
g (z) = e %% sin (wz + Ap)
described by the equation with ordinary derivatives for an oscillator with neg-
ative damping §:

D, (Dyg(z)) —6Dg (z) +w’g (x) = 0. (17)

The parameters of similarity and damping are connected by a relation that
will be determined from the condition of the maximal coincidence of the phase
trajectories of a self-similar oscillation and unstable (or decaying) linear oscil-
lations by the method of least squares:
3.4931(1 — ¢,)"%", g <1
J(qs) = 0.7969 : (18)
—10.8126(gs — 1) , gs>1
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META®I3ZUKA AYXOBHOI BIIJINBOBOCTI
KuiBCbKOT TYXOBHOT AKAJIEMIT

(HA MIPUKJIAZI CIM'T BYJITAKOBUX)

I’ I. Boaunxa', B. O. Jopowresuy', H. I. Moszosa'

Amnoranis. CiM’s BynrakoBux cyTTeBO BIIMHYyIa Ha PO3BHTOK CBiTOBOY
KYJBTYPH, BOHA ABJISETHCS YACTHHOIO KyIbTypHOI ciammuan Kuepa i HOBI
3HAHHSA PO TBOPYICTDH MPEACTABHUKIB IHET CiM'T ABJIAIOTH CODOIO BeJIMYe-
3HUN iCTOpUYHMI Ta HAyKOBUIl iHTEpEC, & TAKOXK JOIIOBHIOIOTH HAIIll 3HAH-
HsI IIPO €eroXy pediriitno-dinocodcepkoro penecancy Kinmg XIX — nmogarky
XX cromirrs. Benukuit Buus Ha dpopmyBanus cBirorisany Adanacisa Isa-
nosuya Bynrakosa (6arbka Muxaitna Bysnrakosa) i Muxomu IBanoBuua
Bysrakosa (ngapka 3HAMEHHTOrO NMUChbMEHHHUKA) Masia KuiBCbKa gyxoBHA
akajslemisi. Y ganii my6stikaril ocobsimBa yBara IPUIISETHCS JOCIIKEH-
HIO MaJioBUB4YeHO!I Oiorpadii Mukosu IBanoBuya Bynrakosa, BUIyCKHUKA
KA, suknanada Tuduticbkol npaBociaBHOI ceMiHapil, B sKiii HaBYaBCsH
Hocun Crasmin. Tlonil, siki BinOysincs B 1iit ceMinapil Ta pojib B IUX IOiSAX
M. I. BysnrakoBa, 3Haiimin cBOE BigobparkeHHsI B OoCTaHHIN m’eci Muxaiiia
Bynrakosa «Barym».

ABTOpuTeTHICTH HABYAJIBHOTO 3aKJIaLy — pid BKpail Hebaiiyka it KO-
JKHOTO, XTO 3 HUM He(OPMAJIBHO 1 mupo moB’s3anuii. Ajie pid 1 € 0JJHOYACHO
HaJITO HEBU3HAYMEHOIO, MaiizKe HeBJIOBUMOIO. IIpo Hel MoKHA TOBOPUTH BCE IO
3aBrOJIHO, OCKLIIBKY BOHA He ITiIIa€ThCs 00’ €KTUBHUM BUMIipaM, CIIOCTEPEIKEH-
HaM, dikcarisM. BoHa HEMOBOM XOBAETHCA 3a BUIMMUME PEAJIigAMU, JIAIIE Ha-
TAKAIOYM HA CBOIO HASBHICTH Ta Meradizwany mpupomy. €maunHe, ne BoHA cebe
ABJISIE€ 3 MIEPEKOHINBOIO aBTEHTUIHICTIO, — I1e PaKTHu IpodeciiiHunX, HAyKOBUX,
MOpAaJILHIX II€PEMOr BUXOBAHIIB HABYAJBHOrO 3akiamy. Came depe3 ycmixu
CBOIX BUXOBAHI[IB HABYAJbHUI 3aKJIa] HEHAYE [IPUBITINHSIE MeTADI3UKY CBOTO
JIYXOBHOT'O TOTEHITATY i aBTOPUTETY, TPAHCJIOE HOro iHIMUM JIIOJSIM, BILTHBA-
[0YM 3PEINTOI0 Ha Iijie cycriaberBo. Meradizuunuit morentiaa #oro ayXoBHOL
BILTMBOBOCTI 3/IICHIOETHCA Yepe3 BepbaabHy i mo3aBepbaaIbHy MiKOCOOUCTICHY
KOMYHIKAIIiI0, OIIOCEPETKOBAHY CMHUCJIAMHU OITPEJIMEYEHOI0 YCIiXy, KOTPUil JTaHy
BILIMBOBICTH 3aCBITUYE.

ITro Te3y pamrom i mo-HOBOMY BUCBITHB onuH pastounii dpaxkt. Hi, BiH He
3BOJIUTHCS JI0 SIKOICH HOBOI iHbopMarii 1po cymnepewtusi B3aemunn V. B. Crasi-
Ha i Bijfomoro pocitickkoro mucemenuuka M. A. Bysrakosa. [lo-miepime, 1x cro-
CYHKU € JJOCUTDH BiTOMUMU JjIsi KOXKHOI ocBiuenol yoguuu. [lo-apyre, mpeamve-
TOM HaImol po3Binku € KuiBchbka JIyXoBHA akajeMis, a 3 HEIO MUCbMEHHUK
M. A. Bynrakos O6yB 1OB’si3aHUil JIKIe OIOCEPEIKOBAHO, Xod4a. ...DaKT, mpo
AKUNH ATUMETbCST HUXKYe, — JIOJId 30BCIM IHINOI JIFOJUMHUA, — PITHOTO JIsiTbKA,

LHITY imeni M. IT. [Iparomanosa.
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MIChbMEHHHUKA, 0e3M0CepeIHbOr0 BUXoBaHIa akaaeMil Mukoan Isanosuaa Byii-
rakoBa, 0COOUCTICTh SIKOTO 3aJUIIAETHCST ITOKN-III0 HEBIIOMOIO HABITh MACTUTHUM
Oynraxkoso3HasnaM. [l npuknany: Bunana y Mocksi y 1998 porni «Bysrakis-
cbKa eHnukioneisi> B. CokosioBa Hi cJIOBOM He 3rajiye 1po HbOro [32].

Mizx tum, M. I. Bysnrakos — ocoba siBHO HemepecidHa, OCKIJIbKE caMme HoMy,
nicia 3akinuenns Kuisebkol ayxosnol akazgemil (mami — KJIA) y 1891 p. i orpu-
MaBIIN HAIIPABJIEHHS HA BUKJAJIAIBKY JisibHICTG B Tuduiicbky mnpaBociaBny
ceMiHapito, JIOBEJIOCS MaTH CIIPABY 3 NEHETUYHUMHU PEJITTHO-CEKTaHChKUMHU KO-
PEHSMU 1 MEepPIMU MTapOCTKAMH CTAJIIHIZMY, IIPUXOBAHUMHU IIi3HIIIE B OPTOJIO-
kcasphiii icropit BKII(6). Came BiH opHuM 3 meprmx pinryde OpOTHCTOSAB IM,
6e31ocepeIHBO 1 OMMOCEPEIKOBAHO BIIMHYBIIN HA JOJIO0 PEBOJIOMINHAX COpa-
THUKIB fonoro CrajiHa Ta Ha camMoro BOXKJg. ¥ KHE3I 1po oxHoro 3 Hux (Bo-
somuvupa Kenxoseni — asm.), JI.II. Bepist 3rajye mpo «sKOroch BHKJIaada
Bynrakosa», HasuBaroun foro camMoypoM i JiroJuHOHeHaBUCHUKOM [3; ¢. 8]. IIpo
ocoby M. I. Bysrakosa j106pe 3uaB i Cranin; nucemenauxk M. A. Bysrakos 3110-
rajtyBaBcs mpo 1ie. [lum, HameBHO, BiH i TOSICHIOBAB CyIEPEeYIMBO-HEOTHOIHATHE
craByieHHs1 j10 cebe 3 6oky Crasmina. Hemapemno k cBoio ocranuio m'ecy «ba-
TYM» NACbMEHHHUK IPUCBATHUB IOHOCTI BOXK/A 1, CIIO/IIBAEMOCH, CBOEMY JISI/THKO-
Bl — Mukouti IBanoBu4y.

IIpo ocoby M. I. Bysnrakosa Ta cyTTeBi momgpoburti itoro nepedysantst B Tu-
daici Mu goBinamucs cnouarky 3 pykonwucis [28] (ix magas omHOMY 3 aBTODIB
nauol crarti KuiBeokuit Myszeit Onuiel (AnapiiBeskoi) Bysuii), a 3romom —
3 gactkoBo omybsikoBanux O.ra [l. [Ilnponchkumu crorajiB fHoro ogHOKYD-
cuanka Bosognmupa Ierposuua Pubuncskoro (1867-1944) — osiHOrO 3 oCTaH-
Hix npodecopis ta incnekropis KIA [29]. IIpodecop Pubnuncekuii nume npo
Bynrakosa, mo Muxkosa IBanosuu 3aiimas y Tuduticbkiit mpaBociaBHiilt cemi-
Hapil moca/ly TOMIYHUKA IHCIIEKTOPa 1 HQJITO BUMOTJIMBO Ta YKOPCTKO CTABUBCS
7o 11 BuxosanIiB. IIpu mnbomy B.II. Pubumcbkuit mocumaeTbes Ha CBiaTIeHHS
iHmoro csoro omHOKypcHHUKa — apximanapura loannikis (Isana Omexcanmpo-
Brua €dpemosa), korpuii npamosas y Tuduici pasom 3 M. I. Byarakosum Ha
nocaji incmekropa ceminapii [29, c. 178], a 3 BepecHst 1893 p. oTpuMaB BUCOKY
nocajty pekropa KuiBebkol jyxoBroi ceminapii. [14, c. 15]. Hanesno micsis mo-
Bepuenns 3 Tudiicy €dpemos i posnosis Pubuncskomy mpo Bysrakosa, sxmit
3aBJIaB ifoMy 0araTo KJIOMOTY CBOE€IO HeTepIHMoIo npucKimmusicTio. «IIpusene,
GyBaJio, sIKOro-HeOy b Ipy3uHa (CeMiHApHCTa — a6m.) J0 MeHe i Kake: OCb sI
[PUBIB BaM IIbOT'O [BIIEPTOrO JIeJAIFOrY|, pobiTh 3 HUM, IO X04Yere. — Y TOro
o4l ropaTh, TO XK YeKail, 1o Buiijie HenpueMHicTLY [28, ¢. 145].

3rajryroun cBOIX HaOImKIUxX JIpy3iB mo Axkajemil, Pubuncobkuii, mocuia-
ounch Kpim €dpemoBa i Ha IHIMUX OJHOKYPCHUKIB, IiIKpecgioBaB, mo B Tu-
daici M. Bynarakos ny:xe 3minuBcst: «Ha cTymnenTcebkiit jtasi e Oysta 100poty-
[IHA, BeceJsia, Iejpa, JIFOINHA, K& [OTIM BUSIBIIACH HYIHOK, CYyXOH 1 IpaKTH-
qHO10. 3ycTpiul Hammi Oiablle He Maju CIPABAKHBOIO TOBAPUCHKOIO XapaKTe-
py» [29, c. 178].

ITTo x Tpammiaoch 3 Mukomoio IBanosudem B Tudimichbkiit mpaBoctaBHiit
ceminapii? Hesxke BiH 3a3HaB SIKOI'OCh JIyXOBHOIO 3jiamy?! 3Bijku i YoMy 3’siBU-
JIaCh YKOPCTKICTh, CyXiCTh 1 HaMipHA BUMOLJIUBICTh, Ipo siky B. I1. Pubuncbko-
my crosimae loannikiii (I. O. €bpemos)? I womy B Tomy 2k Tudurici ne 3a3naB
nozibuux Meramopdo3 ocranniit (€Edpemos — asm.), 3a ciosamu B. I1. Pubun-
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CHKOTO TICHXIYHO HEBPiBHOBazKeHMUi, BHACTIIOK mepenecenol na III kypci xBo-
pobu, 90JI0BIK, KUl misHiIIe BiporiHO BIaeThest g0 camorybersa [28, ¢. 132]7
A moxe B.II. Pubuncekuil He BpaxoBy€ SIKMXOChb BaXKJIMBUX OOCTaBUH, IIOB’si-
zarux 3 mepebyBanasm M. . Bynrakosa B Twuditici, obcraBuH, mil sIKHX yHUK
Toanuikiii (I. O. €bpemos), zamumusiu ['pysio xo Bepecus 1893 p. [14, c. 15]7
3perTon, MOXKJIMBO IIi MIoTeTHYHI 00CTaBUHHU 30BCIM He 3jaMaju Baadi Mu-
Koy IBamoBMYa, a MPOCTO 3podmyiM HOro OIABIT CepiO3HUM, BiIIOBIIAILHIM,
3JIATHUM JI0 JIyXOBHOI'O TIOJIBU2KHUIITBA, 1 TIOCJIiIOBHOI'O BiJICTOIOBAHHSI 3aKJI1a,le-
wux B KJIA mpusiumnis npodeciitiol JecTi Ta nmpaBoC/IaBHOTO BipOCHOBIgaHHsI?

106 sTKOCH TPOSICHUTH BUIIE3a3HAYECH] ITUTAHHS, 0€3I0CEPETHBO TTOB’ I3aH1
3 nyxoBauMu BituBamu KJIA depe3 cBOIX BUXOBaHINB, MU ITOYAJIN PO3IIYKYBa-
T OLIBIT 3MiCTOBHY iHMOpPMAIIiio o0 obcTapun mepedysanus M. I. Byarakosa
y Tuduici. Ilepmum kunysnock y Biui nobizkue tBepiKentst O.ta 1. I1Libon-
CbKUX, BHUCJIOBJIEHE B IMPpUMITKaxX j10 mmybJiikarii crorais npodecopa B.I1. Pu-
6uHCchbKOro. BoHO Oys10 /18 HAC JyKe IIKAaBUM, 0O 3MICT IX 3I0rajKu Oe3ro-
CepeHbO CTOCYBABCA TpeIMeTa HAIol BJIACHOI 3arfikaBieHocTi. Bonm muca-
M, «...mo came mix dac Bukiaaganaa M. 1. Bymrakosa B Tudmicekiit myxos-
Hiit ceminapii napuancs . JIxxyramsimni (Crauin), stkoro Gy0 BUTHAHO 3BiaTH
1899 p.» [29, c. 180]. {Ix6u 1e TBepIKeHHs GyI10 miAKpilIeHe xoua 6 XPOHOIIO-
riuanMu 36iraMu, BOHO 0, 6€3 CyMHIBY, CTAJIO MOMITHUM BHECKOM Yy OYJITaKOBO-
3HABCTBO.

Aute Bimomo, o Crautin Berynus g0 Tuditichkol ceminapil y Bepecti 1894 p.
Ko x mokunys I'pysito M. I. Bysnrakos, npunaiimui 1T HAC, JIMIIAETHCS HE-
BimomuM i ceorozmi. ¥ Hamiiit myGuikamnii, nigrorosseniit y 2000 pori [21], mu
Bijobpaszuin cyrresi daxtu nepebyBanns M. I Bynrakosa B Tuduiici kinma
1893 p. Mu Buepire ony6uikyBamm y TekcTi Haioi crarti ftoro smcr 3 Tuduaicy
no Kuesa M. Ilerpoy, maroBanuit 16 kBiTHa 1894 p. Tobro MoxKHA 3 BIeB-
HEHICTIO CTBEpJKyBaTH, 10 BiH mepebysaB y Tudsici mporsarom cigreBoro i
KBiTHEBOTO TpuMecTpiB 1894 p. IIpoTe 4m 3HAXOAMBCS BiH TaM IIiCJIsI BEPECHSI!
Jane muTaHHS He Ma€ OJHO3HAYHOI Biamosimi. flcHocTi He M01a€ HaBITHL Ta 00-
CTaBUHA, 1[0 B OCTaHHBOMY (rpyauesomy) Homepi 1894 p. «JlyxoBHOro BicHuka
I'pysumncokoro Exzapxarys posmimena crartss M. I. Byarakosa mpo 6amrmsm.
Tpeba mykaru TouHy mary #oro Bix'i3ay 3 Tuduicy.

