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Abstract. The main goal of this paper is to provide a coincise and self-
contained introduction to treat financial mathematical models driven by
noise of Lévy type in the framework of the backward stochastic differential
equations (BSDEs) theory. We shall present techniques and results which
are relevant from a mathematical point of views as well in concrete market
applications, since they allow to overcome the discrepancies between real
world financial data and classical models which are based on Brownian
diffusions.

BSEDs’ techniques in presence of Lévy perturbations actually play a
major role in the solution of hedging and pricing problems especially with
respect to non-linear scenarios and for incomplete markets.

In particular, we provide an analogue of the celebrated Black–Scholes
formula, but the Lévy market case, with a clear economical interpretation
for all the involved financial parameters, as well as an introduction to the
emerging field of dynamic risk measures, for Lévy driven BSDEs, making
use of the concept of g-expectation in presence of a Lipschitz driver.
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1 Introduction

Background and motivation

In this paper we give a review of some recent applications in finance based
on techniques coming from the theory of stochastic differential equations in
backward form, see, e.g., [15, 20]. The main goal of the work consists in the
analysis of problems characterizing modern financial markets. In particular we
aim at dealing with concrete models arising in contexts which are not covered
by the standard approach originated by Black and Scholes, see [12], and then
widely used in a pletora of financial contexts, see, e.g., [58] and references
therein for a comprehensive introduction to main results in this framework.

A key ingredient of our analysis will be an extensive use of the theory
of backward stochastic differential equations (BSDEs) introduced by Bismut
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(1973), for the linear case, and generalized by Pardoux and Peng (1990) in
the general non-linear case in the Brownian framework, see, e.g. [44]. In [45]
Pardoux and Peng provided also a Feynman–Kac type theorem for solution
of non-linear parabolic partial differential equation (PDE). We would like to
underline that BSDEs techinques provide a powerful instruments to analyze
an heterogeneous class of real problems, namely they are not a mere toy for
mathematicians. In particular BSDEs approach are succesfully used, e.g., in
finance, physics, biology, etc.; we refer to [33], [29], respectively.

In the mathematical finance framework BSDEs techiques gained a great
attention by both practitioners and academics in particular with respect to the
option pricing and utilities problem, see, e.g., [33] for one of the first review on
the subject, [15, 20] for a more extensive introduction to recent developments.

Nevertheless, empirical evidence has pointed out that the traditional setup
where the geometric Brownian motion is assumed as the model for the stock
prices’ behaviours, it is not fully satisfactory since it lacks of an accurate de-
scription of financial data, see, e.g., [16] and [57].

Discrepancies between the Black–Scholes forecasted prices and real data,
for instance, arise in the study of implied volatility surface in option market,
kurtosis and skewness of asset returns, see, e.g. [16] and [61].
Latter issues has promoted the development of more flexible models and led
to an explosion of the literature on this subject starting from the late 90s, see
e.g. [15, 19, 20, 46] and references therein and also [11] where more emphasis
is put on interest rate models. A great improvement towards more realistic
models able to describe and, possibly, forecast movements of relevant financial
quantities, has been achieved taking into account Lévy processes which allow
for random jump perturbations in the asset price motion.

Such stochastic processes are characterized by random jumps, hence al-
lowing to capture sudden variations of prices happen, for example, in presence
of turbulent economics dynamics originated by unexpected political events,
natural disasters, abrupt variations of commodities’ prices, etc.

We shall consider the wealth processes dynamic of a portfolio, composed
by a riskless asset and a risky security, modeled by a BSDE driven by a Lévy
process, hence generalizing the classic approach based on Brownian stochastic
driver.

We list some references which include great improvements in this direc-
tion. We recall that a Lévy process consists of three stochastically independent
parts: a purely deterministic linear part, a Brownian motion and a pure jump
process. In [60], Situ studies BSDEs driven by a Brownian motion plus a Pois-
son point process, and Ouknine, in [43], consider the case of a BSDEs driven
by a Poisson random measure. Latter works are all based on the integral repre-
sentation of a square-integrable random variables in terms of a Poisson random
measure.

