
Interdisciplinary Studies of Complex Systems

No. 9 (2016) 5–24

c© Yuri I. Manin

Time Between Real and Imaginary: what
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Abstract. For about a century, a great challenge for theoretical physics
consisted in understanding the role of quantum mode of description of our
Universe (“quantum gravity”). Einstein space–times on the scale of ob-
servable Universe do not easily submit to any naive quantization scheme.
There are better chances to concoct a satisfying quantum picture of the
very early space–time, near the Big Bang, where natural scales of events
like inflation extrapolated from current observations resist any purely clas-
sical description and rather require quantum input.

Many physicists and mathematicians tried to understand the quantum
early Universe, sometimes unaware of input of the other community. One
of the goals of this article is to contribute to the communication of the two
communities. In the main text, I present some ideas and results contained
in the recent survey/research papers [Le13] (physicists) and [MaMar14],
[MaMar15] (mathematicians).

Introduction and survey

0.1. Relativistic models of space–time: Minkowski signature. Most
modern mathematical models in cosmology start with description of space–time
as a 4–dimensional pseudo–Riemannian manifold M endowed with metric

ds2 =
∑

gikdx
idxk

of signature (+,−,−,−) where + refers to time–like tangent vectors, whereas
the infinitesimal light–cone consists of null–directions. Each such manifold is
a point in the infinite–dimensional configuration space of cosmological models.

Basic cosmological models are constrained by Einstein equations

Rik −
1

2
Rgik + Λgik = 8πGTik

and/or additional symmetry postulates, of which the most essential for us here
are the so called Bianchi IX space–times, here with symmetry group SO(3),
cf. [To13] and [Ne13] for a recent context.
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In this model, the space–time is fibered over the semi–axis of a global
(“cosmological”) time t. Fibres are homogeneous spaces over SO(3), and the
negative Einstein metric −ds2 induces on them a metric of constant curvature.
In order to write ds2 in convenient coordinates, we choose a fixed time–like
geodesic (“observer’s history”) along which ds2 is dt2, and coordinatize each
space section at the time t by the invariant distance r from the observer and
two natural angle coordinates θ, φ on the sphere of radius r. By rescaling the
radial coordinate, we may assume that the curvature constant k takes one of
three values: k = ±1 or 0.

This rescaling produces the natural unit of length, when k 6= 0, and the
respective unit of time is always chosen so that the speed of light is c = 1.

The Friedman–Robertson–Walker (FRW) metric is then given by the for-
mula

ds2 := dt2 −R(t)2
ï

dr2

1− kr2 + r2(dθ2 + sin2 θ dφ2)

ò
(0.1)

0.2. Input of observations. One of the most counter–intuitive discoveries
of the XX–th century cosmology was the “observability” of cosmological time
t and possibility to estimate its natural scale (“age of our Universe”). We now
know that it is about 14 · 109 years, or five million times longer than the age of
human civilisation. Together with considerable homogeneity of the observable
space section (local metric disturbances caused by galaxies are counted as neg-
ligible) this gives considerable weight to the results of mathematical studies of
Bianchi IX SO(3)–models.

A robust version of observable global time is the inverse temperature 1/kT
of the cosmic microwave background (CMB) radiation. It is accepted that the
current value of it measures the global age of our Universe starting from the
time when it stopped to be opaque for light, about 38 · 104 years after the Big
Bang. Near the Big Bang our Universe was extremely hot, and its evolution is
measured by its cooling.

Another version of time is furnished by measurements of the redshift of
“standard candles” in observable galaxies, thus putting their current appear-
ance on various cosmological time sections of our Universe (Hubble’s Law).

Remarkably, generally accepted physical pictures of the Universe involve
also unimaginably small periods of cosmological time: between 10−40 and 10−30

seconds after the Big Bang the radius of space sections has grown 1030 times
(“inflation era”), with speed many orders of magnitude exceeding the speed of
light. The inflation period is postulated in order to explain the homogeneity
of space–time sections of observable Universe (on the scale where galaxies are
negligible perturbations).

Last but not least: dynamical equations which must be satisfied by met-
rics of space–time are defined by the choice of Lagrangian (or Hamiltonian
as soon as cosmological time variable is introduced). Besides the metric cur-
vature, this Lagrangian may contain contributions from (models of) massive
matter, electro–magnetic field etc. Observations led to the picture of the so
called “dark matter” and “dark energy” participating only in gravitational in-
teraction. Their cosmological influence far exceeds that of usual matter, say,
content of galaxies. In particular, non–vanishing Einstein’s cosmological con-
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stant Λ responsible for the “dark energy” effect must explain the observable
accelerating expansion of the Universe.

For more details, see [AU], [Bal].

0.3. Primeval chaos: going backwards in time. As we have already
stressed, in mathematical models of general relativity, the notion of time is
local: along each oriented geodesic whose tangent vectors lie inside respec-
tive light cones, the differential of its time function dt is ds restricted to this
geodesic. Applying this prescription formally, we see that even in a flat space–
time, along space–like geodesics time becomes purely imaginary, whereas light–
like geodesics along which time “stays still”, form a wall. The respective wall–
crossing in the space of geodesics produces the Wick rotation of time, from
real axis to the pure imaginary axis. Along any light–like geodesic, “real” time
stops, however “pure imaginary time flow” makes perfect sense appearing e. g.,
as a variable in wave–functions of photons.

In the main text, we will describe models (suggested in [MaMar14–15])
in which cosmological time becomes imaginary also at the past boundary of the
universe t = 0. However, in these models the reverse Wick rotation does not
happen instantly. Instead, it includes the movement of time along a random
geodesic curve in the complex half plane endowed with its standard hyperbolic
metric.