IIpore, sikimo HaBiTh xKuTTeBl MUIsixu 1. B. Crasina i M. 1. Bysrakosa ne
[IEPETUHAJIICH Y CYTO (DI3MIHOMY YaCOIPOCTOPi, BOHU, O€3 CyMHIBY, [I€pETHY-
JINCh y XpoHOTOM Meradiznunux peasiit. Boxkb He Mir He 3HATH PO HEIO-
XUTHO MOCJIJIOBHOTO, YKOPCTKOTO i BUMOTJINBOT'O BUKJIA/Iada-BUXOBATEsA Byii-
rakoBsa. B 10HOCTI BiH HAIIEBHO OBiaBCS PO HHOTO Ta WOTO KPYTy BAATY Bis
CBOIX KOJIEr-CEeMIiHAPHUCTIB, SKi HEOIHOPA30BO Yy CBOIX 3agBax Ex3apxy ['pysail
BUMAraJji Horo 3slibHenHs [17, c¢. 174], y 3plmomy » Bini flomy He Moriam He
HaraJIaTu IHOT0 B2Ke IMUTOBaHI HaMu JokyMeHTH, migrorosjeni JI.II. Bepieo
y 1937 p. i upucssueni pesoJtoniitniit misbrocri Jlago Kenxosesni [3] — copa-
tauka Crasiina i Apyra 3 IUTHHCTBA, IIe 3 YaciB HaBYaHHs 000X y [opificbkomy
JYXOBHOMY YUWJIUII], — SIKU BCTYIUB JI0 ceMiHapil y ToMmy 2k 1891 p., Ko Tam
3’siuBcs BuntycKHUK KJIA M. I. Byarakos. IIpo Bigsocunu ocranuboro 3 Jlamo
Kernxosesti, Ta mpo moB’sizaHi 3 1M IIO/il PO3IIOBIMO TPOXU IIi3HIIIIE.

Buxosuu 3 mpuiymeHHsi, Mo ocTanus n’eca nuchbMennnka M. A. Bynrako-
Ba, nmpucBsiena He jumie Crasiny, a HacaMmIepe. 1 Horo MIsiIbKOBI, MU BAPIIITUIN



132 I Boaumnka, B. /lopowxesuy, H. Moszosa

3BEPHYTHCS 110 Hel, CIOMIBAIOYNCH 3HAUTH B JIOKYMEHTAaX, 3 sIKUMU IIPAIIOBAB
M. A. Bysnrakos, indopmariito mpo obcraButu nepedyBanHs B I'py3il iioro pigHo-
ro fsgabKa. He nymaemo, 1106 3BepHYBIIHCH 710 «BaTyMmys», Mu Jlajaeko Bi g
BiJT FOJTOBHOT TE€MU HAIIOTO JIOCTIIZKEHHST — YAaCOMPOCTOPY JTyXOBHOI BILTHBOBO-
cti KuiBcbkol akamemii, 11 BIuiuBiB Ha mepebir icTOPUYIHUX MO, HA JIIOACHKI
noJii, Ha goJo BysarakoBa — muchbMeHHUKA.

«Barym» — ocranns m’eca M. A. Byirakosa, sika Oyja HalmcaHa IIPOTS-
rom tepiol ojoBuau 1939 p. ITlo10 MOTHBIB HamMCaHHS TBOPY icHye Garato
CyIEPEYOK 1 KapJMHAJIBHO MPOTUICKHUX JyMOK, JIO AKUX JIaB IIPUBiJ caM aB-
Top. e y 1930 p. B mucti 10 «Ypsay CPCP» Bix 28 6epesnst Bin nucas: «Iliciis
TOrO, K yci Mol TBOpu Oysim 3a00pOHEHI, cepen; 6AraTbOX T'POMAJIAH, SKUM s
BiJIOMUIT IK MUChbMEHHUK, TTOYAJIN JyHATH IOJIOCU, SIKi PaJaTh MEHi O/THE 1 TeXK:
«CrBOPUTH KOMYHICTUYHY IT'€Cy», & KpiM TOrO, 3BepHyTUCH 10 ¥ psiay CPCP
3 JINCTOM PO3KAasIHHSI, 10 MICTUTH B cOOl BiZIMOBY Bij MOIX IOTJISIIiB, BUCJIOB-
JICHIX MHOIO y JITEPATYPHUX TBOPAX, i MEPEKOHAHHS y TOMY, IO BijTenep s
Oy/y TPAIOBATH sIK MPUXMJIBHUK OO 11l KOMyHI3MY, sIK MICbMEHHUK — I10-
nyTHUK. . .. [liel mopaau s #He gorpumascs ... Crpob CTBOPUTH KOMYHICTHIHY
mM'ecy s HABITHL HE HaMaraBCs POOUTH, 3HAIOUN HAIIEPE]I, IO TaKa I1'€ca y Me-
He He Buiine» [27, c. 443-444]. Tpeba 3aznaunrtn, mo M. A. Bysrakos aificHo
BiJIMOBJISIB IPOXaHHSAM BJIATHUCA JIO KOMYHICTUYIHOI TEMAaTHKU, 30KpEMa, BiIXu-
JB nponosuiio Harucaru w'ecy g0 20-1 piununi 2KoBTHEBOI peBosonii [1us.:
16, c. 418]. I panTom mounHAE AKTMBHO HPALIOBATH HAJ[ II'€COI0 IPO MOYATOK
peBoJttoniiinol aistibHOocTi CTaJiHa. . .

IIpozopa po3bixKHICTE MiXK JIeKJIapyBaHHAMU 1 JIHCHUMU CIpaBaMH Jia-
Jia TIPUBIJ, JESKUM OyJITAKOBO3HABIISIM 3aCyMHIBATHUCH y IIUPOCTI JIpaMaTyp-
ra, y moC/JifoBHOCTI #ioro moeemiaku. Tak, y kuu3i B.I. Bobopukina rosopu-
Thest, MO HamucaHHsMm «bBarymy» M. A. BysrakoB mimos «mporu cBOel cOBi-
cri» [4, c. 198]. B iHmmMX CTBEpIKYyETHCA, O BiH HAIUCAB «BiPHOIIIAHCHKY
'ecy», y sIKiil Bifi «ByJIrakoBChKOI MAfiCTEPHOCT] He 3aJMIMUIoCh Hivoro» [30,
c. 58]. Hpyxuna x) nucbmennnka Osena CepriiBaa Bysrakosa, Ha o4ax siKOi
CTBOPIOBaBCs «bBaTyMy», 0JIHOZHAYHO BUCJOBUJIA CBOE CTABJIECHHS JIO TBOPY i
gac 3ycrpidi 3 M. O. Uymakosoo y 1969p.: «4 crpamenno Jobso 1mo m'e-
cy» [35, c. 204]. CrBopus iT cupasxkHiil 1 6eskomupomicauit Maiicrep — «6e3-
cTpaimHuii — 3aBXK1M 1 B ychoMy ... Brinena cosicts. Henminkymnaa wects» [12,
c. 282].

Aximo B3TH 70 yBaru BUINEHABEIEH! TBEPXKEHHsI OJINBbKUX CYyJaCHUKIB
MaiicTpa, BUXOOUTD, IO PO30iKHOCTI MiXK HOro 3asgBaMu 1 clipaBaMU HEMAE.
Auste Toni «BaTymM» He € «KOMYHICTHYHOIO II'€COIO», siKa Ipociasise CraJiHa.
Heit npuHIUIOBUl BICHOBOK OIIOCEPEIKOBAHO IiITBEPIKYETHCH Y PO3AyMax
M. ITerposcbkoro [mus.: 25| A. Hinosa [mus.: 23], O. CmensHcbkoro [mus.: 30].
Cupagi, sIKITO yBaXKHO mpoyuTaTu «barymMs 1 B3siTu 70 yBaru, CKaximo, mpo-
MoBy Pekropa y mepmomy akTi m'ecn npu Bukmodensi V. B. Txkyramsini 3 ce-
minapil (1899 p.), BaxKKo He 06AYNUTH, 1[0 BOHA IPUHIMIIOBO 3BUHYBadye HOro
SIK 3JIOYWHIIS, KOTPHUii «cie 371e cem’st y Hamiii xkpaini» |7, c¢. 230]. «IToxmypa
i mo-cBOEMY cmThbHA, TTPOMOBa PekTopa ceminapii, skuili HakIuKae Kapy locmo-
JTHIO Ha, TOJIOBY MOJIOJIOTO BiJICTYITHUKA, Oysa, — 3a3Hadae A. HiHoB, — HameBHO,
€JIMHUM y CBOEMY POJIi 3puHyBadeHHsM CTasiiHa B paJsHCHKIl ApaMaTypril KiH-
g 30-X POKIB, sike BiIMOBJISLIIO imel 6e3002KKsT Ta MOJITUIHOTO OyHTY MPOTH
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icHyI09O1 Bamm y Gy/b-sIKOMY MOPAJBHOMY BUTIpaBAaHHi» [23, c. 46].

Buxomurs Crasin juiss M. A. BysirakoBa BUCTYIIa€ CBOEPIIHUM aHTUIEPO-
€M, KpUMIHAJIbHUM [I€PCOHAXKEM, KOTPUil Mir 6u OyTu mikaBuM BysrakoBy Jiv-
e sik CATUPUKY, IKOW PO HBOIO MOXKHa, Oys0 mmcatu catupudnuii TBip. To
2K WOro 3BepHEHHS 0 TeMH IOHOCTI BOXKJf, OKPIM BrK€ 3TaJIaHuX 1JTI030PHUX
«BIPHOMI/IIAHCHKUX» MOTHUBIB, IOBUHHO MATH ¥ iHIITY, CIIPaBXKHIO, MOTHUBAIIO.
Hero, six Mu B2Ke 3a3Ha4a/m, MOXKe OYTH BUKJIIOYHO IIaM’SITh IIPO CBOT'O JsIb-
Ka — JIOCTOWHY, BUCOKOOCBIU€HY, IPUHIIUIIOBY 1 IIUPY JIFOIUHY.

Maiizke Bci OyJIraKOBO3HABIN 1 JI0 CHOTO/HI OJHOCTANHO CTBEPIZKYIOTh, IO
mpu HanucanHi «Batymys M. A. BynrakoB kopucTyBaBcs JIHIe OTHAM JIZKEpe-
JIOM — PO3KIITHO BUIAHOIO KHUToI0 «bBarymchka memonctpariia 1902 poky» —
36ipHUKOM JIOKYMEHTIB TIPO ITI0 110/1i10, criorajiamu ipo Crasina. Kuaura 6yra Bu-
nara y 1937 p. Hapreunasom npu IIK BKII(6) 3 nepeamororo JI. IT. Bepil [2].
MaiicTep ompallioBaB ITI0 KHUTY Jy2Ke PETeJbHO, IMPO IO CBiIYaTh YHUCEJbHI
MIOMITKH B €K3eMILISIpi, KOTPUl HaJieKaB ioMy. JJomoMiXKHIM JI2KepesioM TTpu
poboti Hax «Barymoms Oyra amomorernyana Oiorpadist Crasina, SKy Hammcas
Aunpi Bap6ioc i sika Buitnuia y 1936 p. pociiicekoro mMoBoro. [1].

Heobxifmo Takox migKpecuTH, 1Mo BUNTEHA3BaHNN 30ipHUK, HAIPYKOBa-
HUl B OiIifiHNX OpraHax, MICTUTh BUKPHBJIEHHSI icTOpU4YHOI jificaocTti. Cra-
JIiH Hacupapii He OyB KepiBHHKOM Barymchkoi gemoncrparii. IIpo me moxna
TI3HATHUCH 13 30eperkeHol B mapTitHuX apxiBax «lomosiai BaTrymcbkoro komire-
ty PCIAPII» 1II 313y PCIAPII, akwuit Bigdyscs y 1903 p. B ubomy onucyernest
mistnpHicTh KoMiTeTy 3a mepion 1900-1902 pp. i #ioro BB Ha Barymchkuii
cTpaiik pobiTaukiB y 1902 p., skuit OyB opranizoBaHumii, Sk CKa3aHO B JOMOBIi/I,
nepeloBuMu pobiTHHKaMu. KepiBHUKaMu K KOMITETY HACIpaBIi OyJId COIAJI-
nemokpatu [. Pamimsini Ta H. Uxeinge, aki xkunn B Barywi i3 cepeman 1890-x
pp. [mus.: 15]. [IpaBum BusBUBCS aMepUKAHChbKUIA joctiauk G6iorpadii Crasi-
na P. Takep, skuit nucas npo Barymcekuit crpaiik: «Hu rpas sKy-HeOYIb POJIb
JKyramsini y 1ux mofisx JHUMaeThes HeBimoMmumy [33, ¢. 94]. Came Tomy Mo-
JKHa, BU3HAYWTHU JIPYry @ HACTyIHI KapTuHu <«bBaTymys sk Jmie XyIqo:KHIN
onuc odiniitno npeacraienol icropil (xo4a it Maiicrepuuii), 60 aBTOp MOBU-
HeH OYB CTPOTo JH0JEPKYBATHCH OMIIiiiHol Bepcil, BCymeped TBOPUNM HaMipaM.
Yu sporagysascss M. A. Bysirakos npo Te, mo odimniiini Mmarepiaiu daibcudi-
KYIOTh Jiificay kapruny nogmii? Jlymaerbces, mo Tak. Ha e mocepennbo Moxke
BKasyBaTu npupoja obpasy Crasina, 3060parKeHoro B nepiiiii ciieni m’ecu. Csij-
YeHHsIM TX OPeXJIMBOCTI JIs MMChbMEHHUKA, OyJI0 i Te, 1Mo IoBijeitHmnit 30ipHUK
«Barymcnpka memonctparisa 1902 poxkys» 3a pemaxiiero JI. IT. Bepil 3 61arocso-
Bernnsi Crajina OyB OiucKyde Bujanuit, a 1m'eca BynarakoBa mpo Ti K momil
KATEeroOpuIHO 3a00pOHEHA.

3Ha4U PO I'PYHTOBHO-IIPUCKIILINBE cTaBjieHHst MaiicTpa 10 mepIinojpKe-
peJi, Ha SKuX 6a3yBaJIiCh HOro IMONepeIHi TBOPU, MU IIPOJIOBXKYBaJIU IOCUIbHI
cpobu PO3MIyKATH XOU sIKiCh HATSKA HA ICHYBaHHS JIOIATKOBUX BUTOKIB «Ba-
Tymy». Ha pajicts nie Basocs. Y crarti A. Hinosa, skuit MaB 3MOr'y mparoBa-
TU 3 MEPITOI0 TOPHOBOIO PEIAKITIEIO TT'€CH Ta JIOMOMIdKHUMHI MaTepiaJaMu, MU
quTaeMo: «CepeJl pealibHUX JIKepeJT s TepIol KAPTUHU B 3alKcax bysraxko-
Ba HasBaHi: «/lyxoBuuit Bicnuk ['pysmncbkoro Exzapxarys 3a 1894-1897 pp.
Moro ocobmusy ysary npusepmyma NeNe.1, 23 i 24 3a 1894 p. i Ne24 3a 1897 p.
... BynrakoBy Oyna Bimoma TaKOXK CTATTS «3i CIOraiB POCICHKOrO BUNTEJIST
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rpysuncekol IIpasociasuol dyxosuol ceminapil 8 Tuduici» (1907) — sraaka
npo Hel 30epersiacst B YOPHOBHUX 3ammucax Jjio mecn» |23, c¢. 45-46].