Nualart and Schoutens in [40] proved a martingale representation the-
orem for Lévy processes satisfying some exponential moment condition and
Feynman–Kac formula by Teugels orthonormalization procedure.

The Feynman–Kac formula and the related partial differential integral
equation (PDIE) also play an important role in finance applications: they
provide an analogue of the famous Black–Scholes partial differential equation
and thus can be used for the purpose of option pricing in a Lévy market.
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Structure

The paper is organized as follows: in Sect.2 basic definitions for establishing
the appropriate frameworks where to develop BSDEs’ theory, are stated. Sect.3
deals with BSDEs driven by pure jump noise, while Sect.4 treats the case of
market models driven by Lévy noise of general type, moreover it contains a
subsection about pricing/hedging problems. Finally, in Sect.5, an overview
about dynamic risk measures is presented.

2 Mathematical framework

In this section we shall give basic definitions and results in order to define a
suitable framework for both the BSDEs’ techinques developed in Sect.3 and re-
lated applications to hedging/pricing problems analyzed in Sect.4. Let us start
defining a setup where the preference filtration is generated by two mutually
independent processes, a Brownian Motion and a Poisson random measure,
following the approach developed in [48].

For any T > 0, t ∈ [0, T ], and p ∈ N with p > 1, let
� Wt be a one dimensional Brownian motion on a probability space (Ω,F ,P);
� N(dt, du) be a Poisson random measure on R+ × R∗ with compensator
ν(du)dt such that it is a σ-finite Lévy measure on (R∗,B(R∗)), and let

Ñ(dt, du) be its compensated process;
� (Ft)t∈[0,T ] be the filtration generated (jointly) by Wt and Nt.
� P is the predictable σ-algebra on [0, T ]× Ω.
� Lp(FT ) is the set of random variables ξ : Ω −→ R, which are FT mea-

surable and p-integrable, namely

‖ξ‖p :=

(∫
Ω

|ξ|p dP
)1/p

< +∞ .

� H p,T is the set of real-valued predictable processes φ such that

‖φ‖pH p,T := E

(∫ T

0

φ2
tdt

)p/2 < +∞.

� Lpν is the set of Borelian functions l : R∗ −→ R such that∫
R∗
|l(u)|pν(du) < +∞,

in particular the set L2
ν is a Hilbert space equipped with the scalar product

〈δ, l〉ν :=

∫
R∗
δ(u)l(u)ν(du), ∀ δ, l ∈ L2

ν × L2
ν ,

and the norm

‖l‖2ν :=

∫
R∗
|l(u)|2ν(du) < +∞.
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� H p,T
ν is the set of predictable stochastic processes, namely l ∈H p,T

ν iff

l : ([0, T ]× Ω× R∗,P ⊗ B(R∗)) −→ (R,B(R))

(t, w, u) −→ lt(w, u)

and

‖l‖p
H p,T
ν

:= E

(∫ T

0

‖lt‖2ν dt

)p/2 < +∞ .

� Sp,T is the set of real-valued right continuous, left limited (RCLL) adapted
processes φ such that

‖φ‖pSp := E
[

sup
0≤t≤T

|φt|p
]
< +∞.

� τ0 denotes the set of stopping times τ , such that τ ∈ [0, T ], a.s.

If T is fixed and there is no ambiguity, we shall adopt the notation H p

for H p,T , respectively H p
ν for H p,T

ν and Sp for Sp,T .
We introduce the notion of driver prior of dealing with definitions, prop-

erties and results for BSDEs and related solutions.

Definition 2.1. A function f

f : [0, T ]× Ω× R× R× L2
ν −→ R

(t, w, x, π, l(·)) −→ f(t, w, x, π, l(·))

is said to be a driver if
� is P ⊗ B(R2)⊗ B(L2

ν)-measurable,
� f(·, 0, 0, 0) ∈H 2.

Moreover, f is said to be a Lipschitz driver if it is Lipschitz with respect to
x, π and l, namely if there exists a constant C ≥ 0 such that dP ⊗ dt a.s., for
each (x1, π1, l1(·)), (x2, π2, l2(·)) ∈ R× R× L2

ν , the following holds

|f(t, w, x1, π1, l1)− f(t, w, x2, π2, l2)| ≤ C (|x1 − x2|+ |π1 − π2|+ ||l1 − l2||ν) .