Moreover, the set of all such geodesics (modulo a subgroup of PSL(2,Z))
is endowed with much studied invariant measure, and we regard the result-
ing classical statistical system as an approximation to an (unknown) quantum
description of the early Universe.

Our primary motivation (cf. [MaMar14]) was the desire to explain the
pure formal coincidence of the dynamics of two very different systems:

A. Mixmaster Universe. In this model, one studies Bianchi IX SO(3)
with metric that in appropriate coordinates takes form ds2 = dt2 − a(t)dx2 −
b(t)dy2−c(t)dz2, t > 0. It turns out that the respective Einstein equations have
a family of Kasner’s exact solutions a(t) = tpa , b(t) = tpb , c(t) = tpc . Moreover,
mathematical methods of qualitative studies of dynamical systems suggest that
a generic solution of the relevant Einstein equations, traced backwards in time
towards the Big Bang moment t = 0, can be approximated by an infinite
sequence of Kasner’s solutions.

B. Hyperbolic billiard. The relevant dynamical system is the hyperbolic
billiard on a standard fundamental domain for PSL(2,Z) (or a finite index
subgroup), encoded in the Poincaré return map with respect to the boards of
this billiard: see [Ar24], [Se85], [Le13], [MaMar15].

However, accommodating Mixmaster Universe in the hyperbolic billiard
picture seems to require an analytic continuation of Kasner’s solutions. It is
not known, and according to some computer assisted studies, time in Kasner’s
models does not admit the necessary analytic continuation involving space–like
coordinates as well, cf. [LuCh13].

In [MaMar15], we avoided this obstacle by looking at the geometry of
space–times from the perspective of imaginary time axis. This means that we
start with space–times with metrics of the Euclidean signature (+,+,+,+). In
the framework of cosmology, they correspond to Bianchi IX SU(2)–symmetric
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space–times, where all coordinates generally can take complex values, so that
it makes sense to trace time flow along the relevant geodesics.

0.4. Relativistic models of space–time: Euclidean signature. In these
models, space–times satisfying a complexified version of Einstein equations
are Bianchi IX four–dimensional manifolds, fibered over domains of complex
plane of time, whose fibres are SU(2)–homogeneous spaces (rather than SO(3)–
homogeneous spaces in the cases of Minkowski signature). By analogy with
Yang–Mills instantons, they are sometimes called gravitational instantons.

More precisely, consider the SU(2) Bianchi IX model with metric of the
form

g = F

Å
dµ2 +

σ2
1

W 2
1

+
σ2
2

W 2
2

+
σ2
3

W 2
3

ã
. (0.2)

Here µ is the relevant version of the cosmological time, (σj) are SU(2)–invariant
forms along space–sections with dσi = σj ∧ σk for all cyclic permutations of
(1, 2, 3), and F is a conformal factor.

By analogy with the SO(3) case and metric dt2 − a(t)2dx2 − b(t)2dy2 −
c(t)2dz2, in the main text we will treat Wi (as well as some natural monomials
in Wi and F ) as SU(2)–scaling factors.

It is important that, contrary to the SO(3)–case, generic anti–self–dual
Einstein metrics (solutions of Einstein equations) in the SU(2)–case can be
written explicitly in terms of elliptic modular functions whereas their chaotic
behaviour along geodesics in the complex half–plane of time becomes only a
reflection of the chaotic behaviour of the respective billiard ball trajectories.

A natural quantisation scheme of gravitational instantons involves non–
commutative deformations of their toric space sections. Focussing on this quan-
tisation scheme, in [MaMar15] we gave additional arguments about relationship
between Mixmaster chaos and quantum mechanics of the Big Bang, but this
time not involving Kasner’s solutions at all: see section 2 of the main text.

0.5. Boundaries of space–times. The statement invoked above that the
generic SO(3) space–times traced back to t→ 0 can be approximated by an in-
finite sequence of Kasner’s solutions is mathematically formulated and proved
by considering a partial compactification of the respective phase–spaces and
studying the geometry of separatrices on the boundary of a partial compacti-
fication of these phase spaces: see [BoNo73], [Bo85].

Another type of boundaries was considered in [MaMar14], where we tried
to produce algebraic–geometric models of Roger Penrose’s “aeons”: see [Pe10]
and [Pe64]–[Pe02]. According to his scheme, the moment t = 0 of our cosmo-
logical time might have been preceded by evolution of another Universe, the
cold death of which was a prequel of our Big Bang. According to Penrose,
conformal classes of the respective metrics furnish a continuous transition from
the previous aeon to the next one.

Since a conformal change of the metric does not change the relevant light
cone in the tangent space at any point of space–time, we suggested in [Ma-
Mar14] matching pairs of boundaries between aeons, in which the projective
compactification of cold Minkowski space–time of previous aeon matches the
blown up divisor over the Big Bang point of the next aeon.
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***

Cosmology has its own singular place in the body of scientific knowledge:
the same quest for the meaning of Universe influences philosophy, poetry, faith
(cf. two remarkable books [Lam07], [Lam15] about life, faith and research of
Canon Georges Lemaitre, the first discoverer of Hubble’s Law and Big Bang
picture).

I will therefore close this introduction quoting the wonderful lines by
Steven Weinberg ([We77]):

As I write this I happen to be in an airplane at 30,000 feet, flying over
Wyoming en route home from San Francisco to Boston. Below, the earth looks
very soft and comfortable — fluffy clouds here and there, snow turning pink
as the sun sets, roads stretching straight across the country from one town to
another. It is very hard to realize that this is just a tiny part of an overwhelm-
ingly hostile universe. It is even harder to realise that this present universe
has evolved from an unspeakably unfamiliar early condition, and faces a future
extinction of endless cold or intolerable heat. The more the universe seems
comprehensible, the more it also seems pointless.