Byso 3pobiiene npuiyinenss, o B Ha3BaHUX HOMepax «JlyxoBHoro Bi-
CHUKA. . . » MAIOTh MicTuTuCh Marepiaau ve npo Cramina (3 Bepecus 1894 p. Bin
craB ygHeM ceMminapii i y «Bicaukys 3a 1894 p. Bin mir dirypysaTu Juime y 3a-
raJIbHOMY CIIMCKY [EPIIOKYPCHUKIB), & OLIbII iKaBa it IUCbMeHHUKa iHdop-
Mallis, IIIOCh PO Horo Asiabka. Mu momasm: sk6u M. A. Bysirakos nepeBazkHO
IIIKABUBCS JIUIIIE JTOJIEI0 BOXK IS, BiH 3BepHYBCs O J10 HOMepiB 3a 1899-1900 pp.,
60 caMe B HUX MaJjii MICTUTHUCH BIJIOMOCTI PO OOCTABUHU HOr0 BUKJIFOUEHHSI
3 ceMiHapil, Taki BayKJIMBI JJIs HAIMCAHHS TIEPINOl KapTuau. Ajie X Hemae ce-
pen srajanux A. HinoBum peanbHUX JKepes 70 Hel ... XTo XK TOJi HACIpaBIi
nikaBuB M. A. Bysirakoa? 3Bu4aiiHo, 110 IsIbKO, 1 JIUIIE BiH.

Xota HaM i He BJAJIOCH MOKHU-T10 3HaiiTu Ne 24 3a 1897 p., Ta 3rajiany BuUIie
cTaTTio, aje Bci 24 Homepu 3a 1894 p., mo pedi, 3 mgomarkamMu J0 OMIIiHIX
qactuH BicHuka, mu posmrykasau. 1 y Bcix Bigmidermx nucbMeHHUKOM Ne Ne 1,
23 i 24 (cnapenuii HOMep) € Jmie Hebailmy»Ki Ui HBOrO OCOBGUCTO BiTOMO-
cti mpo M. 1. Bysrakosa i HaBiTh agmpkoBa mpomMoBa B Twuditichbkiit cemimapil
PO BOPOXKICTh Jiep:kaBi banTtu3my. B HoMepax, sKi, HauebTo, OOMUHYJIA yBara
Maiicrpa, (Ne. 5, 10, 15) Mu 3Hainm HeabusKy iHMOPMAIIIIO IIPO 3aBOPYIIIEHHST
yuuiB Tuduticbkol ceminapii 1-4 rpymaust 1893 poky.

B:xe ma mepmmx cropinkax «JlyxoBHOro BicHHKA...» Ne15 3HAXOIUTHCS
KODPOTKE IOBIZIOMJIEHHS IIPO 3aK0JI0T yuHiB [34, c. 1| nix kepiBuumrsom M. ITxa-
kast i B.Kemnxoseni (14, ¢. 7|, npo pimennss Cs. Cunomy 3akpuTn cemiHADIIO
1o 1 Bepecust 1894 poxy, npo BukiroueHHst 87 i1 BuxosaHuis (y comcky diry-
pye 1 Bxke 3ragysanuii Jlago Kerxosesi) 6e3 nmpasa MOHOBJIEHHS B CeMiHAPisAX
Pocii [34, c. 1-3]. IIpaBua, depes nispoky Cs. CunOz IOM’SKIINUB MONEDETHE
pilmeHHs 1 paHinTe BUKJIIOYEHI CEeMIHAPUCTH, OTPUMAJIH JIO3BiT HA MIPOJOBIKE-
HHSI HABYAHHSA B iHmux, KpiMm Tudiicbkoi, ceminapisx KuiBcbKoro mayxoBHO-
HABYAJILHOI'O OKPYTY.

[o6u ynTau Map ysBaeHHs Tpo KUIBCbKMIT JyXOBHO-HABYAJIBHUIT OKPYT,
ouosrioBanuit KJIA, naBememo sesiky indopmariiio mpo Hel, a moTiM HOBEpHEe-
MOCH JI0 HAIIIOTO CIOXKETY.

IcnyBasia KuiBcbka nyxoBra akagemis (crnagkoemurg MoruisiHKn) BigHO-
cHO HeZI0BrO, 3 1819 mo 1920 p., To6TO Tpoxm HibIe cTa POKiB. Y I1i Yach Ipo-
crip 1T aJgMiHICTPATHBHO-TEPUTOPIATIBHOI BJIAIM IEPIOAUYHO 3MIHIOBABCH, aJie
B IiytoMy OyB HaJa3BUYAHO BesmKuM. Tak, 3a akagemigamm CraryTom 1808—
1814 pp. mo KuiBcbKoro JyXoBHO-HABYAIHLHOTO OKPYTY, Ha 901 sKOTo 3 1819 p.
crosiia KJIA, okpim Kuischkol enapxii y nei Bxoguian Yepuirisebka, Bommn-
coKa, [lominbenka, [lonraBebka, KaTepunociasebka, XapKiBcbKa, XepCOHCHKA,
Taspiiiceka, /lonckka, Boporesbka, Kypcebka, OpJioBecbka, Mincbka, Bapias-
cpka 1 Kumuniscpka. 3 1835 p. /10 cKJIa1y OKPYTY BXOJSTDH TaKOXK 1'py3nHCHKa,
Ta ImepernHCcbKa emapxil. €napxiajpHi cepesiHi 1yXOBHO-HABYAIbHI 3aKIa 0 —
ceMminapil (B KOxkHIN enapxii icHyBasia Jmimie ojHa ceminapis) Oyiaum Gesnoce-
pexnubo mianopsakoBani KJIA B ycix ramyssx iX *KUTTEMIsIIBHOCTI — aJIMiHi-
CTPaTHUBHIil, ToCrIogapChKiit, HaBYAIbHIl, HayKOBiit, KaapoBsiit Tomo. /lyxoBme,
HayKOBe, EKOHOMIYHE YKUTTsI [I0YATKOBUX HABYAJIBHUX 3aKJIAJIB B €MapXisix —
JYXOBHUX YUMJIAIIAX — TAKOXK OyJIO MAIOPSIKOBaHE aKaJeMil, ajie BXKe OIo-
CEpEeIKOBAHO, Yepe3 ceMiHapili.

Came 1o KuiBcbkol ceminapil 3BepTaeThCsl TOJOBHUN 3aBOPYITHUK TUJTi-
cbKnX 3aBopyriens i apyr W. B. Txyramsimi Jlago Kemxosesi 3 mpoxanmsM
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zapaxysaru iioro no III kmacy 3 Bepecuss 1894 p. 3ramaemo, mo 11 peKTOpoM
y neit gac 6y loannikiit (€dpemos), Bxke sragysannii ogHokypcauk M. I. Bys-
rakoBa, iioro Kosiera 1o Tudsiicy, korpumii 3 1892 p. y sikocri iHCIIeKTOpa, 106pe
3HaB MOJIOJOTO I'PY3WHCHKOTO 3aBOPYITHIKA, ajle JO3BOJINB HOMY CTaTH ceMiHa-
puctom y Kuesi. lIpaBma, 3romom i moxkaakysas. ... lIpore, e B:ke Tema iHImol
HayKOBOTO JIOCJIIJIKEHHS.

IIpo 6inbm getasnbHi oApOOHUIN 3aBopymrenb y Tudiici Ta immi obcrta-
BuHHU niepeGyBants Jlago Kenxoseni B Kuiscebkiit ceminapii (TyT BiH mepe:kus
Taky K JyXoBHy Kpu3y, gk i M. L. Bynrakos y Tudurici) Mu gisuanuce 3 mepe-
Buganoro B 1969 p. 36ipauka mokymenTis i marepianis «JIamo Kernxosesis[19,
c. 177-178]. B upoMy TakoxK ii/1eThCsl IIPO CTPANK CeMIHAPHUCTIB HA [IOYATKY I'DY-
nust 1893 p., IpUBOANTHCS MOBHUN TEKCT 3asiBU YUHIB ceMiHapii ek3apxy ['pysii
Bix 1 rpymas 1893 p.,[nus.: 19, c¢. 174-175], me BOHM BIIEPTO BUMAralOTh: «BHA-
CJIiJIOK HEMOXKJIMBOCTI BUITPABUTH XapaKTep BUNTENs DysrakoBa Ta JBOX. ...
HaragaadiB [lokpoBebkoro ta IBanosa, Burnatu ix. Bonu g nHac € 3nmuMu an-
reqamu, Medicrodensvu, siki miaOypOIOTH HAITY COBICTD 1 IYIIy MOCTITHIMEI
TJIOIATHUMHY JTafiKaMu 1 HeOOI'PYHTOBAHMMH 1HKBI3UTOPCHKUMU PO3CJIi Ty BaH-
Hamm» [19, c¢. 174].

PosmipkoByroun HaJi IpUYrHAME CTPaiiKy BuxoBaHIliB TudJicbKol mpaBo-
CJIABHOI JIyXOBHOI ceMiHapil, MU He MOXKEMO MTOBHICTIO TOTOJUTHUCH 3 11 MOsICHE-
HHSIMH, PO3MIIIIEHNME Y 30ipHUKY MOKYMEHTIB 1 MaTepiajiB, IPUCBIIEHUX Pe-
Boutoniituiit gismsaocti Jlano Kenxosesi [19, ¢. 174-189]. Mu ne 3roaui Takox
i 3 TuM, K 300pazkeHuit y mMpoMy 30ipHUKY Iepedir moiil, OCKIIbKU B HHOMY
BHCBITJIIOIOTHCSA JIUIIIE JesKi, yIepe KeHo BiniopaHi 3HAYHO Mi3Hie, HACTIIKI
PeaIbHIX, PETEeIbHO 3aMOBYYBAHIX IPUYHMH. IX M i CIIPOGYEMO PO3IISIHYTH,
3aCHOBYIOUNCH HA e HEBIIOMUX JOKYMEHTAaX.

Taxk, manepenomni crpaiiky, a came 30 sucromaga 1893 p. ceminapisa cBs-
TKyBaJia CBOE XpaMoOBe CBATO — JieHb nam’siti Cesiroro Anocrosia Anjpis [ep-
BozBanoro. Ha ceati 6y Exzapx ['pya3ii, imrmi apxiepei. B ceminapcebkiii iepksi
cayzk0a IpoJIoBXKyBaJIach BCio Hid [13, ¢. 24-25]. IIle BeHb, nepes IpUGY TTSIM
Exzapxa ['pysii mo ceminapii, B i1 akroBiit 3aai BigOyBcs Piunuit ypouumcruii
aKT, 7ie Oy MPUCYTHIMHU BCl KEPIBHUKM, BUKJ/IAa4l, CEMIHAPUCTH, i HA SKOMY
3 BEJIMKOIO, BKe 3Ta/IyBaHOIO TPOMOBOIO «banTtu3Mm sik cexkrTa, HeOe3medHa I/Ist
nepxkasu» BucTynus Mukosa Isanosna Bysarakos [10]. Bin i panime suctynas
3 anaJyiorivaux nutanb y Tuditici. [Ipukmagom moxke cayryBaTu BifgHaiigeHa
vamu crarta «IlopiBasaus gyynec Icyca Xpucra Ta iioro Anocrosis 3 uyje-
camu Crapo3aBiTHUMI», SKa sABJsIa COO0I OOpOOJEHUN jyist OIMyOJIiKyBaHHS
eckiz Geciz 3 mosokanamu-cybornukamu [9]. € mizcraBu cTBEpIKYBATH, IO
Muxaiisio Bysirakos, npaiorodn HaJ, «baryMom», He 3HAMIIOB 1iel craTTi. Ajte
0e3yMOBHO BiH YNTaB TEKCT MpOMOBU «bBamTusm sk cexTa...». [IpomoBa, sk
BUSIBUJIOCH, V¥ 6araTh0oX CMHCJIaX CTaJIa CIIPABYKHBOIO MTOJIEI0 HA CBSITI.

JizHaBmuch mpo 1110 TO/Iif0, MU OyMaJfu, a uu He mir Buctyn M. 1. Bysra-
KOBa CJIyryBaTh 0€3mOCepeIHIM IPUBOIOM IS IOYATKY 3aBOPYIIEHHS CEMiHA-
pucrtiB 1 rpymaus 1893 p.? Xoda 6 ToMy, 1110 OO0 BUTOJIOCUB TAKUN «HEITPUEM-
HUy JJI yIHIB ceMiHapil Buk/agad ¢dpigocodpCchbKux Ta pestirie3HaBInx JIUCIN-
wiiH, sik M. I. Bysnrakos. [lo peui, B. I1. Pubusachkuii moMunBest y CBOIX crora-
JIaX, Ha3BABINK HOro MOMiYHMKOM iHCIeKTopa ceMinapii [28, c. 145]. MoxJuso,
BiH CyTO JOOPOBLIBHO JOTIOMAra€ CBOEMY OIHOKYPCHUKOBI apximammpury lo-
antikiio (€dpemMoBy) HiATpPUMyBaTU JUCHUIUIHY Y IyXOBHOMY HABYAJIBLHOMY
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3akaadi. Ha KopucTh cKa3zaHOro CBimawmTh # Te, mo micas Bix'i3ay loammikis
1o Kuesa, Byarako He cTaB iHCIEKTOpPOM; Ha IO TOCaay OyB NMpU3HAMEHUIH
iepomanax I'epmoren, skuit obifimMas i1 10 3aKpuTTsa ceMinapii y rpyaui 1893 p.
MokHa TPUIYCTUTU TAKOXK, IO B PE3Yy/IbTaTi 3aBOpPYIIEHb HA TOCAJi iHCITe-
KTOpa 3aKOHOMIPHO CcTaB rpy3wH. HuM 1iIkoM Mir OyTu MIoiHO TOCTPUZKEHUI
Yy MOHAXHU aBTOPUTETHUI KH#A3b Jlapun AbGammaze, skuil upuiiuas iM’s AHTO-
His 1 mizHime «Oyayun incnekTopoM Tudurichbkol gyXoBHOT ceMiHapil, BUK/IIOUAB
3 Hel crygenTa-pesostonionepa 1. B. Jlkyramsimi» [18, c. 8]. Ho peui, ocran-
Hilf 3aKiHYMB cBill kuTTeBUil muax y Kuesi 1942 p. y Bucokomy cani cxmmo-
apxiermickora. HMoro mormma il CLOrogHI 3HAXOIUTLCS HA TepuTopil Bamxkuix
neuep Kueso-Ileuepcokoi JlaBpu. MoxinBo, mo obom nHactynHukam Edpemo-
Ba, M. I. Byarakos Tako: jormomMaraB MiITPUMyBATH HAJEKHUN TIOPSIIOK CEPET
ceminapuctiB. Tomy came na M. I. Bysnrakosa i BumjiecHy/much ix emorril it gac
ioro JomnoBizi mpo GanTusm. Ajie cripaBa, HAIIEBHO, He Jidlle y (paKTi BUCTYILY
HEHaBUCHOT'O BUKJIaJada, a ! B yIepeJKeHil TOTOBHOCTI CJIyXadiB CHPUIHATH
CyTO TEOPETUYHY MIPOMOBY 3 IIEBHOIO, OMHO3HAYHOIO Ha Hel peakiiien. Cipody-
€MO 3BEPHYTHUCH JIO 3MICTY IIPOMOBH 3 BPaXyBaHHSM COIIAJIHLHO-TIOJIITUYHOTO 1
i/Teo10riTHOrNO KOHTEKCTY TorodacHoil I'pysii, sk wacturm Pociiicbkoil iMmepii.