Definition 2.2. A BSDE with jumps with driver f , in the unknowns Xt, πt,
lt, reads as follows

−dXt = f(t,Xt− , πt, lt(·)) dt− πt dWt −
∫
R∗
lt(u) Ñ(dt, du), (1)

with terminal time T and terminal condition ξ

XT = ξ,

where
� Wt is a one dimensional Brownian Motion,
� N(dt, du) is a Poisson random measure on R+ × R∗,
� ξ ∈ L2(FT ),
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Remark 2.1. We would like to underline that the terminal condition XT = ξ
is the responsible for the appellation backward given to equation (1).

Definition 2.3. A solution of (1) is a triple of processes (Xt, πt, lt) satisfying
(1) and such that

� Xt is a RCLL optional process,
� πt is an R-valued predictable process defined on Ω× [0, T ] such that the

stochastic integral with respect to Wt is well defined,
� lt is an R-valued predictable process defined on Ω× [0, T ]×R∗ such that

the stochastic integral with respect to Ñt∫
R∗
lt(u) Ñ(dt, du),

is well defined.

Under suitable conditions on the final point ξ and the driver f , the fol-
lowing existence and uniqueness result, due to Tang e Li, holds, see [62] for
details.

Theorem 2.1 (Existence and uniqueness). Let T > 0. For each Lipschitz
driver f , in the sense of Def.(2.1) and for every terminal condition ξ ∈ L2(FT ),
there exists a unique solution (Xt, πt, lt) of (1) and (Xt, πt, lt) ∈ S2,T ×H 2,T ×
H 2,T
ν .

3 Linear BSDEs with jumps

A linear driver f for (1), is of the form

f(t,Xt, πt, lt(·)) = ϕt + δtXt + βtπt + 〈γt, lt〉ν , (2)

where
� δt and βt are a real valued predictable processes, supposed to be a.s.

integrable with respect to dt and dWt,
� (γt(·))t∈[0,T ] a real-valued predictable process defined on [0, T ]×Ω×R∗,

that is P ⊗ B(R∗)-measurable, and integrable with respect to Ñ(dt, du),
� ϕt ∈H 2,T .

The linear BSDE driven by f as in (2), reads as follows
−dXt = (ϕt + δtXt + βt πt + 〈γt, lt〉ν) dt

−πt dWt −
∫
R∗
lt(u)Ñ(dt, du),

XT = ξ.

(3)

In what follows, we will study particular cases of linear BSDEs for which,
see Sect3.1, explicit formulae for the solution will be provided. In particular, we
will prove that the solution of a linear BSDE can be expressed as a conditional
expectation of some specified known processes.
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For each t ∈ [0, T ], T > 0, let us introduce the process (Γts)s∈[t,T ] defined
by dΓts = Γts−

[
δs ds+ βs dWs +

∫
R∗
γs(u) Ñ(ds, du)

]
,

Γtt = 1.
(4)

For the SDE (4) there exists a unique solution, see, e.g., Chapter 5 in [3],
given by

Γts = e
∫ t
s
δudu Zts, (5)

where the process (Zts)s∈[t,T ] solves the following SDEdZts = Zts−

[
βsdWs +

∫
R∗
γs(u)Ñ(ds, du)

]
,

Ztt = 1.
(6)

Remark 3.1. It can be useful to see at the process Γts as it plays the role of
“δ-discounted” process of Zts.

For future use, it is useful to define the stochastic process, which appear
in (6), as

Mt :=

∫ t

0

βsdWs +

∫ t

0

∫
R∗
γs(u)Ñ(ds, du), (7)

and provide some useful results for exponential local martingales of Mt driven
by a Brownian Motion and a Poisson random measure.