But if there is no solace in the fruits of our research, there is at least some
consolation in the research itself. Men and women are not content to comfort
themselves with tales of gods and giants, or to confine their thoughts to the
daily affairs of life; they also build telescopes and satellites and accelerators,
and sit at their desks for endless hours working out the meaning of the data
they gather. The effort to understand the universe is one of the very few things
that lifts human life a little above the level of farce, and gives it some of the
grace of tragedy.

Steven Weinberg. “The first three minutes.”

1 Cosmological time, elliptic integrals, and
upper complex half–plane

1.1. Minkowski signature: late Universe. Following [To13] and [Ne13],
we consider the cosmological time at the late stage of the FRW model (0.1).

It is convenient to replace r in (0.1) by the third dimensionless “angle”
coordinate χ := r/R(t). Then (0.1) becomes

ds2 := dt2 −R(t)2
[
dχ2 + S2

k(χ)(dθ2 + sin2 θ dφ2)
]
, (1.1)

where Sk(χ) = sin χ for k = 1; χ for k = 0; and sinh χ for k = −1.
This rescaling produces the natural unit of length, when k 6= 0, and the

respective unit of time is always chosen so that the speed of light is c = 1.
Dynamic in this model is described by one real function R(t): it increases

from zero at the Big Bang of one aeon to infinity.
We scale R(t) by putting R = 1 “now”, as in [To13]. Notations in [To13]

slightly differ from ours. In his formula for metric (2), r is our χ, and fk(r) is
our Sk(χ).
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This function is constrained by the Einstein–Friedman equations (here
with cosmological constant Λ = 3), which leads to the introduction of the
elliptic curve given by the equation in the (Y,R)–plane

Y 2 = R4 + aR+ b (1.2)

(see [To13], equation (3), and [Ne13], eq. (9), where their S is the same as
our R).

Besides the proper time t, and the scale factor R(t), global time may
be measured by its conformal version τ , which according to [To], formula (3),
may be given as the Abelian integral along a real curve on the complex torus,
Riemann surface of the elliptic curve (1.2):

τ ∼=
∫ R(t)

0

dR

Y
. (1.3)

Physical interpretation of the coefficients a, b as characterising matter and radi-
ation sources in Einstein equations for this model for which we refer the reader
to [OlPe05] and [To13], shows that in principle a, b also depend on time. Then
(1.2) describes a family of elliptic curves parametrized in a way that is clas-
sic and well known to algebraic geometers. In particular, cosmological time
variable moves along one of the versions of base families of elliptic curves.

Universal families of elliptic curves are parametrized by upper complex
half–plane and its quotients (modular curves), and we see now that a family
of elliptic curves (1.2) naturally emerges in the description of a late stage of
evolution of the FRW model. In a pure mathematical context, the reader
is invited to compare our suggestion with the treatment of the Painlevé VI
equation in [Ma96] and the whole hierarchy of Painlevé equations in [Ta01].

Now we will discuss a totally different way in which the chaotic evolution
in Mixmaster early Universe leads to the appearance of modular curves as well.

1.2. Minkowski signature: early Universe and Mixmaster chaos. As
a model of the early universe emerging after the Big Bang we take here the
Bianchi IX space–time, admitting SO(3)–symmetry of its space–like sections.
We will choose coordinates in which its metric takes the following form:

ds2 = dt2 − a(t)2dx2 − b(t)2dy2 − c(t)2dz2, (1.4)

where the coefficients a(t), b(t), c(t) are called scaling factors.
A family of such metrics satisfying Einstein equations is given by Kasner

solutions,
a(t) = tp1 , b(t) = tp2 , c(t) = tp3 (1.5)

in which pi are points on the real algebraic curve∑
pi =

∑
p2i = 1. (1.6)

These metrics become singular at t = 0 which is the Big Bang moment.
Around 1970, V. Belinskii, I. M. Khalatnikov, E. M. Lifshitz and I. M. Lif-

shitz argued that almost every solution of the Einstein equations for (1.4) traced
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backwards in time t → +0 can be approximately described by a sequence of
solutions (1.5) or equivalently, of points (1.6): see [KLiKhShSi85] for a later
and more comprehensive study. The n–th point of this sequence begins the re-
spective n–th Kasner era, at the end of which a jump to the next point occurs,
see below.

A mathematically careful treatment of this discovery in [BoNo73] has
shown that this encoding is certainly applicable to another dynamical system
which is defined on the boundary of a certain compactification of the phase
space of this Bianchi IX model and in a sense is its limit.

Construction of this boundary involves a nontrivial real blow up at the
t = 0, see details in [Bo85]. The resulting boundary is an attractor, it supports
an array of fixed points and separatrices, and the jumps between separatrices
which result from subtle instabilities account for jumps between successive
Kasner’s regimes, corresponding to different points of (1.6).

In what sense this picture approximates the actual trajectories, is a not
quite trivial question: cf. the last three paragraphs of the section 2 of [KLiKh-

ShSi85], where it is explained that among these trajectories there can exist
“anomalous” cases when the description in terms of Kasner eras does not make
sense, but that they are, in a sense, infinitely rare. See also the recent critical
discussion in [LuCh13].

Here are some details of the classical description.

(a) Continued fractions. We denote by Z, resp. Z+, the set of integers,
resp. positive integers; Q, resp. R is the field of rational, resp. real numbers.
For x ∈ R, we put [x] := max {m ∈ Z |m ≤ x}.

Irrational numbers x > 1 admit the canonical infinite continued fraction
representation

x = k0 +
1

k1 +
1

k2 + . . .

=: [k0, k1, k2, . . . ], ks ∈ Z+ (1.7)

in which k0 := [x], k1 = [1/(x − k0)] etc. Notice that our convention differs
from that of [KLiKhShSi85]: their [k1, k2, . . . ] means our [0, k1, k2, . . . ].