Kinenp XIX — mouaroxk XX cT. OyB CK/IaJHUM IEPiOJOM y PO3BUTKY
COIIaIbHO-TTOJITUYHUX 1 pestiriiHo-disocodchkux Tediit B €ppori. [locsimnos-
uukn Himmre i Bosomuvupa CoutoBitoBa, «3aximHukn» 1 «cioB’sHOMDIIM> B ce-
PemOBHIII pOCiiichbKOl iHTesiren i Oyan 60opIsgMu 3a HAIIOHAJIBLHY CAMOCBIIO-
MicTb. .. OpHa #f Ta X 0COOUCTICTH MOIJIA PO3IVISJIATUCH K T€POIKO-TIATPIio-
TUYHa — 31 CTOPOHU JieprkKaBH, 1 AK peakliiiHa — 3 IIO3UIlill HAaI[lOHAJIBHO-
HaJIAIITOBAHUX IIPOIIAPKIB HaceJeHHs MpoBiHIiit Pociiicbkol iMmepil.

Y HaIIoMy HayKOBOMY IOIITYKY MU HAMATAJUCh BiIIIYKATH iCTOPUIHY 110~
CTOBIpHICTH (DAKTIB Ta MOiil, siki O HAM JIOTIOMOTJIA PO3KPUTH OCODJIMBY JIIO/I-
CbKY AKTHUBHICTH Ta sICKPABICTb €IIOXU, & TAKOXK CKJIAIHUN B3a€MO3B’A30K JIy-
XOBHHUX OCOOHCTOCTEIA.

Ax Bimomo, 1o ckaany Pociiicekol iMmepil 3riguo 3 manidpecrom OJiekcan-
npa I I'pysist mobposiibHO yeiitia y 1801 p., ybe3neduBinucs 3arapOaHHst CyJI-
Tauchkol Typedunnn i maxcekoi [lepcii. ¥V Hiit Oysta BcTaHOB/IEHA Ta 2K CHCTEMA,
yIpaBJIiHHs, gK 1 B inmux rydepriax Pocii. B ynmpapsinni mogaan mamyBaT cu-
JIOBi BificbKOBI MeTO/H, MiJTOBOICTBO i odilliiiHe CIiJIKyBaHHS 3aIPOBAIKYBa-
JIOCh BUKJIIOYHO POCIfICBKOI0 MOBOIO. Byb-siKi cepito3Hi MpOosBH HAITIOHAJILHOL
caMOOYTHOCTI TIepeciIilyBanch. Bee 1ie He MOIJIO He TIPU3BECTH JI0 3aKOHOMIp-
HOT'O 3arOCTPEHHS HAITIOHAJIBLHOT'O MMATAHHS 1 CIJIECKY HAITIOHAJIBLHOI CAMOCBIIIO-
MOCTI KOPIHHOTO HaceseHHs . HamioHaIbHi IpoIec CympoBO/IzKYBAJIICH 17€0J10-
Ti9IHOI0 KOH(MDPOHTAITIEIO 3 OMIIITHOO Iep>KAaBHOIO PeJIirieio y ¢hopmi 3amo3nteH-
Hsl 1 PO3IIOBCIOIXKEHHSI 1J1eli ;IyX060pCTBa, MOJIOKAHCTBA, OalTu3My. 3pO3yMLIIo,
0 Haiib/IarogaTHIMUA rPYHT TX i JICIIYITHOTO HOITUPEHHSI CKIAIAIN CAME «MO-
JIOZII €PETUKU», TMPABOCIABHUN IyX SKuX OyB Ile HE 3arapTOBAHWM, a PiBEHb
OCBIY€HOCTI BKe JO3BOJISIB 3PO3YMITH OJIM3BKICTH IMPOTECTAHTCHKOI i71e010ril
HaIiOHAJIFHUM iHTepecaM. JIo Toro K mpoTecTaHTChKa i71e0/I0rist cupuiiMaiach
«MOJIOZIMMU €PETUKAMU» SIK IPOTUBATA 1 BEJIMKOIEPXKABHOMY IIOBIHI3MOBI (Bi-
CTOMOBaJIa HAIlOHAJBHI 171e7), 1 YKOPCTKIiNt persmaMeHTaIil BHYTPIIIHBOTO CeMi-
HAPCHKOTO JKUTTs (BIAIOBiaIa 0COOUCTUM IHTEpECAM MOJIOAUX CEMIHAPUCTIB).
Bona nmommproBasiacek cupasi miacmyHo: s 6aratbox 11 afenTis Oyia xapa-
KTEePHOIO 0e3CyMHIBHO TPHUBKA [PUB SI3aHICTH 0 OPTOIOKCAJIHHOIO XPUCTHSH-



Memadgisura dyxoeroi enausosocmi Kuiscoroi dyrosnoi axademii 137

CTBa i, pa3oM 3 THUM, — OJHO3HAYHO KPUTHUYHE JIO HHOT'O CTABJIEHHS 3 ITO3UIIIT
[IPOTECTAHTU3MY.

Tak umm ke Mir 36enTekuTtn ounx ceminapucris M. I. Bysnrakos, Bumora
YCYHEHHsI sIKOT'O TIOBTOPIOETHCsT B «3astBi yuHiB TudrichbKol 1yXoBHOT ceMmiHapil
ex3apxy I'pysii, 1 rpyaus 1893 p.»[17, ¢. 174-175] ax Tpuui?! Ak BumycKHUK
KA, poznoginenntit Cs. Cunojom o Tudticy, Bi mpocTo MaB 3a HEMTOPY ITHAT
000B’I30K HECTHU TY/IM [IPABOCJIABHUAN JIyX, M€PKABHICTD, JUCIUILIIHY, TOPSIOK.
3a 11e BiH, HAIIEBHO, 1 OYB «HECUMIIATUYHUM> Jjisi ceMiHapucTiB. OO0OB’s130K —
30008 s13y€. Te, mo 6y10 B Kuesi gomycTumo i 103B0JISIO IEBHY JIETKOBAXKHICTb,
npuramanny M. 1. Byarakoy, (xoua i TyT HalioHaJbHe IUTAHHS TOCTIHO TJIi-
J0), B Tudutici — BUMarajo NUJILHOCTI, JKOPCTKOCTI, OJHO3HAYHOCTI K Opra-
Hi3aIifHOI, TaK 1JIeffHOl Ta JIyXOBHOI.

3aTHICTh BUIYCKHUKA JIIATH OJHO3HAYHO-IIPOMECITHO 3aK/IaIa€ThCs He-
[epecivyHrM HABYAJBHUM 3aKJIaJ oM, #Horo jgyxoMm. Haragaemo, XTo yocoOJito-
BaB JyxoBHe 3arapryBanus Mukosu [BanoBudaa Bynrakosa, sikuit, HaBIar0InCh
B akaJeMil, CJIaBUBCH JIETKOBAXKHICTIO, BeCeJOIO BJadero, Jjibepasizmom [28,
c. 177].

HVoro Bunressvmm Oy Taki BitoMi Ha TOM “ac BHUKJ/IaIadi OOTOCTIOBCHKUAX
Ta dinocodcerkux aucnuiiin, gk 1. I. Bornamescokuit, 1. 1. Jlinunbkuit, 6patn
M. O.1a 4. O. Onecuunpki, M. I. Ilerpos, C. T. Tosny6es, @. I. Titos. 3 gesrumn
PsIMO CIIIKYBABCS CBOTO 4acy i fonmit Muxaiino Bynarakos. He tinbku ix my-
G1ivHi ekl B CTYAEHTCHKUX ayIUTOPisX, aje it yce X KUATTS OyJI0 TPUKJIIAI0M
CAMOBIITAHOTO CJIYKIHHS AyXy HayKn, 0OOB’s13Ky i mpaBocsias’s. Bpaxkaiors Ti
cTpallleHHI MarepiajibHi HE3TOM, SKi BUIAJIM Ha JOJIO 0AararboX 3 HHUX, XTO
MaB HEIACTS JIOKUTH JI0 PeBOoNiHuX mofdiit 1917 p. Ilpo ix maymeBHy Kpusy
MOXKHA JIUIIE 30Ty BATUCE.

Bemukwuit Brtns va dopmyBanus cBitorssanol no3utii M. I. Byarakosa sax
arosiorera npasocsas’s y Tudurici, cupasus #ioro piguuit 6par Adanaciii Isa-
HoBUY Bysirakos, sikmii 3akinune KJIA y 1885 p. Cdepy HaykoBuX iHTEpECIB
OCTAHHBOTO CKJIAJIAJIN caMe pobJieMu icTopil Ta aHaJi3y pi3HUX Tedill mpoTe-
crantu3my. ¥ 1887 p. 3a cBoro npario «Hapucu 3 icTopii MmeTomu3my» BiH oTpu-
MaB CTyIiHb Maricrpa 60orocsos’s, a'y 1889 p. mepeiimmos mparoBaTu 3 Kadeapu
CTapOJABHBOI IPOMAJIIHCHKOIL icTopil (o sikol, 3i cnoraais B. II. Pubuncekoro,
HifKOI NPUXHJIBHOCTI He MaB) Ha Kadexapy icropil 3aximumx koHdeciii. Bes
moJiaJibIna HayKoBa JisibHicTb A. I Bysirakoa Oysia 10B’si3aHa 3 BUBYEHHSIM
sIK €BPOIEHCHKUX TEUiil MPOTECTAHTU3MY, TaK 1 X TpaHcdopMariii Ha BITIYN3HSI-
HOMY T'DYHTI.

Pospobka npobsremaTnku pizHEUX TeUiil TPOTECTAHTU3MY Ta X KPUTUKA
3 MO3UIIiH TPABOCIaB s 3 HEOOXiHICTIO BXOAM/IA TO/i B KOJIO 000B’SI3KOBUX JIeP-
JKaBHUX HayKOBUX 3aMOBJIEHb, aJ[DECOBAHUX BUKJIaJa49aM 1 HaBiTh 3I0HUM CTY-
nenTaM, ockinbku KJIA Oyna dpoprocTom maHiBHOI JIep2KaBHOI IEPKBU. 30Kpe-
Ma, MPUKJIAJI0OM MOXKE CJIyIyBATH MOKA30BUil (PAaKT i3 KUTTs IEPIIOrO IPO-
decopa dimocodil yuisepcurery Cs. Bosomumupa, 6ysimoro suxosamisg KA
Op. M. HoBunpkoro (1806—1884), skwuii me crygentom srepiine B Pocii nanu-
caB MpAaIo Mpo AyXobopiB, monepeaunkiB bantusmy. Busasnsernes, KuiBeokuit
Mutrponosmt €sreniit (BoaxopiTiHOB) B TOI yac po3IIyKyBaB 3/{0HOTO CTY/IEH-
Ta ocranuix Kypcis KJIA 3 mMeroro jaru oMy TeMy Maricrepchbkoi poboTH 1o
nyxobopam 1 3BepHyBCs 70 pekTopa Akazemii Inokenria (Bopucosa) mopeko-
MEHIyBaTH oMy Takoro. . Tak 3rogoMm 3’sBHjIach mepimna mparig HOBHIILKOTO
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«IIpo myxob6opiB», sika Oysia OJHOTACHO MEPIINM CEPHO3HUM BITUUIHSIHUM I0-
CJTiI2KeHHSAM TX BipyBaHb, MOOYTY Ta 3BUYAIB.

I neit pakr, sk 1 bararo floMy HOIIOHKMX, HAJIZBUYANHO BPAa3UB HAC CBOI'O
qacy. Tak OT 3BiIKM TOXOIUTH aBTOPUTETHA, BILIMBOBICTH HABYAJIHLHOTO 3aKJIa-
oy, — nomymaJm Mu. HagBHicTD y 3aKiIa/l TATAHOBATUX BUKJIAJIATIB 1 CTY/IEHTIB
e He € JOCTATHBOIO MijAcTaBoo i Hel. Tpebda, mob mo3a By3iBCHKUMU Bjla-
JHUMHI CTPYKTYPaAMU BUKJIAJIAa49i 1 CTyJIeHTH Oy/Iu JOCUTH OCBIYeHUMHU JJIs PO-
3yMiHHsI, BU3HAHHS 1 [IITPUMKH SICKPABUX IIPEJICTABHUKIB HABYAJIBHOI'O 3aKJ/Ia-
J1y. A CbOTOJIHI IOTO HE CKAYKeIll HABITh PO BHYTPINIHBO 3aKJIA0BI B3Aa€MUHH
MiXK BUKJIamadaMu pizHux mucnuiuiia. Hagebro Bei myOsikytoThest 1 omy6utiko-
BaHe HUMHU 3BYyTh HAyKOI. AJie JeKoTpi, HAIEBHO, 3a0yBAIOTh, 10 1X MOXKYTb
i mpounTaTH. ...l unTaemo, i TepBoHiEMO IHKOU 3a CBOIX KoJer. I po3ymiemo,
0 T0/1i0Ha «HAYKOBICTb» Oysa i € abCOIIOTHOIO HEJIOMYyCTUMOIO Y JIHCHO aB-
TOPUTETHOMY 3akKJjaJi ocBitu. /[ymaemo, 1me po3yMitoTh i MyJIpi peJICTAaBHUKI
BJIQJIHUX CTPYKTYP, KOTPi O BBaxKaJjm 3a YeCTb 3poOUTH X0d4a Ou pa3 Te, IO
BIAJIOCS TX TTonepeaunkaM 1me B XIX cTosiTTi.

Aste moBepHEMOCS JI0 HAIIOTO CIOXKETY. $IKINO OMVISTHYTH CIIUCOK HAYKO-
Bux mpaib A. I Bysrakosa, siki nporsirom 20-tu pokiB iioro HeBnuHHOI pobo-
1 B KJIA nepioguuno japykysajmch B yaconuci «Tpyau KIA», To BiH cKia-
nae Mmaiike 60 pobitT, 40 3 sIKUX TPUCBAYEHI iCTOPIT Ta aHAJI3y MPOTECTAHTHU-
amy. Cepen mux pobir, mo pedi, € Taki, sk «Bamrusm»[5] 1 «IIpo mosiokan-
cTBO>» (6], Hanmcani y 1890-1891 pp., T06TO y Ti POKM, KOJU HOIO MOJIOIIIINI
6par M. I. Bysirakos 0yB cryzerToMm ocranaboro Kypcey KJIA i mir Bxke 1ijakoM
Cepiio3HO IKABUTUCH TUMU 2K TpPOOIEeMaMu, sKi XBUJIIOBAJIN HOTO CTapIIOTO
6para. Tobro Adanaciit [BaHOBIY pazoM 3 iHIIUIMEU 3rajlyBaHUMU ITpodecopa-
Mu KuiBChKOI JyXOBHOI aka/ieMil I'PYHTOBHO HOCHPHUSB (HaXOBOMY 1 yXOBHOMY
zarapryBanaio Mukosn IBanoBuua Bynrakosa. Came BoHE yocoOJiOBaIn Jiist
HBOT'O JYXOBHY Millb i aBTOPHUTET 00 HABYAIHLHOTO 3aKJIAJLY.

Xowva HAM i He BJaJoCs TOYHO BcTanoBuTu dac BudbyTTss M. I. Bynrakosa
3 Tudricekoi ceminapii, mpo HOro MOJAJBIILY HOJIO BIIOMO 13 BXKe IUTOBaA-
nux crnoraiis B. II. Pubuncekoro. «I3 Tudmiicy Byirakos nepeiimos na mocay
micionepa, nepexis el itomy saificaus Kyrenos (oquokypcuuk Bysrakosa, ce-
kperap [lerep6yp3abkoi koucucropii Cunomy — aem.). MicionepoM BiH BUSBUBCS
MMOTaHEHbKNUM, 1 IPUHANMHI JIJI CTOJIUIN HEIIXOAANAM, TOMY HOMY HEBJIOB31
nosestocst Buixaru 10 HoBouepkachbka, jie BiH 1 ckinums cBol aui» [29, c. 178].