In particular, it is useful for application to show that Mt is a local mar-
tingale, indeed Mt in eq.(7) can be rewritten as a Lévy-type stochastic integral
then proving that it is a local martingale. In fact considering the differential
of Mt

dMt = βt dWt +

∫
R∗
γt(u) Ñ(dt, du) =

= βt dWt +

∫
R∗
γt(u)N(ds, du)−

∫
R∗
γt(u) ν(du)dt =

= βt dWt +

∫
|u|≥1

γt(u)N(dt, du) +

∫
|u|<1

γt(u)N(dt, du)

−
∫
|u|≥1

γt(u)ν(du)dt −
∫
|u|<1

γt(u) ν(du) dt =

= βt dWt +

∫
|u|<1

γt(u) Ñ(dt, du) +

∫
|u|≥1

γt(u)N(dt, du)

−
∫
|u|≥1

γt(u) ν(du)dt,

and we can apply the following Theorem, see Chapter 5 in [3] for details, to
obtain the desired result:
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Theorem 3.1. If Yt is a Lévy-type stochastic integral of this form

dYt = Gt dt+Ft dWt +

∫
|x|<1

H(t, x) Ñ(dt, dx) +

∫
|x|≥1

K(t, x)N(dt, dx), (8)

then Yt is a local martingale if and only if

Gt +

∫
|x|≥1

K(t, x) ν(dx) = 0 a.s.

for (Lebesgue) almost all t ≥ 0.

For a complete review on properties and representation of Lévy-type
stochastic integral we refer to [3] and [47].

We would like to underline that we have defined the process Zts in eq.(6)
as dZt = Zt−

[
βtdWt +

∫
R∗
γs(u)Ñ(ds, du)

]
= Zt− dMt,

Z0 = 1,
(9)

hence Zt, satisfying eq.(9), is given by the Doléans–Dade formula, see [21]. The
solution of (9) exists and is unique, see, e.g., [3] for details, being the so-called
exponential local martingale associated with the local martingale Mt and it is
denoted by E(M)t := Zt. In particular E(M)t has the following expression

E(M)t = exp

{
Mt −

1

2
[M c

t ,M
c
t ]

} ∏
0≤s≤t

[1 + ∆Ms] e
−∆Ms .

It is interesting to note that the differential of the process Mt can be divided in
its continuous part, resp. discontinuous part, denoted by dM c

t , resp. by dMd
t ,

and such that the following expressions hold

dM c
t := βt dWt −

∫
|u|≥1

γt(u) ν(du) dt,

respectively

dMd
t :=

∫
|u|<1

γt(u) Ñ(dt, du) +

∫
|u|≥1

γt(u)N(dt, du) .

The quadratic variation of the continuous part of Mt is given by

[M c
t ,M

c
t ] =

∫ t

0

β2
s ds .

Finally, in order to show an explicit representation of Doléans–Dade formula
for Zt, we also define

Yt :=

∫
R∗
uN([0, t], du), (10)

which is a compound Poisson process, hence the following relation, between
∆Mt and ∆Yt, holds

∆Mt = γt(∆Yt) =

∫ t

0

∫
R∗
γs(u)N(ds, du),
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and we also have

E(M)t = exp

{∫ t

0

βsdWs +

∫ t

0

∫
R∗
γs(u) Ñ(ds, du)− 1

2

∫ t

0

β2
sds+

−
∫ t

0

∫
R∗
γs(u)N(ds, du)

} ∏
0≤s≤t

(1 + γs(∆Ys)) =

= exp

{∫ t

0

βsdWs −
1

2

∫ t

0

β2
s ds−

∫ t

0

∫
R∗
γt(u)ν(du)ds

}
×
∏

0≤s≤t

(1 + γs(∆Ys)) .

(11)

Remark 3.2. Note that, if the following condition holds

γt(∆Yt) ≥ −1, ∀t ∈ [0, T ] a.s.,

then E(M)t ≥ 0, ∀t ∈ [0, T ] a.s.

It is interesting to note that, if Mt is driven by a Brownian Motion and a
Poisson random measure, as in our case, the following stronger property holds.

Proposition 3.2. Let βt, γt(·) be a real valued predictable process, and Mt be
the local martingale defined by (7).

Then, the following assertions are equivalent:
(i) if (Tn)n is a sequence of stopping times corresponding to the jumps times

of Yt, then for every n ∈ N

γTn(∆YTn) ≥ −1, P a.s.,

(ii) γt(u) ≥ −1, dP⊗ dt⊗ dν(u) a.s.
Moreover, if (i) and/or (ii) is satisfied, then we have

E(M)t ≥ 0, 0 ≤ t ≤ T, a.s.