(b) Transformation T . The (partial) map T̃ : [0, 1]2 → [0, 1]2 is defined by

T̃ : (x, y) 7→
Å

1

x
−
ï

1

x

ò
,

1

y + [1/x]

ã
, (1.8)

If both coordinates (x, y) ∈ [0, 1]2 are irrational (the complement is a subset of
measure zero), we have for uniquely defined ks ∈ Z+:

x = [0, k0, k1, k2, . . . ], y = [0, k−1, k−2, . . . ].

Then
1

x
−
ï

1

x

ò
= [0, k1, k2, . . . ],

1

y + [1/x]
=

1

k0 + y
= [0, k0, k−1, k−2, . . . ].
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On this subset, T̃ is bijective and has invariant density

dx dy

ln 2 · (1 + xy)2

(cf. [May87]).
Thus we may and will bijectively encode irrational pairs (x, y) ∈ [0, 1]2 by

doubly infinite sequences

(k) := [. . . k−2, k−1, k0, k1, k2, . . . ], ki ∈ Z+

in such a way that the map T̃ above becomes the shift of such a sequence
denoted T :

T (k)s = ks+1. (1.9)

(c) Continued fractions and Mixmaster chaos. Any point (pa, pb, pc) in
(1.6) can be obtained by choosing a unique u ∈ [1,∞], putting

p
(u)
1 := − u

1 + u+ u2
∈ [−1/3, 0], p

(u)
2 :=

1 + u

1 + u+ u2
∈ [0, 2/3],

p
(u)
3 :=

u(1 + u)

1 + u+ u2
∈ [2/3, 1] (1.10)

and then rearranging the exponents p
(u)
1 ≤ p(u)2 ≤ p(u)3 by a bijection (1, 2, 3)→

(a, b, c).
As we have already explained, a “typical” solution γ of Einstein equations

(vacuum, or with various energy momentum tensors) with SO(3)–symmetry of
the Bianchi IX type, followed from an arbitrary (small) value t0 > 0 in the
reverse time direction t → +0, oscillates close to a sequence of Kasner type
solutions.

Somewhat more precisely, introduce the local logarithmic time Ω along

this trajectory with inverted orientation. Its differential is dΩ := − dt

abc
, and

the time itself is counted from an arbitrary but fixed moment. Then Ω→ +∞
approximately as − log t as t→ +0, and we have the following picture.

As Ω ∼= − log t → +∞, a “typical” solution γ of the Einstein equations
determines a sequence of infinitely increasing moments Ω0 < Ω1 < . . . < Ωn <
. . . and a sequence of irrational real numbers un ∈ (1,+∞), n = 0, 1, 2, . . ..

The time semi–interval [Ωn,Ωn+1) is called the n–th Kasner era for the
trajectory γ (in [Le13], our eras are called epochs). Within the n–th era, the
evolution of a, b, c is approximately described by several consecutive Kasner’s
formulas. Time intervals where scaling powers (pi) are constant are called
Kasner’s cycles (in [Le13], our cycles are called eras).

The evolution in the n–th era starts at time Ωn with a certain value
u = un > 1 which determines the sequence of respective scaling powers during
the first cycle (1.10):

p1 = − u

1 + u+ u2
, p2 =

1 + u

1 + u+ u2
, p3 =

u(1 + u)

1 + u+ u2

The next cycles inside the same era start with values u = un − 1, un − 2, . . . ,
and scaling powers (1.10) corresponding to these numbers, rearranged corre-
sponding to a bijection (1, 2, 3) → (a, b, c) which is in turn identical to the



Time Between Real and Imaginary 13

previous one, or interchanges b and c (see [MaMar02] or [Le13] for a modular
interpretation).

After kn := [un] cycles inside the current era, a jump to the next era
comes, with parameter

un+1 =
1

un − [un]
. (1.11)

Moreover, ensuing encoding of γ’s and respective sequences (ui)’s by con-
tinued fractions (1.7) of real irrational numbers x > 1 is bijective on the set of
full measure.

Finally, when we want to include into this picture also the sequence of
logarithmic times Ωn starting new eras, we naturally pass to the two–sided
continued fractions and the transformationn T . Here are some details.

(d) Doubly infinite sequences and modular geodesics. Let H := {z ∈
C, Im z > 0} be the upper complex half–plane with its Poincaré metric
|dz|2/|Im z|2. Denote also by H := H ∪ {Q ∪ {∞}} this half–plane completed
with cusps.

The vertical lines Re z = n, n ∈ Z, and semicircles in H connecting pairs
of finite cusps (p/q, p′/q′) with pq′−p′q = ±1, cut H into the union of geodesic
ideal triangles which is called the Farey tessellation.

Following [Ar24], [Se85], consider the set of oriented geodesics β’s in H
with ideal irrational endpoints in R. Let β−∞, resp. β∞ be the initial, resp.
the final point of β. Let B be the set of such geodesics with β−∞ ∈ (−1, 0),
β∞ ∈ (1,∞). Put

β−∞ = −[0, k0, k−1, k−2, . . . ], β∞ = [k1, k2, k3, . . . ], ki ∈ Z+, (1.12)

and encode β by the doubly infinite continued fraction

[. . . k−2, k−1, k0, k1, k2, . . . ]. (1.13)

The geometric meaning of this encoding can be explained as follows. Consider
the intersection point x = x(β) of β with the imaginary semiaxis in H. Moving
along β from x to β∞, one will intersect an infinite sequence of Farey triangles.
Each triangle is entered through a side and left through another side, leaving
the ideal intersection point (a cusp) of these sides either to the left, or to the
right. Then the infinite word in the alphabet {L,R} encoding the consecutive
positions of these cusps wrt β will be Lk1Rk2Lk3Rk4 . . . Similarly, moving from
β−∞ to x, we will get the word (infinite to the left) . . . Lk−1Rk0 .