Cain migkpecauru, mo cnomuan B. [1. PubnHcbkoro mosuaveHi 10CuTh cy-
6’€KTUBHUM Ta IHKOJIM HEIOPEYHO CYMEPKPUTUIHUM IiIXOJ0M JI0 XapaKTepu-
CTHKU CBOIX BUKJIaJa4iB i ToBapuimis, 3okpema M. 1. Bysrakosa. Cam B. I1. Pu-
OMHCHKUIT He TOTPAILISAB B eKCTPeMaJIbHI yMOBH, y skux nodysas M. I. Byarakos.

VmMoBu 11, fK MU Oauuiau, — AocuTh crerudivni. 3 ogHOro 6OKYy, X CKJia-
JIa€ CcepeIoBHIle HaueOTO €IMHOBIPIIB, OpPaTiB 1O Bipi, KOTPI Maju PO3yMiTH
i mpuitMaTu CBOro crapimoro 6para. 3 Apyroro, — Bipa IUX €IWHOBIPINB BU-

SABUJIACH J1e(POPMOBAHOIO CTOPOHHIME, 30KPEMa IMTPOTECTAHTCHKIMU BILJINBAM,
K1 3aKOHOMIpHO KOpcTKO Bpazkaau M. 1. Bynrakosa i Bumaranm Bimmosimmol
imeitHol peaxiiil. 3 TPETbOIO, — «EPETU3M» E€IMHOBIPIIB OYB MO3HAYEHUN IIEB-
HUMHJ OCOOJIMBOCTSAMU HAITIOHAJILHOTO XapaKTepy 1 HAIIOHAJBHUX YCTPEMIIIHb,
0 BiIOMBaJIOCh Ha 1X IMOBEIIHIN, KOTpa, 3aKOHOMIpPHO, BHMAaraJja BiIIIOBimI-
HUX OpTaHi3aIiiiHo-aIMIHICTPATHBHIX PEaKIliil. 3 9eTBEPTOro, — JIyX 6araTbox
OyB BXKe iH(}pIKOBAaHUM aTEICTUIHO — BOWOBHUYUMU COIIaJI-IeMOKPATHIHIMI
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imessvu, KOTpPi 30y/12KyBaJIH HE JIUIIE 10 IIPOTUCTOSHHS OPTOIOKCAJIHHO-EPIKAB-
nunpkii mosurtii M. I. Byarakosa, aje it 10 BiIKpHUTO PEBOIONITHOTO HACTYILY.

3po3yMijio Temep, YoMy, MOOYBABIINM y BHINE 3MaJbOBAHUX KOPCTOKUX
yMoBax i 3araprysasimchk B Hux, M. [. Bynrakos Bupimiye cratu npodeciitanm
wmicionepom. MokIuBO, BiH 1 CIpaBi He IPOSBUB CBOIX MiCIOHEPCHKUX 3Ii0HO-
cTell B CTOJIUII, OCKIIBKH TaM He OYJI0 BeJTMKOI HEOOXiTHOCTI KOTOCH TTEPEKOHY-
BaTH, 00EPTATH, YU 3aBEPTATU Y [IPABOCJIABHY BipYy.

Tpariuna mymesHa apama, nepexkuta M. 1. Bynmrakosum y Tudtici 3ua-
HIia cBOE BioOpaXKeHHsI y 3HaieHOMY HaMU, JI0 IIbOI'O HEBiIOMOMY Oyira-
KoBozHaBIEM, Jjincti M. I. Bynrakosa 3 Tudmicy no Kuesa Muxosti Isanosutuy
[TerpoBy — opaunapuomy mpodecopy KJIA, Buknanady ecreruku, Teopil cJio-
BECHOCTI Ta icTOpil 3aXifHUX JIiTepaTyp, AKUl IIPOTATOM JIEKIJTHKOX JIECATUPIY
3aBi/lyBaB HUM K€ CTBOPEHUM MY3€EM II€PKOBHO-aPXEOJIOTIYHUX CTAPOKUTHO-
creit mpu KuiBchbkiit qyxoBHiil akagemil. Aute, Hacammepe, [lerpos OyB 6u3b-
KOIO JTIIO/IMHOIO Jitst ¢im’T BysrakoBux — crodarky Bunrenem Adanacis Isano-
BHUYA, a MI3HilIe — CTAPIINM APYTOM i KOJIEro. 3 HAPOIZKEHHSIM MEPIIOl TATH-
HEU B poanHi — cuaa Muxaiina, MaitOy THHOTO MuchbMeHHIKa — IleTpoB cTaB st
HBOTO XperieHnM barbkoM. CaMe Takiil 6JIM3bKiil JIIOAUHI aJpecye CBOrO JIMCTa
MoJstomuit 6pat, qaTyioun #oro 16 kBiTHa 1894 p., TOOTO 3rofoM MiCas IPy/IHE-
BUX 3aBopymeHb 1893 p. B mromy M. I. Bynrakos numie: «. .. f Takn yacTeHBKO
srajryio Bac, Mukoste IBanoBuay, Ty y Tudutici, ocobauso mics momiit 1-4 rpy-
JTHSI, SIK1 CITIOHYKAaJI 3aKPUTTSI HAITOI 3100y IHO1 ceminapii. MumoBoJti mpmxo-
JUTh Ha 3rajKy Baima mpocrora, BiKpuTa MUPICTH, — KOJIM MOCTIHHO Oadwui
HaBKOJIO cebe JIUIEeMipHO-CXiIHy JTACKaBiCTh, 38 KOO MPUXOBYETHCS MiXK THUM
BOI'OHb HEHABUCTI 110 Tebe 1 HalIroTIINa 3/1CcTh. AJI2Ke HeriJHUKU-CeMIHaAPUCTH,
SKi BUSBIJIUCH 3TOJIOM 3aBOPYITHAKAMIY, TIepe; OyHTOM OyJIi HAITO MTOBAaYKJIUBI
Ta JI00’sI3HO BBIiWINBI mepeji ceMiHAPDCHKUM HAYAJILCTBOM: HIIKMM YHHOM HE
MOXKHA, OyJI0 TepeadaduT, IO B JYII IUX JII0/ell KPUEThCS MPArHEHHS CKU-
HYTH 3 cebe sipMO CeMiHapPCHKOl JUCIUILIIHT; HiIKUM YHHOM He MOXKHA, OyJI0
nepea0adnTH, IO I TAHW HAIl FOThCs, 100 OyTH GBI HATJIMMHY IIiJ 9ac 3aBO-
pyliess i emisuBimumu, mob noposymituck 3 Exzapxom ['pysil Ta enumckomom
Ourekcapapom. Tak och, gxi mi cxigai aogu! A 10 4oro peHOMEHAJIHLHO BOHHU
MOXKYTBH OpexXaTu Ta BIEPTO 3aMOBUYyBaTu cBowo nposuny? Jlioguna, sika He-
3HaifoMa 3 UM HAPOJIOM, MOXKE HABITH HE TOBIpUTH JedKuM (pakTam, KOTpi
XapaKTepU3yTh IPy3UHO-iMepeTrH 3 i€l croporn. M. Byarakos» [20].

JlymreBauit posmnad, majka obpasa, 1 TparidHe po3dapyBaHHSA B JIFOISX,
akux M. 1. Bynrakos ycima 3acobamu mparaHyB HACTABUTH HA ICTUHHWIA IISAX,
3BYYUTH y IOWHO MPOIMTOBAHOMY JIUCTI. AJie B HhOMY BiIOUJINCD JIUIIIE €MOTIil,
KOTpi, MabyTh, IPU3BEJIN JI0 3aTOCTPEHUX OIIHOK, TIEBHUX MepebiIbIeHDb Ta He-
OOTpYyHTOBAHUX y3arajbHeHb. Haitbigbimoro o0ypeHHst aBTopa, sk 6a1mmMo, BU-
KJIMKA€ HEe CTLIHLKU TPArHEHHSI YIHIB CKUHYTHU APMO CEMiHAPCHKOI JIUCIUILIIHN,
ckinbku 1x HermupicTs. Tak, M. I. Byarakos mo6pe posymie, sik Ba2KKO MOJIOZIH
JIIOJIUHI YKUTH 3 UM SIPMOM; BiH 1 caMm 1ie mepexkuB, Hapdarounch 10 KJIA B Kyp-
CbKili ceMinapil. AJjie »K HEIUPICTh. . . . BoHa He 3Ha€ BUIIPABIaHb 3 TOYKHU 30Dy
BuxoBaHlst KJIA, sikuit mykae ayxossol miarpumku y M. L. Ilerposa — Jiroausn
BiiKpuTO 1mMpoi. bpexusi, obmaH, JyKaBcTBO — 0o3Havae i M. I. Bynrakosa
BIJCYTHICTB 9ecTi, IO HECYMICTHMO 31 CIIPaBXKHBOIO JTYXOBHICTIO — YU TO PeJTi-
TifHOIO, 9 TO TPOMAISHCHKOIO.
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Tema mecTpyKTUBHOI CHPSIMOBAHOCTI JIyKABCTBA, HEIMMUPOCTI 1 HEIECHOCTI
JyHae 1 B #oro npomosi «Bantusm sk cekra, HebGe3meuHa 1uist gepxkapu» [10].
XapakTepu3youn BaTaxKKiB OamnrTusmy, 30Kpema, Tomaca Mionrepa, loanna
Jletinencokoro, M. 1. Byiarakos 3Beprae yBary ciyxadiB Ha abOCypjHiI BHCHOB-
Ku, 3pobsieHi HUMEU 3 TaymMadeHb bBibiil. «...dk maymadmiace g 6ibsis?. . .
Haii6inbim o0ypuBUM IUHOM: y IIiil CBATIH KHU31 OANITUCTH MParHy/In 3HAWTH
IPYHT JUisl CBOIX Hafiaukimmx i amopasbHux BumHKIB»[10, c. 18]. deTanbHuit
OIC OCTAHHIX Yy MPOMOBI MICTUTBH CIpaBIi Bpakaiodi pakTu 3 KUTTA loaH-
Ha Jlefimerncbkoro — ioro GicHyBaTi nperensii Ha MOOYIOBY OAIITHCTCHKOL Jep-
JKaBU, HA CBITOBe IAPIOBaHHS Ta YIPAaBJiHHS Hapoiamu, Oe3MekHuil daHa-
Tu3M, 6AraTOXKOHCTBO, 3BIPCTBO 1 posiyTHicTh Tomo [aus.: 10, c. 18-22]. Tomac
MiromIlep TakoXK 300parkaeThCsd K «Biauaitumit pemiriftanit paHATHK, CXUTb-
Huit 10 6GpexHi, obMaHy 1 JykaBcTBa s gocsrHeHHst Metus» [10, ¢. 11]. Mera
2K, dK BBayKa€ IPOMOBEIb, — Y HUX OJHA: «3JIAMATH OCHOBHU Jiep:KaBHI, ciMmeii-
Hi i MOpaJibHI B caMOMy IIMPOKOMY CMHCJI 11b0ro cyosas[10, c. 11]. A Bxe
moTiM — MOOYLyBaTH «HOBE CyCILIBCTBO», sike O I'PYHTYBaJOCh HA ITOIOJIAHHI
omo3uIlil «OiaHIiCT, — 06araTcTBO», HA CIIBLHOCTI MaiHa MiXK TOC/ITOBHUKAMUI
imeosorii 6amnTu3my. Tob6TO i B JeCTPYKTHUBHI#M i B KOHCTPYKTUBHIN YacTUHAX
mporpamMa 6anTusmy mijkoM migsoguTbea M. 1. Byirakosum iz peBoJtoriiiino-
corjasicruyni cupsimyBanHst [nus.: 10, c. 15]. Crnpapni, 3a3Hadae IPOMOBEIb, —
GanTusM «... 3 PeiriiiHol cekTu 3pobuBCs rpoMalsaHChKOo» [10, ¢. 11], a cami
GanTucTu OTpUMaJIN «KJeiimMo miabypioBadis i pesosnonionepis» [10, ¢. 22]. To-
My TOJIOBHMIT Harosoc y IIpoMoBi poOUThCS Ha «. . . MOTITUIHUX YCTPEMTIHHIX
banTu3My, — yCTPEMJIHHSX, HA SIKi IO OCTAHHBOTO Yacy TaK MaJio 3BEPTAJIOCH
yBaru i cBiTCbKOMW 1 JyxoBHOW Baiaoo0» [10, ¢. 10]. 51K 1ie He JUBHO, ajile BUTOKH
CTaJIiHI3My TPYHTYIOTCH 1 B 6anTu3Mi.

SHaoun, Mo MaiizKe depe3 MiBCTOITTS IMicJsi OMUCYyBaHuX Buie 1udiri-
cbKix moziit meminauk M. I. Bysirakosa — Muxaitino AdanaciiioBuy Bysirakos
YUTaB IPOMOBY IIPO OaIlTW3M, MH I[IOAyMaJjHd, & YU He MOIVIM II MOTHBHU Bil-
obpasuTuchk y meci «baryms», 30kpema y BxKe 3rajyBaHiii mpomosi PexTtopa
ceminapii y IIposozi? [lificHo, mesiki BaK/juBi mapaJjesi MiXK [UME IIPOMOBa-
MM € CIIpaB/Ii MOMITHUME. PeKTOp TaKOK POOUTH HATOJIOC caMe Ha MOJITUIHUX,
AHTUIEPKABHUX YCTPEMIIHHSIX PI3HOIIEMIHHAX MEITKAHINB OaTHKIBITUHHT, 3710~
YWHIB, «sIKi CIIOTH 371e ceMsl y Hammiit Kpaini»|7, c. 670]. Hizcmyano ysiimos
Yy PEKTOPCbKY TpOoMOBY i momidenuit me Mwukosoro IBaHoBudueMm Toit icTopu-
qHmit akT, mo posnyTHuii loann JlelineHCcbKuiT CBOrO 9acy CTaB MepoeM OIie-
pu kommnozuropa Meitepbepa «IIpopok» [10, c. 20]. «Hapoani cnokycuuku i
JIKEIPOPOKH, — MPOMIOBXKYe PeKkTop, — mparuy4m migipBaTé Milb JIep2KaBH,
MOIUPIOIOTh CKPi3b OTPYiiHI XMOHO-HAYKOBI COIiaj-IeMOKPATUIHI Teopil, sKi,
O/TIOHO TOCTPUM CTPYMEHSIM 3JI0TO JIyXY, ITPOHUKAIOTh B YCi IMIIJTUHUA HAIITOTO
HapoHOro XKurta» |7, ¢. 670]. Tomy i cmuca npumymanoi M. A. Bysnrakosum
mapriitnoi kmmaku Y. B. Txyramsim «Ilactup» [7, c. 679], mpo sKy iimerscs
y Apyriit KapTuHi II'€CH, He TMOBUHEH crpuiiMarucs OykBasbHO. [lacTupcrBo
Cragina Mae criyibHy pupomy 3 mnpopornrsom 1. Jlefinencekoro i cenc Crasin-
CBKOT'0 IICEBJIOHIMY 3aKJadacTbcd MaiicTpoM 3 BpaxyBaHHSIM OO BiIHOIIEHb
JI0 BUINIEHA3BAHUX OOCTABUH.

dAx 6agmmo, mpomoBa PekTopa — BHCOKOIO IIEPKOBHOI'O i€epapxa — 30B-
ciM He 3BOJUTBHCI JI0 CYTO PEJITiHNX 3BUHYBaYe€Hb MOJIOJOTO BiJCTYITHHUKA.
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Bomna, meprr 3a Bce, 3acyKye aHTHIEPKABHAIBKI yerpeMTinas. Taxk mo BigHO-
IIEHHIO JI0 AKOI /iepyKaBy 3punyBadyerhes 1. B. Cramin y cBOiX AecTpyKTHBHEX
MOJITUYHUX crpsiMyBaHHAX! TekcT mpoMoBu PekTopa Haue0TO MICTUTH IIPSIMY
BimoBinb; came 1o Pociiicekol immepil. . . . Ayie BpaxyBaHHsI KOHTEKCTY (Xx04a 61
crarti M. I. Byarakoa npo 6anTusMm) Iae OiicTaBu CTBEPAXKYBATH i DaKT Ha-
SABHOCTI B PEKTOPCHKiit mpoMoBi 3 «Barymy» meBHOro 3aByaboBaHOTO ITiITEKC-
Ty. Be3myxoBHicTh, HEIUPICTD, MiICTYIHICT 3aI0JTiTU30BAHOTO, PEBOJIIOIHO-
3aKOJIOTHUIILKOTrO GanTusMy (3po3yMisio, i He suiie Horo), — «Biia0Th, — Iu-
taB M. A. Bysrakos y 1mpaiii cBoro JsjipKa, — Oyab-siKy Jep:kaBy (IiJKpecIeHo
Kax; ITEI0 irpalikoo OyabL-XTO 3 HACTABHUKIB OamTusmy Oyie rpaTh 3a CBOEIO
npuMxomo. . . »[10, ¢. 24]. Tak i cranocs B mificrocTi, abeypHicTh, Ky A00pe
3HaB, SICKPaBO 3MaJIbOBYBaB y CBOIX TBOpPax i 6osiicHO nepexkusas Maiictep.