In the light of financial applications, we now provide a sufficient condition
for the square integrability property of E(M)t, also giving a detailed proof for
such a condition following [48].

Proposition 3.3. Let βt and γt(·) be real valued predictable processes and Mt

be the local martingale defined by (7). Suppose that∫ T

0

β2
s ds+

∫ T

0

||γs||2ν ds < +∞, (12)

then
E
[
E(M)2

T

]
< +∞,

namely, for any T > 0, the random variable E(M)2
T ∈ L2(FT ).

Proof. By the Itô product formula we get

E(M)2
t = E(2Mt + [M,M ]t),
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where

[M,M ]t = [M c,M c]t +
∑

0<s≤t

∆M2
s =

∫ t

0

β2
s ds+

∑
0<s≤t

l2s(∆Ys).

Using the formula (10) we also have

[M,M ]t =

∫ t

0

β2
s ds+

∫ t

0

∫
|x|<1

l2s(u)N(ds, du) +

∫ t

0

∫
|x|≥1

l2s(u)N(ds, du)

=

∫ t

0

β2
s ds+

∫ t

0

∫
R∗
l2s(u)N(ds, du).

Moreover, since∑
s≤t

l2s(∆Ys) =

∫ t

0

∫
R∗
l2s(u)N(ds, du) =

=

∫ t

0

∫
R∗
l2s(u) Ñ(ds, du) +

∫ t

0

∫
R∗
l2s(u) ν(du)ds

=

∫ t

0

∫
R∗
l2s(u) Ñ(ds, du) +

∫ t

0

||γs||2ν ds,

it follows that

E(M)2
t = E(2Mt + [M,M ]t) =

= E
[
2Mt +

∫ t

0

βs ds+

∫ t

0

||γs||2ν ds+

∫ t

0

∫
R∗
γ2
s (u)Ñ(ds, du)

]
=

= E
[
Nt +

∫ t

0

β2
s ds+

∫ t

0

||γs||2ν ds
]
,

(13)

where Nt := 2Mt +

∫ t

0

∫
R∗
γ2
s (u)Ñ(ds, du).

Note that

∫ t

0

β2
s ds+

∫ t

0

||γs||2ν ds does not give a contribute in the com-

putation of [N c, N c]t and ∆Nt, therefore

E(M)2
t = E(N)t exp

{∫ t

0

β2
s ds+

∫ t

0

||γs||2ν ds
}
. (14)

By Th.(3.1) we can rewrite Nt as a Lévy-type stochastic integral then Nt is a
local martingale and, exploiting a classical result (see, e.g., Chapter 7 in [35]),
the latter implies that E(N)t is a local martingale, too.

By assumption, there exists K > 0 such that

exp

{∫ T

0

β2
s ds+

∫ T

0

||γs||2ν ds

}
≤ K a.s.,

moreover, by (12), E(M)2
t ≥ 0, and E(N)t ≥ 0. Since any nonnegative local

martingale is a supermartingale, we have that E(N)t is a supermartingale hence
it has a non-increasing expectation, namely

E
[
E(M)2

T

]
≤ K E [E(N)T ] ≤ K,

which ends the proof.
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Remark 3.3.
1. If the assumptions of Proposition (3.3) are satisfied, we have

E(M)t ∈ S2,T .

2. Taking βt bounded, and ψt ∈ L2
ν such that

|γt(u)| ≤ ψ(u), dt⊗ dP ⊗ dν(u) a.s.,

it follows that the process ||γt||2ν is bounded, indeed

||γt||2ν =

∫
R∗
|γt(u)|2 ν(du) ≤

∫
R∗
ψ2(u) ν(du) < +∞,

hence ∫ T

0

β2
s ds+

∫ T

0

||γs||2ν ds < +∞,

and, by Prop.(3.3) we have E(M)T ∈ L2(FT ). Latter result will be ex-
ploited to study linear BSDE and to state a comparison theorem which
turn out to be useful in order to obtain results in the framework of dy-
namic risk measures, see Sect.5, Th.5.1.