We can enrich the new notation . . . Lk−1Rk0Lk1Rk2Lk3Rk4 . . . (called cut-
ting sequence of our geodesic in [Se85]) by inserting between the consecutive
powers of L,R notations for the respective intersection points of β with the
sides of Farey triangles. So x0 := x = x(β) will be put between Rk0 and Lk1 ,
and generally we can imagine the word

. . . Lk−1x−1R
k0x0L

k1x1R
k2x2L

k3x3R
k4 . . . (1.14)

Since the Farey tessellation is acted upon by the modular group PSL(2,Z)
and its hyperbolic extension including orientation changing isometries of H, we
may present another version of the geometric description of geodesic flow. This
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is an equivalent dynamical system which is the triangular hyperbolic billiard
with infinitely distant corners (“pockets”): see [Ar24], [Se85], [Le13], [Ma-
Mar15].

Here we use the term “hyperbolic” in order to indicate that sides (boards)
of the billiard and trajectories of the ball (“particle”) are geodesics with respect
to the hyperbolic metric of constant curvature −1 of the billiard table. This is
not the standard meaning of the hyperbolicity in this context, where it usually
refers to non–vanishing Lyapunov exponents.

(e) Proposition. All hyperbolic triangles of the Farey tessellation of H
are isomorphic as metric spaces.

For any two closed triangles having a common side there exists unique
metric isomorphism of them identical along this side. It inverts orientation
induced by H. Starting with the basic triangle ∆ with vertices {0, 1, i∞} and
consecutively using these identifications, one can unambiguously define the map
b : H → ∆.

Any oriented geodesic on H with irrational end–points in R is sent by the
map b to a billiard ball trajectory on the table ∆ never hitting corners.

All this is essentially well known since at least [Ar24].
It is also worth noticing that although all three sides of ∆ are of infinite

length, this triangle is equilateral in the following sense: there exists a group
S6 of hyperbolic isometries of ∆ acting on vertices by arbitrary permutations.
This group has a unique fixed point ρ := exp(πi/3) in ∆, the centroid of ∆.

In fact, this group is generated by two isometries: z 7→ 1 − z−1 and
symmetry with respect to the imaginary axis.

Three finite geodesics connecting the centre ρ with points i, 1 + i,
1 + i

2
respectively, subdivide ∆ into three geodesic quadrangles, each having one
infinite (cusp) corner. We will call these points centroids of the respective sides
of ∆, and the geodesics (ρ, i) etc. medians of ∆.

Each quadrangle is the fundamental domain for PSL(2,Z).

(f) Billiard encoding of oriented geodesics. Consider the first stretch of
the geodesic β encoded by (1.14) that starts at the point x0 in (0, i∞). If
k0 = 1,the ball along β reaches the opposite side (1, i∞) and gets reflected to
the third side (0, 1). If k0 = 2, it reaches the opposite side, then returns to the
initial side (0, i∞), and only afterwards gets reflected to (0, 1).

More generally, the ball always spends k0 unobstructed stretches of its
trajectory between (0, i∞) and (1, i∞), but then is reflected to (0, 1) either
from (1, i∞) (if k0 is odd), or from (0, i∞) (if k0 is even). We can encode this
sequence of stretches by the formal word∞k0 showing exactly how many times
the ball is reflected “in the vicinity” of the pocket i∞, that is, does not cross
any of the medians.

A contemplation will convince the reader that this allows one to define
an alternative encoding of β by the double infinite word in three letters , say
a, b, c, serving as names of the vertices {0, 1, i∞}.

(g) Kasner’s eras in logarithmic time and doubly infinite continued frac-
tions. Now we will explain, how the double infinite continued fractions enter
the Mixmaster formalism when we want to mark the consecutive Kasner eras
upon the t–axis, or rather upon the Ω–axis, where Ω := −log

∫
dt/abc



Time Between Real and Imaginary 15

In the process of construction, these continued fractions will also come
with their enrichments.

We start with fixing a “typical” space–time γ whose evolution with t→ +0
undergoes (approximately) a series of Kasner’s eras described by a continued
fraction [k0, k1, k2, . . . ], where ks is the number of Kasner’s cycles within s–th
era [Ωs,Ωs+1). We have enriched this encoding by introducing parameters us
which determine the Kasner exponents within the first cycle of the era number
s by (1.5). A further enrichment comes with putting these eras on the Ω–axis.
According to [KLiKhShSi85], [BoNo73], [Bo85], if one defines the sequence of
numbers δs from the relations

Ωs+1 = [1 + δsks(us + 1/{us})]Ωs,

then complete information about these numbers can be encoded by the exten-
sion to the left of our initial continued fraction:

[. . . , k−1, k0, k1, k2, . . . ] (1.15)

in such a way that
δs = x+s /(x

+
s + x−s )

where
x+s = [0, ks, ks+1, . . . ], x−s = [0, ks−1, ks−2, . . . ]. (1.16)

The following result established in [MaMar15] shows that cosmological time can
be approximately measured in terms of geodesic length of path of the billiard
ball.

1.3. Theorem. Let a “typical” Bianchi IX Mixmaster Universe be encoded
by the double–sided sequence (1.15). Consider also the respective geodesic in
H with its enriched encoding (1.14).

Then we have “asymptotically” as s→∞, s ∈ Z+:

log Ω2s/Ω0 ' 2
s−1∑
r=0

dist (x2r, x2r+1), (1.17)

where dist denotes the hyperbolic distance between the consecutive intersection
points of the geodesic with sides of the Farey tesselation as in (1.14).

The formula (1.17) shows that the distance measured along a geodesic can
be compared to (doubly) logarithmic cosmological time.