Ha cxumiti ¢BOro KOpOTKOIO »KUTTsI, KOJIM IaJjIKa CIpara TI'y4HOI CBiTOBOT
CJIABU BYKe BIMYXJIA PA30M 3 IHINAMH ITOPUBAMHU MOJIOIOCTI, IPUIJIYIIEHA 3a-
boporamMu IyOJIKAIlil i TOCTAHOBOK, PO3YapyBaHHAMHA 1 XBOpObaMu, 3’sIBUIACH
THXa HOCTAJbIisg 1 Oe3nasiiina medasnsb. Jlyx nucbMeHHMKA YUHUB OMIp 1M, aJie
Oro JIyMKa BCe YacTillle MOPHHAJA y MHUHYJE. ¥ CIIOMHHAX JI0 HBOI'O IIPHXO-
JATh 00pa3u GJIN3bKUX JIHONEH, eni30/11 KUIBCHKOI I0HOCTI, KPAEBUIN PiJIHOTO
KueBa. 3a nekijbka THXKHIB O CMepTi, IPUKYTHIA JO JI2KKa 1 MOBHICTIO BXKe
cinuil, TMChbMEHHUK IPOCUTH CBOTO Jpyra [ memmnHCbKOro BiamoBicTu «Habime-
TAJILHIIIIIM IIHOM Ha MOro TUTAHHS PO KUIBChKE YKUTTS JaCiB 1X MOJIOJIOCTI —
3pudaiini nporpamu KoHieptis y Kymenbkomy cauy, ckiaz 6i6aiorekun KIIA,
sIKy BOHH BiziBinyBasm romo» [33, c. 645].

Orxke, HAYKOBHIl TOIIYK aBTOPIB JAHOI IIyOJIiKAaIlil JO3BOJIUB IIPOJIUTH CBi-
TJIO Ha psiji aclekTiB MayioBuBdeHol 6iorpadii M. I. Bysarakosa, mocrtaBus HOBI
MATAHHS | 32CTABUB Il Pa3 33/ [yMAaTUCh HAJ J[yXOBHUM B3a€MOBILJIUBOM Yy IIPO-
CTOpi i Yaci TBOPUUX 0COOUCTOCTEIA.

VY xoai poboTu HaJL IIMMU MUTAHHSIMHA, aBTOpamu Oysia 3ibpaHa yHiKabHa,
KOJIEKIIis CBITJINH, TI0B’s13aHa 3 icTopiero KuiBChbKOI yXOBHOT akaieMil Ta cimM’€ro
Bynrakosux. Hurkvae Mu npuBOoIMMO JIesIKi CBITJIMHU 3 TTi€T KOJIEKITIl.

Npodeccopckas Kopnopayia co cryaentamu XXIV kypca Axasemin (1869 r).
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Mukosia IBanosuu Bysrakos

Heip Kuiscbkol Jlyxosaoi Axkanemil, XIX cr.
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«MUP MOUX UJIEI BIIEPEJN»

K 150-JIETUIO CO JHSI POXKJIEHUSI
BiaagumMurA NBAHOBUYA BEPHAJICKOI'O

H. Kondpamuvesa

B mapre 1863 roga, 8 Cankr-Ilerepbypre B cembe mipodeccopa 3KOHOMUKU
¥ UCTOPUU POJUJICS Oy yruit BeJiukuii yaenbiit Biaguvmup Usanosuyu Bepraji-
CKUMA.

Konenn XIX n magano XX Beka XapaKTepU3YIOTCS PEBOJIONAEN B ecTe-
CTBEHHBIX HAYKAX: OTKPBITHI HEBUIUMbBIE DEHTTEHOBCKUE JIyIH, OTKPBITA Pa/Ii-
OAKTHUBHOCTH, DWHINTEIH Pa3MBIIIISIET O IMPUPOJIE CBETA U MTPOU3HOCHT CJIOBO
«OTHOCHUTEIbHOCTBY, I IMOJIKOBCKUI BBIYUC/ISIET KOCMIUYECKIE CKOPOCTH. . .

IIpoucxoaur yxoBHast peBostous B putocodun u B uckyccrse. Birau-
vup CoJTOBBEB yTBEPKIAET, YTO B TBOPUIECKOM aKTE BO3MOXKHO ITPe00Pa30BaATh
pPeaIbHOCTD, CAEeJIATh €€ MaTEPUIO MEeHee IIOTHOM, OIHATh YacTOTy BUOpAIuit
SHEPreTUYECKUX BO3ICHCTBUIA.

KaH)lI/IHCKI/Iﬁ n MaﬂeBI/I‘{ Ha9UMHAIOT IKCIIEPDUMEHT B 2KHUBOIINCHU 110 IIOUCKY
c1r10cOo0OB TIepeIadn IIPY MTOMOIIY MAaTepHasIbHBIX CPEJICTB — XOJICTA, KAPTOHA,
KpacoK — abCTPAaKTHBIX MOHSTUN, TAKUX KAK «BEIYHOCTHY», «OECKOHEUHOCTHY,
<JIBUKEHUE>, . . . OIIYIIEHUHN U 9yBCTB, IPUXOIANINX K HAM U3 HEOCI3aE€MbIX M-
pos. YropJsieruc u Bpy6ess numryt npopodeckue mosiotHa. Kommozurop Ckpsi-
OuH uieT obIue KOPHU 3BYKa, I[BETA U MMOITUIECKOTo puTMa. KysibTypa «cepe-
OPSTHOTO BeKay IMPOIUTAHA, OILYIIEHNEM UHOOBITHS, BIIMSHUS KOCMOCA Ha 3€M-
HYIO KU3Hb.

B 1885 rony Bepnajickuii 3akanunBaeT hu3nKO-MaTeMaTnaecKuil haxyib-
TeT 1eTepOyPrcKOro YHUBEPCUTETA, YCIIEITHO 3AIMUIIAET JIUCCEPTAIIAIO HA CTe-
[IeHb KaH/IM/IaTa eCTECTBEHHBIX HAYK U MOJIyYaeT JOJIKHOCTD XpaHuTesist Miume-
PaJIOrUYecKOro KabMHETa YHUBEPCHUTETA. Y YeHblli OpraHu3yeT SKCIEIUIUN Ha
Vpai, 3abaiikaibe, @eprany u Kaskas, rje uccjemayer mouBbl U MOPOJIbI, COOM-
paer kojutekimu MuHepasoB. Ocoboe BHUMaHUE yiesseT (PePraHCKUM PyIaM,
cozepkamumM pasuii. Kak mpeareda HOBOroO eCTeCTBEHHOHAY YHOTO MIUPOBO33pe-
HU [OSIBJISIETCS €0 3alUCh 0 MuHepaJsax: «KTo 3naer, MoXKeT ObITh, €CTh 3aKO-
HbI B paclpeje/leHn MUHEPAJIOB, KaK €CThb IIPUYUHBI BOSMOXKHOCTU 00pa3oBa-
HUs TOI WJIM WHOM PeaKIM¥ UMEHHO B 9TOM MeCTe, a He B JIDYTOM. .. ». 3aTeM,
Bepnajckuit hopmynupyer 3amady Bceit cBoeit ku3Hu, oH nwmimer: «Muuepa-
JIBI — OCTATKH TE€X XUMUIECKUX PEaKIUil, KOTOPbIE MPOUCXOIUIN B PA3HBIX TO-
9KaX 3€MHOI'O MaPa, TH PEAKIINN UIYT COIJIACHO 3aKOHAM, HAM HEM3BECTHBIM,
HO KOTOPBIE MBI MOXKEM IyMaTh, HAXO/ATCS B TECHOW CBS3U C OOINUMY U3MEHe-
HUSIMH, KAKWe [IpeTepIieBaeT 3eMJsl KaK 3Be3/1a. 3a1ada — CBA3aTh 9TH Pa3HbIe
dazucel m3MeHeHusT 3eMJIU ¢ OOIMUMU 3aKOHAMU HEOECHON MeXaHUKW. . . ». Bep-

145



146 H. Kondpamwvesa

HAJICKUIA IIPUXOAUT K HOBOMY HOHUMAHUIO Grocdepsl (HOBEPXHOCTH I€0JI0rude-
CKOIl 060J109KH 3eMJIi Ha KOTOPOil cOCpesoToueHa 00JIACTh XKU3HMU) U BBOIUT
[OHSITHE JKUBOrO BENeCTBa (COBOKYITHOCTH BCEX KUBBIX CYIECTB GHOCDEPHI).
On numrer: «KocMmudeckne n3jiydeHnst BEYHO U HEITPEPBIBHO JILIOT HA JIMK 3€M-
JIM MOIITHBIA MMOTOK CHJI, TIPUIAIONIUN COBEPIIEHHO OCOOBIN, HOBBIM XapakTep
9acTAM ILUIAHETHI, TPAHUYAINeil ¢ KOCMHYECKHM IIPOCTPAHCTBAM. .. BemecTBo
buocdepnl Oaromaps TUM U3y IeHUSIM TPOHUKHYTO dHEPTHeil, OHO CTAHOBU-
TCsI aKTUBHBIM, COOMPAET U PacCIpejiesisgeT B buocdepe MoaydeHnyo B (popme
W3JIyJYeHUsl SHEPIUIO, [IPeBpalliasi ee B HEPIUI0 B 3eMHOIl cpejie CBOOOIHYIO,
CIIOCOOHYTO TTPOM3BOIUTH PabOTy. 3eMHAasi IOBEPXHOCTHAS 000JIOUKA HE MOXKET,
TakuM 00pa30M, PACCMATPUBATHCS KAK 00JIACTD TOJBKO BEIECTBA; 3TO 00JIaCTh
SHEPIUH, NCTOYHUK U3MEHEHUS IIJIAHETHI BHEITHIMHU KOCMUYECKUMU CHJIAMU>.
2KuBoe BerecTBo, TaKMM 00pa30M, HAXO/SIIEECS B IIOCTOSHHON N3MEHYNBOCTH
B 3aBHCHMOCTH OT HeDECHON MeXaHWKU, KOCMUYECKUX BO3efCTBUI Ha 3eMITio,
0Ka3aJI0Ch B IEJIOM MOIIMHEHHBIM Mepe u Becy. llepBbim B mupe Beprackuit
HaiifileT OCHOBHBIE (POPMYJIBI /il JKUBOTO BEIIECTBA, BBHIUUCIUT CKOPOCTH Pa-
CTEKAHUs €ro II0 MOBEPXHOCTU IIJIAHETHI, SHEPTUIO «IABJIECHUS XKUIHU>.

B nauane XX Beka Ha KyJIbTYPHYIO PEBOJIIONNIO, OXBATUBIIYIO BCE CTOPO-
HBI Y€JIOBEYECKOIl XKM3HU, HAJIOKUJIACh PEBOJIONMS coruasibHast. CoruaibHast
PEBOJIIOIUST HAPSITY C UIAESMU CIPABEIINBOTO MIEPEYCTPONCTBA MUpa HecJia U
orpomuble pazpymienus. Huxkonait Bepages mucar: «...B amokamunTuaecKoM
BPEMEHU BeJTUIANIINE BOSMOXKHOCTH COEIMHAIOTCS C BEJINIANIINME OMACHOCTSI-
Mu. To, 9TO TPOUCXOIUT ¢ MUPOM BO BcexX cdepax, eCTb AIOKAJIHUIICUC IO
OI'POMHO# KOCMUYECKOIT II0XHU, KOHEIl CTapOoro MUpa U IpeJJIBEpUe HOBOT'O MHU-
pa. ...B momHsiBIIEMCSI MUPOBOM BUXPE, B YCKODEHHOM TeMIIe JIBUXKEHUs BCe
CMEITAETCS ¢ CBOMX MECT, PACKOBBIBAETCS CTAPOIABHSIS MaTePUAJIbHAST CKOBAH-
HOCTh. HO B 9TOM BHXpe MOryT HOTHOHYTH U BeJIHIANIINE [[EHHOCTH, MOYXKET HE
YCTOSITH Y€JIOBEK, MOXKET OBITH PA30/PAH B KIOUbI».

C xkonna 1917 mo 1921 rox Bepuajckuii xuser B Ykpaune — Kuese,
[Tonrase, Xaprkoee, Kpbimy. B 1918 rojy ero mzbupaiorT nepBbIM IIPe3U IeH-
ToM Ykpamackoit Axagemun Hayk. Bepuajckuil paspabarbiBaer ycraB Axa-
JIEMUU, OpraHu3yeT HaydHyio OubimoreKy Akajgemuu u MuHOro paboraer. On
BeJIeT JHEBHUK. B JHEBHUWKE TUX JIeT JacTO BCTpedaeTcs dppasa «padoTaio
HaJ| »KUBBIM BEIIECTBOM» U HApsLy C 3TUM JIpYyTHe 3aIllCH, O PEBOJIOIUU:
«Macca 3amydeHHBIX U U3OUTHIX, UCTEP3AHHBIX JIOfell. .. Kakoil yxkac u Ka-
Koe mpectyiierrne. U kakasi 6€3 repoeB n KaTOpPXKHAsl PYCCKasi PEBOJIIOIUS».
Wmm Bot, nocste Bxoma B [lonraBy 60/beBUKOB: « ApKUil mM1eas ChITBIX CBU-
Hell: 067KOPCTBO, TBSTHCTBO, 3peJInIla, CBaIL0bI. Besdsenbe naput. Cemedru, Ku-
HeMmaTorpad, XUpOMAHTbI, BHENTHUH JIOCK, IPAOAT IJle MOXKHO, TPYCOCTh II€Pe]T
BOOPY?KEHHBIME U CMEJIOCTD TIepe]i 6e30pyKHBIMU. Ts1KeJia COIMaInCTuIecKast
PEBOJIOIUSI CBOUM HACUJIUEM. . . » U TyT 2Ke 0 TOM, UTO JIaeT CHJIBbI KUTh: «Pa-
60Tar0 MHOTO HaJT KUBBIM BerecTBoM. U 3mech Haxoxy omopy. . . Hago naiitu
7 HAXOXY OIOpPY B cebe, B CTPEMJIEHNN K BEIHOMY, KOTOPOE BBIIIE BCAKOTO Ha-
po/ia U BCAKOro rocymapcrsa. Ul s HAX0XKy 3Ty OIOpY B CBOOOIHOW MBICJIH, B
HAy4HOII paboTre, B HayIHOM TBOpYecTBe. . . [Tummny. Toma Bce cusit. A Ha yiuie
TpecK IyJjieMera. JeJIOBEeK IIPUBBIKAET KO BCEMY».

B 1921 rony Bepnajackuit Bozspammaercs B Ilerporpas. Ero apecrossiBa-
0T, TIOMEMIAIOT B BOHIOUYIO KaMepy, CJIeI0BaTe b Ipybo BemeT mompoc. IIporo-
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KOJI HE BEJIETCS — CJIEJIOBATE/b HErPaMOTHBIA. . . [Ipy3bsa Bepuasckoro numryT
Jlynagapckomy u Jleruny u Bepraackoro ocBob60XK1atoT.