3.1 Properties of linear BSDEs with jumps

The main aim of this section is to show that the solution of a linear BSDE
with jumps can be written as a conditional expectation via an exponential
semimartingale.

Theorem 3.4. Let γt, βt, γt(·) be real valued, bounded, predictable processes
and ϕt ∈H 2,T .

Suppose that Γt ∈ S2, where Γt is the solution of the SDE (4).
Let (Xt, βt, lt) be the solution in S2,T ×H 2,T ×H 2,T

ν of the following
linear BSDE 

−dXt = (ϕt + δtXt + βt πt + 〈γt, lt〉ν) dt

−πt dWt −
∫
R∗
lt(u)Ñ(dt, du),

XT = ξ,

(15)

then, the process Xt satisfies

Xt = E

[
ΓtT ξ +

∫ T

t

Γts ϕs ds | Ft

]
, 0 ≤ t ≤ T a.s. (16)

Proof. We follow the approach in [48]. Fix t ∈ [0, T ] and, in order to simplify
the notation used, let us denote Γs instead of Γts for s ∈ [t, T ]. By the Itô-
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product formula we have

− d(Xs Γs) = −Xs− dΓs + Γs− dXs − d[X,Γ]s =

= −Xs−

[
Γs− δsds+ Γs− βsdWs + Γs−

∫
R∗
γs(u)Ñ(ds, du)

]
+ Γs− [ϕs ds + δsXs ds + βs πs ds + 〈γs, ls〉ν ds − πs dWs]

− Γs−

∫
R∗
ls(u)Ñ(ds, du) − d[X,Γ]s.

(17)

We postpone the estimate of the contribute given by the quadratic vari-
ation d[X,Γ] starting, instead, to rewrite the processes Xt and Γt as general
Lévy-type stochastic integral. In particular, the differential of Xs is given by

dXs = − (ϕs + δsXs + βs πs + 〈γs, ls〉ν)︸ ︷︷ ︸
Ys

ds+ πs dWs +

∫
R∗
ls(u) Ñ(ds, du) =

= −Ys ds+ πs dWs +

∫
|u|<1

ls(u) Ñ(ds, du) +

∫
|u|≥1

ls(u)N(ds, du) +

−
∫
|u|≥1

ls(u)ν(du) ds =

= −

(
Ys +

∫
|u|≥1

ls(u)ν(du)

)
︸ ︷︷ ︸

Ỹs

ds+ πs dWs +

∫
|u|<1

ls(u) Ñ(ds, du)+

+

∫
|u|≥1

ls(u)N(ds, du) =

= − Ỹs ds+ πs dWs +

∫
|u|<1

ls(u) Ñ(ds, du) +

∫
|u|≥1

ls(u)N(ds, du), (18)

while for the differential of Γs we have

dΓs =

(
Γs− δs − Γs−

∫
|u|≥1

Γs(u)ν(du)

)
ds + Γs− βs dWs +

+ Γs−

∫
|u|<1

Γs(u) Ñ(ds, du) + Γs−

∫
|u|≥1

Γs(u)N(ds, du) .

(19)

For the quadratic variation term, namely [X,Γ]s, in (17) we have

[X,Γ]s =

∫ s

0

Γs− πs βs ds+

∫ s

0

∫
R∗
ls(u) γs(u) Γs− N(ds, du), (20)
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then, combining (18), (19), (20), we obtain

−d(Xs Γs) = −XsΓs− δs ds+ Γs− [ϕs + δsXs + βs πs + 〈γs, ls〉ν ] ds

− Γs− (Xs− βs + πs) dWs

− Γs− πs βs ds − Γs−

∫
R∗
ls(u)γs(u) Ñ(ds, du)+

− Γs−

∫
R∗
ls(u)γs(u)ν(du)ds− Γs−

∫
R∗
ls(u)Ñ(ds, du)

= Γs ϕs ds− dMs,

where

dMs = −Γs− (Xs−βS + πs) dWs − Γs−

∫
R∗
ls(u)(1 + γs(u)) Ñ(ds, du),

and, integrating between t and T , we get

−XT ΓtT + Xt Γtt =

∫ T

t

Γts ϕs ds−MT +Mt .