During the stretch of time/geodesic length which such a geodesic spends
in the vicinity of a vertex of ∆, the respective space–time in a certain sense can
be approximated by its degenerate version, corresponding to the vertex itself,
and this will justify considering below the respective segments of geodesics as
the “instanton Kasner eras”.

1.4. Riemannian signature: Bianchi IX models with SU(2)–symmetry.
Consider the SU(2) Bianchi IX model with metric of the form

g = F

Å
dµ2 +

σ2
1

W 2
1

+
σ2
2

W 2
2

+
σ2
3

W 2
3

ã
. (1.18)



16 Yuri I. Manin

Here µ is cosmological time, (σj) are SU(2)–invariant forms along space–
sections with dσi = σj ∧ σk for all cyclic permutations of (1, 2, 3), and F is
a conformal factor.

By analogy with the SO(3)–case and metric dt2 − a(t)2dx2 − b(t)2dy2 −
c(t)2dz2, we may and will treat Wi (as well as some natural monomials in Wi

and F ) as SU(2)–scaling factors.
However, contrary to the SO(3)–case, generic solutions of Einstein equa-

tions in the SU(2)–case can be written explicitly in terms of elliptic modu-
lar functions, whereas their chaotic behaviour along geodesics in the complex
half–plane of time is only a reflection of the chaotic behaviour of the respective
billiard ball trajectories.

We will use explicit formulas given in [BaKo98], where they were deduced
from the basic results of [Hi95]. The central role in them is played by theta–
functions depending on the the complex arguments iµ ∈ H, z ∈ C, with
parameters (p, q) called theta–characteristics:

ϑ[p, q](z, iµ) :=
∑
m∈Z

exp{−π(m+ p)2µ+ 2πi(m+ p)(z + q)}. (1.19)

It can be expressed through the theta–function with vanishing characteristics:

ϑ[p, q](z, iµ) = exp {−πp2µ+ 2πipq} · ϑ[0, 0](z + piµ+ q, iµ). (1.20)

All these functions satisfy classical automorphy identities with respect to the
action of PGL(2,Z).

1.5. Theorem. ([To94], [Hi95], [BaKo98].) Put

ϑ[p, q] := ϑ[p, q](0, iµ) (1.21)

and
ϑ2 := ϑ[1/2, 0], ϑ3 := ϑ[0, 0], ϑ4 := ϑ[0, 1/2]. (1.22)

(A) Consider the following scaling factors as functions of µ with param-
eters (p, q):

W1 :=
i

2
ϑ3ϑ4

δ

δq
ϑ[p, q + 1/2]

eπipϑ[p, q]
, W2 :=

i

2
ϑ2ϑ4

δ

δq
ϑ[p+ 1/2, q + 1/2]

eπipϑ[p, q]
,

W3 := −1

2
ϑ2ϑ3

δ

δq
ϑ[p+ 1/2, q]

ϑ[p, q]
, (1.23)

Moreover, define the conformal factor F with non–zero cosmological constant
Λ by

F :=
2

πΛ

W1W2W3

(
δ

δq
log ϑ[p, q])2

(1.24)

The metric (1.18) with these scaling factors for real µ > 0 is real and satisfies
the Einstein equations if either

Λ < 0, p ∈ R, q ∈ 1

2
+ iR, (1.25)
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or

Λ > 0, q ∈ R, p ∈ 1

2
+ iR. (1.26)

(B) Consider now a different system of scaling factors

W ′1 :=
1

µ+ q0
+ 2

d

dµ
log ϑ2, W

′
2 :=

1

µ+ q0
+ 2

d

dµ
log ϑ3,

W ′3 :=
1

µ+ q0
+ 2

d

dµ
log ϑ4, (1.27)

and
F ′ := −C(µ+ q0)2W ′1W

′
2W
′
3, (1.28)

where q0, C ∈ R, C > 0.
The metric (1.18) with these scaling factors for real µ > 0 is real and

satisfies the Einstein equations with vanishing cosmological constant.

We will now consider values of iµ ∈ ∆ ⊂ H in the vicinity of i∞ but not
necessarily lying on the imaginary axis. Since we are interested in the instanton
analogs of Kasner’s solutions, we will collect basic facts about asymptotics of
scaling factors for iµ→ i∞.

For brevity, we will call a number r ∈ R general, if r /∈ Z ∪ (1/2 + Z).
For such r, denote by 〈r〉 ∈ (−1/2, 0) ∪ (0, 1/2) such real number that

r +m0 = 〈r〉 for a certain (unique) m0 ∈ Z.

1.6. Theorem. The scaling factors of the Bianchi IX spaces listed in Theo-
rem 1.5 have the following asymptotics near µ = +∞:

(i) For Λ = 0:

W ′1 ∼ −
π

2
, W ′2 ∼W ′3 ∼

1

µ+ q0
. (1.29)

(ii) For Λ < 0 and general p:

W1 ∼ −π〈p〉 exp {πi(〈p〉 − p)}, W2 ∼ ±W3,

W3 ∼ −2πi 〈p+ 1/2〉 · exp {πi sgn 〈p〉q} · exp{πµ(|〈p〉| − 1/2)}. (1.30)

(iii) For Λ > 0, real q and p = 1/2 + ip0, p0 ∈ R:

W1 ∼ πp0 tan{π(q − p0µ)} − 1

2
, W2 ∼ −W3,

W3 ∼ 2πp0 · (cos π(q − p0µ))−1. (1.31)

Theorem 1.6 (proved in [MaMar15]) shows that for general members of all
solution families from [BaKo98], after eventual sign changes of some Wi’s and
outside of the pole singularities on the real time axis, we have asymptotically
W2 = W3, W1 6= W2.