B mae 1921 roga, B Ilerporpase B /lome sureparopoB Beprajckuit un-
TaeT Jiekiuio «Hadano m BedHOCTH Km3HU». B rOpojie He paboTaroT 3aBOJIBI
u Ghabpuku, He paboOTAET TPAHCIIOPT, HAJIBUTAETCS T'OJIOJN U MHOTHX YIUBJISIET
grenune ITOH Jekmu. 3adeM u KoMy ona HykHa? Ceiiuac, 4epe3 OYTH CTO JIET,
MBI MOXKEM CKa3aTh, YTO ITA JIEKIUs ObLIa HY>KHA, OHA JOKA3bIBAJIa, ITO MUDP
MBICJTH CYIIIECTBYET HaJT KOHKPETHBIM BPpEMEHEM U rocyaapcTBoM. BepHaackmit
y2Ke B TO BpeMsl 3a/lyMbIBaeTcst 0 Hoocdepe (cdepe MbICIH).

B xonmne 1921 roga ObuI mOJIyUeH TEPBBIN Ipemapar IucTOro paaus U3
OTEYECTBEHHOIO ChIPpbst — (bepranckoit pyabl. A yxke B Hadase 1922 roma ObLT
cosman ['ocymapcreenusniit Pagnessrit UncturyT. Bepraackuit cranoBuTcs 3aBe-
JTYIOIIUM TeOXUMHUIECKUM OTIAeJI0M 3Toro mHeTuTyTa. Ee B 19111, Bepnaickumii
creralibHo npueskai B [lapuxk ¢ tespto npusjieds M. Kopu u A. Jlakpya K
COCTABJICHUIO KapPThl PAJMOAKTUBHBIX MUHEPAJIOB 3€MHON KOPBI, OPTaHU3AIINT
MEXK/TyHAPOIHOTO IIPOEKTAa 0 MCCIeIOBAHNI0 pagnoakTusaoctu. Mapus Kiopu
rnoJiieprkaJia ueio BepHaickoro, HO IPOEKTY ITOMY HeE Cy2KJIEHO OBLIO OCyIIe-
CTBUTBHCH.

B 1922 rony Bepuajckuii mostytaeT npurJiaieHue IpodecTb UK JIKITHIi
B [[apmKCKOM YHUBEpPCUTETE U ye32KAET B JTUTEIHHYIO HAYIHYIO KOMAHIMPOB-
Ky. B Ilapmxke yqensbrii anraer neknun, paboraer B My3ee ecrecTBeHHOIT UCTO-
pun u B Uncruryre Kiopu. U3 Ilapmxka on numer cBoeMmy IpPyry U KOJJIere
B. JluakoBy: «Bce 37ech mepenosHeno teopueil JUHINITEHA, HOBBIME JIOCTH-
JKEHUSIMU B QTOMHBIX HAayKaX W acTpoHOMUM. ¢l BeCh TMOTPYy2KEH B 9TH HOBbBIE
objracTu. . . MHe KaxKeTcs, ceifgac mepeKnuBaeTcsi TAKOH MOMEHT, PABHOI'O KOTO-
poMy He OBLIO B UCTOPUU MBICIH».

Hayunasa mbicsib ompeesinia Bce siBJIEHAsT OTHOCUTEIbHBIMU.

OrHOCHUTEIbHOE 36MHOE BPEMsl, TPUBI3aHHOE K BPAIIEHUIO 3€MJIH BOKPYT
CoJiHIla, HE OYeHb IOJXOJMJIO JJjIsl OIUCAHUs IIpoleccoB B 6uocdepe u Bep-
HaJICKUIl BBOIUT MMOHSATHE ODHOJIOTMYECKOr0 BpeMeHu. BepHaIcKuil canuraj, 910
2KUBBIE CYIIIECTBA HE XKUBYT BO BPEMEHU, & JIJIAT €ro.

Bepnaickuit onpeiesisisi OCHOBHBIM CBOMCTBOM 2KHBOTO BEIIECTBA €T0 Pa3-
MHOXKEHUE, CANTAJI PA3MHOKEHIE OCHOBHBIM BHJIOM €ro0 JIBHKeHusA. Buosornde-
CKO€ BpeMsI, TAKIMM 00pa30M MOIVIO PAacCCMATPHUBATHCS KaK CJIEJICTBUE OMOJIOrU-
YeCKUX SIBJICHUI U UCUUC/IATHCS JINTETLHOCTHIO YKU3HU MOy Isnuii. [yraBHbIMu
cBoOficTBaMU OMOJIOrTYECKOTO BPEMEHHU-IIPOCTPAHCTBA BepHa ickuit Ha3bIBaJI He-
00pATUMOCTD U JIUCCUMETPHIO (MOMEHT BO3HUKHOBEHUs *KU3HU Ha 3emiie Bep-
HAJCKUI CBA3BIBAJI C BOSHUKHOBEHNEM ACHMMETPHUH B CTPOCHUH OEJIKOBBIX MO-
sekysn). Haz BorpocoM reomerpuu GHOJIOIMYECKOIO BPEMEHU — IIPOCTPAHCTBA
(MMEHHO BPEMsI-IPOCTPAHCTBA, a He (bU3UIECKOTO IIPOCTPaHCTBa-BpeMsi) Bep-
HAJICKUI PA3MBIIILIS IO KOHIIA CBOEH XKU3HU. Y YEHBIH CIUTAJI, 9TO T€OMETPHUS
MIPOCTPAHCTBA KUBOTO BEIECTBA HE MOXKeT ObITh reomerpueil EBkinaa, Bo3mo-
k0 Pumana. . . OH moHnMasI, 970 MaTeMaTHKa elle He TOTOBA OMUCATH MeoMe-
TPHUIO 9TUX IIPOCTPAHCTB U BOCIPUHUMAJ UX UHTYUTHBHO. Vcmosb3ys Tepmu-
HOJIOT'HIO CETrOJIHSAIIHETO JIHS MBI MO2KEM CKa3aTh, 4To BepHa ickuil ncciemnosan
Tpu acrnekTa [Ipuponsr Beenennoii:

— MAaTEepUIO
— mHGOPMAIIAIO
— CTDYKTYDY.
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Omn npospesaJ cunre3 buosueproundopmaruu Kocmoca. Pazse moxer cy-
IECTBOBAThH «0eCCO3HATENbHAS» MATEPHs, HECIIOCOOHAST BOCIIPUHUMATH U OTBeE-
yaTh Ha uHpopManui?! PasBe Kpucrajiibl, 3apoxKasiCb B pe3yJbrare OIpe-
JIEJIEHHOM XUMUYIECKON DEaKIMy B OIPEEJIEHHOM MECTE ITOJ, BJIUSIHUEM OIpe-
JeJIEHHBIX KOCMHUYECKUX JIydeil, He POCTYT U He Pa3pyIIaloTcs CO BpeMeHeM?
N3BecTHO, Tak K€, ITO M3BbATHIA U3 CBOEH Cpeabl KPUCTAJI U MOMENIEHHBIA B
qeJIOBEYECKOe OMOII0/Ie MOXKET ITIOMYTHETH, IIOMEHSThH I[BET, pa3pyuuTbesa. Kpu-
CTAJUIMYECKasl PENIeTKA MOXKET Pa3PYIIUThCI U OT BO3IEHCTBHSI JUCCOHAHCHOMN
My3bIKH. Bepuajckuit sgyman Ha stuM erie B 1905 romy. [lozxke, B Kpeimy on
nucaa B gHeBHUKe: « llepen 1905 rogom, xorga s Bce riryOrKe yXOAMJI B IO-
JuMopdu3M u KpucTtajuorpaduio. Xoresl BbIABUTh KPUCTAJIN3ANNAIO IEPEHA~
CBINNEHHBIX PACTBOPOB 3BYyKaMU. 3aKa3ajl KaMepTOHbI — ocTajmnch B MockBe u
3apkaBesn. Umes — co3Bydne, pesonanc. Hukro we ucciemosana. Moxer ObITh
MEHSIFOTCSI ¥ KOMOWHAIMI». 3HAYAT KPUCTAJJIbI UMEIT CBOW ypPOBEHb CO3HA-
HUsI, CIIOCOOHOCTH MOJIyYaTh U PearnpoBarTh Ha mHdopmanuoo. NHbopMauon-
HBIE T0JIsA, — JIEBBIE U TIPaBble OE3MaCCOBbIE BUXPHU, T€OMETPHS JIEBOI U IIPABOI
KpUBHU3HLL . . B Tom ke 1905 roxy Bepnajackwmit Hawaa HO He JO0BET 10 KOH-
118 UCCJIEOBAHMS: <. ..B PACTBOpPAX JIEBO — U MIPABOBPAIAIOIIUXCS BEIIECTB —
MBLJIbHbBIE IJIEHKH: CIEpPaJibHble (GUIrypbl paBHOBecusi [liaro — JieBble u mpa-
BBIE. .. ». [Ipobyiema JieBOro m mpaBoro OyeT WHTepecoBaTh BepHaJCKOro Bce
Bpems. K maremaruky Jly3ury oH 00paTUTHCs C BOIPOCOM MOYKHO JTH MaTEMa-
THUYECKH OIUCATH JIEBOE U IPaBoe. BepHAJICKMIT TaK YKe MCCIe0BAII CTPYKTYPbI
CJIOYKHBIX CHUCTEM KUBOI IIPUPOJIBI, ©X BCEBO3MOXKHBIE U OECUUCIIEHHBIE CBSI3H.
W3 3amuceit B ero JHEBHUKE: «YTPOM XOIWJ Ha JIYT W HaOpaJ IBETOB...Ha
Verbascum mdejia, mojiHasi MBLIBIGI, 3aXBaYeHHAS KAKHM-TO OPHUIMHAJIBHBIM
maykoM. . . [IposiBiieHre ¢cBoe0Opa3HOrO CTPOEHHUsT KUBOTO BEIIECTBA U XOIA TIe-
pPEeMeITeHNS XUMIIECKAX SJIEMEHTOBY, WA <...0 XaMCe — KOJUIECTBO €e KakK
OyATO COBIIAJAET C T€0JOTMYECKIMHU TEIJIOBBIMU IepuojaMmu. Fe KocMmmdeckast
posb — mepepaboTKa IJIAHKTOHA: IOAEPKUBAET JAPYIUX XUITHBIX PbIO — Ma-
kpeseit u T. 1. 10-yleTHUl mepuos, Kak coJiHedHble UsTHA?» JIHeBHUKH Bep-
HAJCKOTO — 9TO HEIPEPBIBHBIN IKCIIEPUMEHT, HAOJIOIEHNS, BBIYUCIEHUS U Pa-
3MBITIJICHUS, HAOJTIOJICHIE KU3HU BO BCeX ee acrnekrax. Habuomas u nccmemyst
cuHTe3 MaTepuu, nHGOPMAINYE U CTPYKTYPbI, BepHaackuit moHnmMas, 9To u Ka-
2KJIBIT ACIIEKT B OTJIEJIBHOCTU HY?KHO U3yYaTh SKCIEPUMEHTAIHHO, BBOJIS IUCJIIO
B ero xapakrepuctuku. On mucaj: «Cura Moeil paboThl He TOJIBKO B TOM, YTO
s1 pabOTat0 CBOEH MBICJIBIO B ITOYTU HE3ATPOHYTOI O0JIACTH. . . HE Tepsisi CBA3U C
dakTamu, s BBOXKY UHCIO B 00JIaCTh, paHee ero JIUIMIEHHYO>.

N3zydas KOCHYIO MaTepuio U XKUBOE BENeCcTBO brocdepnl, BepHaackuit 3a-
JIYMAJICST O IPUPOJIe U 3HaYeHnn MbIcju. OH U3ydvaj HCTOPUIO HAY IHOU MBICJIU
MPUINES K BBIBOIY, YTO HAYYHAsl MBICJIb €CTh IIPOILYKT TBOPYECKON JiesiTeIbHO-
CTH yYEHOI0, HAYYHYIO MBICJIb TBOPST JIMTYHOCTU. BepHajckuii Hanucasa: «Ha-
y9HAas MBICJIb CaMa, 10 cebe He CyIIeCTBYeT, OHA CO3AeTCs 9eJIOBEIECKO XKUBOM
JIMIHOCTBIO, €CTh €€ MPOsiBJIeHrne. B Mupe peasibHO CyIECTBYIOT TOJIBKO JIXIHO-
CTH, CO3/IAIONINE U BBICKA3BIBAIONINE HAYIHYIO MBICIIb, IPOSIBJIAIONINE HAYIHOE
TBOPYECTBO — JIYXOBHYIO SHEPIHIO. .. ». BepHaJCKuil IpuIles K 3aKJIIOYEHUIO,
9TO MCTOPUIO HAYYHON MBICJIU «HEJIb3sl PACCMATPUBATH TOJBKO KaK MCTOPHUIO
OJIHOI M3 I'yMaHUTAPHBIX HAYK. DTO UCTOPUS €CThb OJIHOBPEMEHHO UCTOPHUS CO-
3mannsg B 6uocdepe HOBOI T'eOJIOTMIECKON CHUJIbI — HAYIHOIN MBICJIN, PAHbIIIE
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B bmocdepe orcyTcTBoBaBIIeit». Tak pomamtack pabora «Haydarass MbIcab Kak
IUTAHETHOE SIBJIEHUE» U OIIPe/IeJIeHNEe SBOJIIONNN KaK JBU2KEHUsI OT Omocdepbl
K HOOChepe. BepHajickuil caural, 9T0 pa3yM — 3TO Ta CHJIA, KOTOpasl JeIaeT
9BOJIIONIMIO Tiestecoobpa3noii. Vcciemyst mporecehbl 3apoK/IeHusT KPUCTAJLIIOB 1101
TEeMU WA WHBIMH KOCMWYECKAMHU JIy9aMU B CJIEICTBUU OIPEICTICHHBIX XUMU-
qeckux peaknuit, Bepuaackuil npeamosaras HAJAYAE XUMU3Ma KOCMIIECKUAX
ayuqeit. Jlexkmuun MengeneeBa nmpousBesin Ha HEro OOJIBIIOE BIIEYATIIEHHE, HO
U3BeCTHasl TabJIMIA XMMUYECKUX 3JIEMEHTOB MOTJIA OBITH TOJIBKO HAYAJIOM Ha-
yKH 00 3j1eMeHTax. BO3MOXKHO, MacCOBbIE UUC/IA JIEMEHTOB MOTYT HCHUUCIISI-
ThCA COTHSIMH, B 3aBHCHUMOCTH OT WHTE€HCHUBHOCTH KOCMUYIECKUX W3JIyI€HUit?
Kocmuueckue styan monasiast Ha 3eMIIIO OT PA3IUIHBIX KOCMUYECKUAX TeJI, He-
cyT nadOpPMAIHIIO 00 ITUX TeJlaX, 10 CYTU SABJISAACH «COZHAHUEM» KOCMHIECKUX
00beKTOB. UeM BbIIIE YACTOTA 10 TOPCUOHHON INKaJe M MEHbIIEe KBAHTOBBIE
WHTEPBAJIbI KOCMUYECKUX U3JIy9YeHU, TeM ¢ OOJIBIITIM YCKOPEHUEM ITPOUCXOIAT
nHMOPMAIMOHHO-MBIC/IATE/IFHBIE TIPOIECCh Ha, 3emMite. MOXKHO ITPEIIIoI0KATh,
aro Beprajckuili paccMaTpuBaj MBIC/Ih KaK SHEPTUIO, MBICJIEHHYIO JHEPIHUIO,
KOTOPYIO HY?KHO HAYATh M3y4YaThb. | apMOHUYHOE yCTPOUCTBO KOCMOCA IIPEJI-
[oJIaraeT IOBBIIIEHNE YPOBHsI BHOPAIMOHHBLIX IIPOIECCOB B Guocdepe 3emiin
U YCKOPEHHeE IPOIECCOB (PU3UIECKOIO U MEHTAJBHOIO PAa3BUTHS IIPU ITOBBIIIE-
uun akruaoctu Cosana. B ciyuae qucbasamnca Moy daeMbIX [IJIAHETOH KOCMU-
YECKMX M3JIy4YeHWH U uX BocupuarueM (OCO3HAHUEM) Heu30EXKHbI IPUPO/IHbIE
KaTaKJIN3Mbl TON min wHOi cremenu. [lonnmas sto, Beprnasckuit cauran Tpu
3a/1a49u HanboJIee HACYIHBIMU — PA3BUTHE HAYYHBIX UCCJIEIOBAHMI, IIPOCBEIIe-
HUE W «TUTHEeHY MBICJIN» (<«HAJ0 He MO3BOJISATEH cebe JyMaTh O BCEM JyPHOM» ).
Tak poxKJaJIoCch ydeHue O YKU3HU-CO3HAHUU-MBICIH KOCMUYECKOI'O Machitada,
OCMBICJIEHAE KOTOPOT'O €IIe BIIEPEIN.