Therefore, exploiting the terminal conditions, it follows that

Xt − ξ ΓtT =

∫ T

t

Γts ϕsds−MT +Mt . (21)

Since Γt ∈ S2, Xt ∈ S2,T , πt ∈ H 2,T , lt ∈ H 2,T
ν and the processes δt,

βt and γt are bounded, it follows that the local martingale Mt is in fact a
martingale, hence, taking the conditional expectation in (21), we have

E [Xt | Ft] = E

[
ΓtT ξ +

∫ T

t

Γts ϕs ds−MT +Mt | Ft

]
, a.s.,

and since Xt is an Ft-adapted process, by assumption, we conclude the proof,
namely the following holds

Xt = E

[
ΓtT ξ +

∫ T

t

Γts ϕs ds | Ft

]
, a.s.

Two non trivial corollaries of Th.3.4, which will be used in Sect.4 to
guarantee a non-arbitrage condition in a Lévy market model, are the following,
see [48] for details.

Corollary 3.5. Suppose that the assumptions of Th.(3.4) are satisfied, then if
(i) γt(u) ≥ −1, dP⊗ dt⊗ dν(u) a.s.,

ϕt ≥ 0 t ∈ [0, T ], dP⊗ dt, a.s.,

XT = ξ ≥ 0 a.s.

then Xt ≥ 0, 0 ≤ t ≤ T a.s.
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(ii) γt(u) > −1 dP⊗ dt⊗ dν(u) a.s.,

ϕt ≥ 0 t ∈ [0, T ], dP⊗ dt a.s.,

Xt0 = 0 a.s. for some t0 ∈ [0, T ]

then ϕt = 0 dP⊗ dt a.s. on [t0, T ], and ξ = 0 a.s. on A ∈ Ft0 .

Corollary 3.6. Suppose that
- the assumptions of Theorem (3.4) are satisfied,
- C is the bound of the process δt,
- γt(u) ≥ −1, dP⊗ dt⊗ dν(u) a.s.

If, for some ε ≥ 0,

ξ ≥ 0 a.s. and ϕt ≥ −ε, 0 ≤ t ≤ T dP⊗ dt a.s.

then
Xt ≥ −ε TeCT a.s. ∀ t ∈ [0, T ].

In this section we have provided general results coming from the theory
of BSDEs with jump component. We decided to choose, between all possible,
those techniques which are widely exploited in financial applied literature to
efficiently deal with financial market perturbed by noise of Lévy type. In par-
ticular a complete treatment of the backward stochastic differential equations
theory is far from the aim of this work and we refer the interested reader to,
e.g., [20, 32, 36, 63].

4 Market model driven by Lévy processes

It has been shown, see, e.g., [16] and [10], that Lévy processes are relevant in
mathematical finance, in particular in modelling of stock prices.

In this section we give a brief introduction to financial markets where the
asset prices behaviour are represented by Itô–Lévy processes. We will discuss,
using the results obtained in the previous sections, the problem of pricing and
hedging contingent claim which is written on an underlying that is subjected
to a risk of both diffusive and jump type, hence allowing for underlyings whose
behaviors can be characterized by random discontinuities.

The latter allows to model the financial evolution (in time) of quantities
of interest, taking into account the possibility for abrupt change of their value.
In this case a perfect hedge does not exist, namely it is not always possible to
replicate the derivative payoff by a controlled portfolio of the basic securities,
see, e.g. [33].

We will derive the pricing relation by the risk-neutral valuation and by
change of measure approach, which may be considered a generalization of the
approach made in the Black–Scholes framework. For further details we refer
to [8, 10, 59].
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4.1 The model

We begin introducing the typical setup for continuous-time asset pricing.
Let us fix T > 0 and define a probability space (Ω,F ,P). Let

� Wt be a one dimensional Brownian Motion,
� N(dt, du) be a Poisson Random measure, indipendent from Wt, with

compensator ν(du)dt,
� Ft be the filtration generated by both Wt and N .