In the next section, we will show that precisely such a condition allows
one to quantize the respective geometric picture in terms of Connes–Landi
([CoLa01]). This gives additional substance to our vision that chaotic Mixmas-
ter evolution along hyperbolic geodesics reflects a certain “dequantization” of
the hot quantum early Universe.
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1.7. Gravitational instantons and Painlevé VI. Hitchin’s classification
of gravitational instantons that led to Theorem 1.5 was based upon the re-
duction of the relevant Einstein equations to a Painlevé VI equation. We will
briefly recall basics facts about them; see [Ta01] for a more general context.

Equations of the type Painlevé VI form a four–parametric family. Denote
parameters (α, β, γ, δ), and the independent variable by t. The corresponding
equation for a function X(t) looks as follows:

d2X

dt2
=

1

2

Å
1

X
+

1

X − 1
+

1

X − t

ãÅ
dX

dt

ã2
−
Å

1

t
+

1

t− 1
+

1

X − t

ã
dX

dt
+

+
X(X − 1)(X − t)

t2(t− 1)2

ï
α+ β

t

X2
+ γ

t− 1

(X − 1)2
+ δ

t(t− 1)

(X − t)2
ò
.

Gravitational instantons correspond to the case

(α, β, γ, δ) = (
1

8
,−1

8
,

1

8
,

3

8
).

Solutions in elliptic functions of this equation describe Bianchi IX space–
times with SU(2)–symmetry: see [Hi95].

One more interesting case is (α, β, γ, δ) = (
9

2
, 0, 0,

1

2
).According to B. Dubrovin,

a specific solution of this equation describes “the mirror of P2” in a general
context of Mirror Symmetry.

In 1907, R. Fuchs has rewritten PVI in the form

t(1− t)
ï
t(1− t) d

2

dt2
+ (1− 2t)

d

dt
− 1

4

ò ∫ (X,Y )

∞

dx√
x(x− 1)(x− t)

=

= αY + β
tY

X2
+ γ

(t− 1)Y

(X − 1)2
+ (δ − 1

2
)
t(t− 1)Y

(X − t)2 (1.32)

Here he enhanced X := X(t) to (X,Y ) := (X(t), Y (t)) treating the latter pair
as a section P := (X(t), Y (t)) of the generic elliptic curve E = E(t) : Y 2 =
X(X − 1)(X − t).

Up to a simple change of notations, the abelian integral
∫ (X,Y )

∞ in (1.32)

can be directly identified with the abelian integral
∫ R(t)

0
in (1.3) so that this

integral is a version of cosmological time. The meaning of the right hand side of
(1.32) was clarified in my paper [Ma96]. After having noticed that Painlevé VI
can be written on any one–dimensional family of elliptic curves (its dependent
variable becoming a (multi)section of such a family), I have applied this remark
to the analytic family Eτ := C/(Z + Zτ) 7→ τ ∈ H. Denoting by z a fixed
coordinate on C, we can rewrite (1.32) in the form

d2z

dτ2
=

1

(2πi)2

3∑
j=0

αj℘z(z +
Tj
2
, τ) (1.33)

Here (α0, . . . , α3) := (α,−β, γ, 1

2
− δ), (T0, T1, T2, T3) := (0, 1, τ, 1 + τ), and

℘(z, τ) :=
1

z2
+

∑
(m,n)6=(0,0)

Å
1

(z −mτ − n)2
− 1

(mτ + n)2

ã
.
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Moreover, equation of the generic elliptic curve becomes

℘z(z, τ)2 = 4(℘(z, τ)− e1(τ))(℘(z, τ)− e2(τ))(℘(z, τ)− e3(τ))

where

ei(τ) = ℘(
Ti
2
, τ),

so that e1 + e2 + e3 = 0.
Since PGL(2,Z) acts on the total space of this family, the “time variable”

τ (an abelian integral along closed path on a curve) can be restricted to the
fundamental domain of this group or its finite index subgroup, and this leads
to the hyperbolic billiard picture.

2 Quantum Big Bang?

2.1. Canonical quantisation of the billiard system and Maass forms.
The most straightforward way to produce from the Mixmaster chaotic system
its quantum version consists in applying canonical quantisation to the billiard
ball moving in one of the version of hyperbolic billiard table discussed above.

This immediately leads to the consideration of Maass wave functions:
eigenvectors Ψ of the Laplace–Beltrami operator on the hyperbolic half–plane,
invariant with respect to an appropriate subgroup of the (extended) modular
group. They play now role of quantum wave–functions of early hot Universe.

We refer to [Le13], sec. VI and VII, for a detailed discussion of this
quantisation scheme and relevant references. See also [Fu86].

Below we will discuss a different quantisation scheme, developed in the
framework of non commutative geometry (cf. [CoLa01]). We will then con-
nect it with the complex geometry of gravitational instantons, described in
subsections 1.4–1.6 above. This was done in our article [MaMar15].

2.2. Theta deformations. In Section 5 of [MaMar14] we showed that the
gluing of space–times across the singularity using an algebro-geometric blowup
can be made compatible with the idea of spacetime coordinates becoming non-
commutative in a neighborhood of the initial singularity where quantum gravity
effects begin to dominate.

This compatibility is described there in terms of Connes–Landi theta de-
formations ([CoLa01]) and Cirio–Landi–Szabo toric deformations ([CiLaSza11–
13]) of Grassmannians.

It turns out that the Bianchi IX models with SU(2)-symmetry can be
made compatible with the hypothesis of noncommutativity at the Planck scale,
using isospectral theta deformations.