B 1926 romy Bepuasnckuii npuanMaeT perienne BepHyTbCs B Poccuro.

C 1927 roma u j1o camoit cmeptu Bepuajickuit nupexktop Broreoxumude-
ckoit jjaboparopun npu Axajgemun Hayk CCCP B Mockee. On paspabarbiBaer
nporpammy siepubix uccienoBannii B CCCP, cocrapisier KapTy MUHEDPAJIBHO-
CHIPBEBOIT 6a3bI CTPAHBI, KAK aKaJIEeMUK IIPUHIMAET aKTUBHOE YIaCTHE B YKU3HU
Axkanemun Hayxk CCCP.

Tospko TOUEMY-TO €ro PaboTh! IO KOHKPETHBIM UCCJIEIOBAHUSM U OIIBITAM
MyOJUKYIOT, & PabOThI CBSI3aHHBIE C €r0 HOBOW HAYYIHON MapagurMoil, HOBBIM
MUPOBO33DEHUEM B €CTECTBO3HAHUU, II0J] PA3HBIMU IIPEJIOraMU KJIaLyTCsl IO,
cykuo. Tak, mampumep, pabora «Haydrast MbIC/Ib Kak IJIAHETAPHOE SIBJIEHUE»
ObLi1a BIIEpBbIe OIIyOJINKOBaHA TOJIBKO B 1977 romy.

B 1936 roay crpany okyTaja TbMa, YIEHBIX IIEPECTAN BLITYCKATDH 3arpa-
HUILY, HAYAJINCH MAaCCOBLIE aPECTHI.

Bepnaickuit mpojiosKaeT BecT JHEBHUK. Korjaa Mbl YuTaeM 3TOT JTHEB-
HUK, Mbl BHJUM 4eJIOBEKA, KOTOPBI XOPOIIO IMOHUMAJI, YTO IIPOUCXOIUT BO-
KPYT, KOTOPBIil O0JIE3HEHHO BOCIIPUHUMAJT ITPOUCXOSINNE BOKPYT PA3PYIIEeHUSI.
B nueBHuke ects 3ammcu ¢ xapakrtepuctukoit CrajmHa, €CTbh 3alUCh O TOM,
9TO B CTPaHe CO3J[aHa «JIArepHas ITPOU3BOJICTBEHHAS CUJIa», MHOTHE CTPAHUIIBI
JHEBHUKA 10 TEM BPEMEHaM O3Hadajl PACCTPEJIbHYIO cTaThio. B cBoeMm mHeB-
HuKe BepHajckuil mbITaeTcs aHAJIM3UPOBATH, MCCJIEI0BATH MMPOUCXOJISINEE U,
BO3MOXKHO, OH JyMaeT O TOM, 4TO ero OyAyT YuTaTh MOTOMKHU. . . Jlern Bepras-
ckoro, ero ceia [eopruit — mpodeccop ncropun u noub Huna-Bpat, Kuam B
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Awmepure n Beprajickuii ¢ yKeHoit He UM BO3MOXKHOCTH ¢ HUMU BUIETHCs. B
1937 rony Bepmajckuit mepexuBaeT KpOBOU3JIUIHUE, B PE3yabTaTe KOTOPOTO
[IPOMCXOIUT BPEMEHHBII Iapajiud [IpaBoil PyKU, Bpadu OIIPEJEJISIIOT HesICHbIe
MIPOIIECCHI, TTPOUCXOJIAIINE B CEPJIIIE.

Ho, mecmoTpst Ha BCe TATOCTH W rOpecTH KOHKPETHOTO BPEMEHU U CBOEH
JIMIHON KU3HU, BepHaICKUi UCIOBEI0BAT NCTOPUIECKUN ONTUMHU3M. BepHai-
CKUil Bepws B HeOOpaTUMOCTH Hay4dHOro 3manus: «lIporeccol, monroToBiss-
[Iecsi MHOIO MUJLJIMAPJIOB JIET, He MOT'YT OCTaHOBUTHCs. OTCIO/Ia CIIeyeT, ITO
6uocdepa Hen36eKHO repeiter B Hoochepy, T.e. B XKIU3HU HAPOIOB IPOU30MIy T
cOOBITHUS , Hy’KHBIE JJIST 9TOTO, & HE ITOMY IMIPOIECCY TPOTHBOpeYaInues. 2KuBs
B cBOeM (DbU3MIECKOM Tejie B KOHKPETHOE BpeMsl KOHKPETHOTO IIPOCTPAHCTBA, B
CBOMX MBICTIX Beprasckuit Kut B OyaymmieM u cBoeil paboToi TpudINKaI 9TO
Oyytee.

C GoJtbIIIIM BOJTHEHIEM BCTpPeTH/I BepHaIcKuii n3BecTre 0 HavuaJjie BOWHBI.
15 urong 1941 rona Bepnaickuii BriepBble B 2KU3HU BBICTYIIUJI 110 PAJIUO0, B CBOEI
peun oH cka3ar: «B Moux mccaenoBaHUSX 110 PAINOAKTUBHOCTH 1 COTPYIHIIAI
¢ BesiukuM Pesepdopmiom, ¢ [Ixomm — ocHoBaresem pagmoreosioruu, co Cren-
cepoM, Majutopu u IpyrumMu y4eHBIME, B HACTOSIIEE BPEMs s COTPYIHUYAIO C
[TaneToMm, KOTOPBIN HAIle/I IPUIOT B AHIJIMU OT IIPEC/IeIOBAHNS TUTIEPOBCKUX
darmmucTos. . . B a1y qHU Ts2Kes10# 60pbOBI TPOTUB (PAIMMCTCKUX 3aXBATINKOB,
s IPUBETCTBYIO BAaC, MOM KOJIJIETHM TI0 HAyKe, U si TIyOOKO yOeXKIeH, UTO HAII
ob1mit Bpar 0y1eT CKOpo pa3dbuT U CIpaBeJIMBOCTh BOCTOPKECTBYeT». BepHa -
CKUiT 0bOpaInaics K yIeHbIM AHIJINK U BCETO MUPA, CAUTABIINM CBOUM JOJTOM
CBOMMU MBICJISIMA ¥ PAbOTOl IIPOTUBOCTOATE (pamu3My. BepHa ickuil mnpejicka-
3aJ1 1100e 1y coBeTckoit apmuu B CTaJuHIPaJICKON OUTBE U CBSI3aJI €€ ¢ HAYAJIOM
HOOChEDHI.

B 1943 roxy, k BocbmugecsaTmwiernio, Bepruasjckuit Ob11 Harpaxaen Cra-
JIMHCKOM tipemueit. B cBoeit Teserpamme CTajuHy O 9TOMY MOBOJY OH ITHACAJT:
«IIporry u3 mosrygennoit muoio npemun Bartero numenu nanpasuts 100 000 py-
Gsieit Ha HyKIBI 000POHBI, Kyia Bel Haliiere Hy:KHBIM. Halme mejio npagoe u
ceffyac CTUXUIHO COBIAIAET C HACTYILIEHUEM HOOC(HEPHI — HOBOI'O COCTOSIHUSI
00JIACTU KU3HM, OCHOBBI HCTOPHUYIECKOTO IIPOIECCa, KOT/Ia YM 9eIOBEKa CTAHO-
BUTCS M€OJIOTMYECKON IIaHeTHON cuitoii. Akagemuk B. Bepranckwuiis.

B 1943 roay yrmina u3 XKu3HU XKeHa, APYT U cOTpyaHuNa BepHaickoro —
Haramust Eroposra Beprajckas (Crapuiikas), ¢ KOTOpoil y4aeHblii poxkui 56
JIeT YKU3HU. Y YEHBII [0/IaJ1 IIPOIIEHNEe Pa3PellnTh eMy yeXaTh K JeTssM B Ame-
puky. Ha mpomenne nmpumen orka3. Bekope y Bepnanckoro mpomsorio Kpo-
BOUW3/IMSHUE W Uepe3 JBe Heenu, 6 saBapd 1945 . OH HNOKHHYJ 3TOT MUP.
W3 nueBHuka Beprajckoro: «CrTpaxa cMepTH y MeHsI HET U HHUKOIJIA He ObLIO.
YyBCTBO MI'HOBEHHOCTH KM3HU — YYBCTBO BEYHOCTU U IYBCTBO HUYTOXKHOCTHU
nounMaHus okpyxkatoriero! U cebst camoro!y, «B cymuocTn Ta 66CKOHEIHOCTD
u GecIipeIeIbHOCTD, KOTOPYIO MBI UyBCTBYEM BOKDYT B IPUPOE, HAXOIAUTCH U
B HAC CAMUX...<«Jacy »KU3HM — KaK MAJIO BPEMEHU U KaK OECKOHEYHO MHOIO
COJIEPKAHUT.

O Bepna/ickoM HeJIb3sl PACcCKa3aTh Ha MIECTH CTPAHUIAX, B 9TOM KOPO-
TKOM 3CCe s HE YIOMSIHYJIa O MHOI'MX BaKHBIX MPOOJIEMaX, KOTOPBIE ITOIHSLT
VU€eHBIl, TAKUX, HAIIPUMED, KaK mIpobyiema aBTOTpodHOCTH dejioBedecTBa. K
CYACTHIO, Y HAC COXPAHWINCH HAaydHBIE PAOOTH BepHaICKOro m ero JIHEBHUKH,
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MBI MO2KEM YHUTATh UX U COIOCTABJIATH CETOMHSINHAE HAYYIHBIE JOCTHKEHUS C
ero MpIC/IAME U TeopusmMu. lluTaTel, npuBeeHHbBIE MHOIO B JJAHHOM 3CCE B3SThHI
u3 xkuur: B. . Bepuanckuit «/IneBuuku 1917-1921», Haykosa [lymka, Kues,
1997r., B.U. Bepunanckmii. 3-Bo «Ilnaneras, Mocksa, 1988 1., Bepuaackmnii.
Nznarensckuit JTom [Manser Amonunmsuau, Mocksa, 2001 1.

ITnraTer U3 HaydIHBIX pabOT mMpuBeAeHBI 1Mo m3manuio: B. . Bepuamckuit
«Buocdepa u Hoocdepay, Aitpuc-IIpecc, Mocksa, 2009 r. Muoit Tak ke ObLiIa
ucnoJib3oBana kKHura [.I1. AkceroBa «B. . Bepuajckuii. O mpupoje BpeMeHn
u npoctpanctsay, N3-Bo «Kpacanap», Mocksa, 2010T.

3akaHYMBas ITO ICCE O MBICJUTEE, YICHOM U IPaKJIaHUHE, MHE XOUETCsT
IIPUBECTH €Ille OJHO BbICKa3biBaHne BepHaackoro. B oauH U3 caMbIX TSIKeJIBIX
MIEPHUOJIOB CBOEHT JKU3HMU, BBICTYIIas ¢ JokJaa oM B Akajiemun Hayk, Bepaajgckmit
ckazaJ: «MbI epexkuBaeM He KPHU3UC, BOJTHYIOIINN cIabble IyIIN, a BeJIndaii-
Uil TIepesioM Hay9YHOU MBICU 4YejIoBedecTBa. . . MoxKer HedTo 1mo100H0e OBLIO
B 3IIOXY 3aPOKJICHUS SJIJIMHCKON HaydHOI MbIcau, 3a 600 jeT 1o Halmeil 3pbl.
Crost HA 9TOM TIEpesIOMe, OXBATHIBas B30OPOM PACKPBIBAIOIIEEC OYyIyIee, — MbI
IOJIZKHBI OBITH CYACTIIUBBL, ITO CY?KIEHO B CO3JAHNN TAKOTO OYIYIIEro y9IacTBO-
BaTh».

Korma Ha mocseaeil KapTuHe 3eMHOM
BBIIBETET KUCTU CJIE],

3aCOXHYT BCE TIOOWKH U TIOMPET
MOCJICTHAN NCKYCCTBOBE/,

MBI OTJIOXHEM JIECSITOK BEKOB,

U BOT B HA3HAYEHHBIN Jac

IIpenseunsrit Mactep Beex Macrepos

3a paboTy ycajuT Hac.

Torna Oymer KaxKplif, KTO MACTEPOM OBLI,
Ha CTYyJIe CHUIETb 30JI0TOM

U II0 XOJICTUHE B JIECSATOK MUJIb

[IACATh KOMETHBIM XBOCTOM.

1 rombko Macrep moxBaauT Hac,

u yrupekHer TobKo OH,

¥ HUKOTO TOTJIa HE IIPEIBCTUT

HU JIEHeT, HU CJIaBBI 3BOH:

JINIITB PAJIOCTh pabOThI HA HOBOI 3Be3/e —
JaHa OyIeT KaxKJIoMy TaM. . .

P. Kunaumne. «Ilociianue»

24.03.2013
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TEMATHUKA TA META >KYPHAJIY

«MixkaucrnunpaiHapHi JOCTiIKEeHHST CKAQJHAX CHCTEM» — IIe PEereH30BaHuUit
KyPpHAJI i3 BIIBHUM JOCTYIIOM, IO TMyOJIKY€E MOCTITHUIIBKI CTATTI, OTJIsAIN, TMO-
BiJIOMJIeHHSI, TUCKYCiitHi JiucTu, icropuyni Ta dimocodehbki cTyail B ycix oba-
CTSX TeOPil CKJIAJHUX CUCTEM JIJIsl BIPOBAI2KEHHST B3AEMOJTIT Mi2K HAyKOBISIMU 3
pi3HUX TajIy3eil MaTeMaTuKu, (pizuku, 6iosorii, XiMil, iHpopMaTUKM, COIIOIONII,
ekoHOMikU Ta iH. Mu 0akaeMo 3alpONOHYBATH iCTOTHE JIZKEPENIO aKTyaJbHOI
indopmariii mpo cBiT ckIaIHUX cucTeM. 2KypHaJI Ma€ CTATH JACTUHOIO HAYKO-
Boro hopyMy, BiIKPUTOTO Ta IIKABOTO SIK JIJIsI €KCIIEPTIB 3 pi3HUX obJs1acTeit, Tak
1 /It MUPOKOL ayIUTOPil YMTadiB: BiJl CTYJIEHTIB JI0 JOCBITYEHUX JIOCJITHUKIB.
ZKypHas Hajae MOXKJIUBICTD JjIs HAYKOBIUB 3 PI3HUX Tasly3eil Tpe3eHTYBATU
HOBI i1€l, rimore3u, moHepcbKi gocaimkenns. OcobIMBO 3aIPOITYIOTHCS JI0 IIy-
Guiikallil aBTOpH HAYKOBUX cTaTell Ta (aje He TLIbKK) HAYKOBUX OIJISIZIB, IIPOTE
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