The metrics on the S3 sections, in this case, are only left SU(2)–invariant.
It turns out that among all the SU(2) Bianchi IX spacetime, the only ones
that admit isospectral theta–deformations of their spatial S3–sections are those
where the metric tensor

g = w1w2w3 dµ
2 +

w2w3

w1
σ2
1 +

w1w3

w2
σ2
2 +

w1w2

w3
σ2
3 (2.2)
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is of the special form satisfying w1 6= w2 = w3 (the two directions σ2 and σ3
have equal magnitude). In these metrics, the S3 sections are Berger spheres.
This class includes the general Taub-NUT family ([Taub51], [NUT63]), and
the Eguchi–Hanson metrics ([EgHa79a], [EgHa79b]). The theta–deformations
are obtained, as in the case of the deformations S3

θ of [CoLa01] of the round
3-sphere, by deforming all the tori of the Hopf fibration to noncommutative
tori.

In other words, a Bianchi IX Euclidean spacetimeX with SU(2)–symmetry
admits a noncommutative theta-deformation Xθ, obtained by deforming the
tori of the Hopf fibration of each spacial section S3 to noncommutative tori, if
and only if its metric has the SU(2)× U(1)–symmetric form

g = w1w
2
3 dµ

2 +
w2

3

w1
σ2
1 + w1 (σ2

2 + σ2
3). (2.3)

(see [MaMar15], Proposition 4.2).

This is in stark contrast with the situation described in [EsMar13], where
(Lorentzian and Euclidean) Mixmaster cosmologies of the form

∓dt2 + a(t)2dx2 + b(t)2dy2 + c(t)2dz2

were considered, with T 3-spatial sections, which always admit isospectral theta-
deformations (see also [vSuij04], [Mar08]).

We have recalled in the previous section how the general self–dual solu-
tions (with w1 6= w2 6= w3) can be written explicitly in terms of theta constants
[BaKo98], and are obtained from a Darboux–Halphen type system [PeVa12],
[Tak92]. In the case of the family of Bianchi IX models with SU(2) × U(1)-
symmetry, this system has algebraic solutions that give

w2 = w3 =
1

µ− µ0
, w1 =

µ− µ∗
(µ− µ0)2

, (2.4)

with singularities at µ∗ (curvature singularity), µ0 (Taubian infinity) and ∞
(nut). The condition µ∗ < µ0 avoids naked singularities, by hiding the curva-
ture singularity at µ∗ behind the Taubian infinity, see the discussion in Section
5.2 of [PeVa12].

Consider the operator

DB = −i

Ö
1

λ
X1 X2 + iX3

X2 − iX3 − 1

λ
X1

è
+
λ2 + 2

2λ
, (2.5)

where {X1, X2, X3} constitute a basis of the Lie algebra orthogonal for the
bi–invariant metric. Assume moreover that the left–invariant metric on S3 is
diagonal in this basis, with eigenvalues {w2/w1, w1, w1}, with w = w2 = w3

and λ = w/w1, and where the wi are as in (4.4). Consider also the operator

D =
1

w
1/2
1 w

Ñ
γ0
Å
∂

∂µ
+

1

2
(
ẇ

w
+

1

2

ẇ1

w1
)

ã
+ w1 DB |

λ=
w

w1

é
. (2.6)
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2.3. Proposition. The operators D of (2.6) give Dirac operators for isospec-
tral theta deformations of the SU(2)× U(1)–symmetric space–times.

As in [EsMar13], the Dirac operator of Proposition 2.3 can be seen as
involving an anisotropic Hubble parameter H. In the case of the metrics of
[EsMar13] this was of the form

H =
1

3

Ç
ȧ

a
+
ḃ

b
+
ċ

c

å
with a, b, c the scaling factors in (2.3).

In the case of the SU(2) Bianchi IX models, the anisotropic Hubble param-

eter is again of the form H =
1

3
(H1 +H2 +H3), where now the Hi correspond

to the three directions of the vectors dual to the SU(2)-forms σi in (2.2). For
a metric of the form (2.3), or equivalently

g = uw dµ2 + u2λ2 σ2
1 + u2σ2

2 + u2σ2
3 ,

we take the anisotropic Hubble parameter to be

H =
1

3

Ç
u̇λ+ uλ̇

uλ
+ 2

u̇

u

å
=

1

3

Ç
3
u̇

u
+
λ̇

λ

å
,

where
u̇

u
=

1

2

ẇ1

w1
,

λ̇

λ
=
ẇ

w
− ẇ1

w1
,

so that

H =
1

3

Å
ẇ

w
+

1

2

ẇ1

w1

ã
,

so that we can write the 4–dimensional Dirac operator in the form

D = γ0
1

uw

Å
∂

∂µ
+

3

2
H

ã
+DB ,

where DB = (w
1/2
1 /w) DB |

λ=
w

w1

is the Dirac operator on the spatial sections

S3 with the left SU(2)-invariant metric.

Notice that in the construction above, we have considered the same mod-
ulus θ for the noncommutative deformation of all the spatial sections S3 of
the Bianchi IX spacetime, but one could also consider a more general situation
where the parameter θ of the deformation is itself a function of the cosmological
time µ.

This would allow the dependence of the noncommutativity parameter θ on
the energy scale (or on the cosmological timeline), with θ = 0 away from the sin-
gularity where classical gravity dominates and noncommutativity only appear-
ing near the singularity. Since a non–constant, continuously varying parameter
θ crosses rational and irrational values, this would give rise to a Hofstadter
butterfly type picture, with both commutativity (up to Morita equivalence, as
in the rational noncommutative tori) and true noncommutativity (irrational
noncommutative tori), cf. also [MaMar08].



22 Yuri I. Manin

Another interesting aspect of these noncommutative deformations is the
fact that, when we consider a geodesic in the upper half plane encoding Kasner
eras in a mixmaster dynamics, the points along the geodesic also determine
a family of complex structures on the noncommutative tori T 2

θ of the theta–
deformation of the respective spatial section.
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