In order to not overload notation we will assume that the financial market
consists of two kinds of securities: a locally riskless asset (or bond) and a risky
security (or stock). Such an approach is not restrictive for our purposes, since
it contains all the necessary and sufficient features which differentiate the Lévy
case from the classical Black–Schoeles framework. In particular we have the
following setup

1. the bond price is indicated by S0
t and its behaviour is governed by the

equation {
dS0

t = S0
t rt dt, 0 ≤ t ≤ T,

S0
0 = 1,

(22)

where rt is the risk-free interest rate.

2. the dynamic of risky asset, S1
t , at time t is given by

dS1
t = S1

t−

[
µt dt + σt dWt +

∫
R∗
lt(u) Ñ(dt, du)

]
,

0 ≤ t ≤ T,
S1

0 ∈ R,

(23)

where µt, σt are predictable processes and lt(u) ∈ H 2,T
ν which represent the

drift, resp. the diffusion, of the Brownian component of the noise.
Analogously to the case where the asset price is modeled by a geometric

Brownian motion, we still have that the stock price S1
t is a càdlàg process,

which is now described by a geometric Lévy–Itô process.
The latter implies that the investor in the risky asset is exposed to two

different type of risks, namely a diffusion risk, caused by the Brownian random-
ness, and the risk due to the pure jump component

∫
R∗ lt(u) Ñ(dt, du), with

random jump amplitudes lt(u), characterizing (23). In particular lt is a source
of randomness associated to the volatility coefficient of a Poisson process and
it is responsible for the jumps of S1

t , therefore its jump times are those of N .
It is natural to suppose that an investor entering in a market which be-

haves according to equations (22) and (23), would like to make a profitable
investment. Obvious related question shall sounds like: How much money
should I invest? Or: How do I have to choose the right investment portfolio at
time a certain given time?. In order to give a useful answer to latter type of
questions, let us introduce the following standard quantities and processes:

� we call Vt the wealth (stochastic) process obtained summing the amounts
of our investment (at time t) which we hold in every single asset com-
posing the market. We assume to start with an initial wealth amount
V0 > 0, at time t = 0.
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� at any time t ∈ [0, T ], being T > 0 the time-horizon of our investment,
the investor use the whole amount Vt, dividing it into two parts:

− πt is the amount of wealth Vt invested in the risky stock at time
t ∈ [0, T ],

− while the remaining part of the money is invested in the riskless asset
and its value is given by π0

t = Vt − πt.
A reasonable requirement that we have to fulfill is the so called self-

financing property for our investment strategy. Namely a portfolio is self-
financing if there is no exogenous infusion or withdrawal of money. In particular
the latter implies that we can augment the investment in the risky asset only
subtracting money from the quantity financing the bond.

Otherwise we can easily obtain an arbitrage opportunity, see, e.g., [9,
page 87]. Mathematically speaking a self-financed portfolio for our model is
defined as follows

Definition 4.1. A self-financing strategy is a pair (Vt, πt) where πt is a pre-
dictable process such that

Vt = V0 +

∫ t

0

(
π0
t

dS0
t

S0
t

+ πt
dS1

t

S1
t

)
, (24)

with

E

[∫ T

0

|σt πt |2dt

]
< +∞,

and

E

[∫ T

0

π2
t l

2
t (u) ν(du) dt

]
< +∞ .

From a heuristic point of view, def.(4.1) implies that the instantaneous
variation of the wealth value is caused uniquely by assets’ prices variations,
and not by injecting or withdrawing funds from outside.

In particular an investor cannot use funds other that the initial wealth to
finance his position in the market, moreover he is not allowed to spend money
outside of the market or the consumption is only financed with the profits
realized by the portfolio and not by outside benefits.

A (self-financing) strategy which satisfies eq.(24), equivalently has to sat-
isfies (in our particular market model) the following linear SDE

dVt = rt Vt dt + πt (µt − rt) dt + πt σt dWt + πt

∫
R∗
lt(u) Ñ(dt, du) .

As in the Black–Scholes scenario it is of great relevance, for princing and
hedging given derivatives, see, e.g. [42], to determine if at least one equiva-
lent martingale measure exists, with respect to real world probability measure,
namely the measure derived from time series for the financial quantities com-
posing our model. A key result by which addressing such a quest is the Girsanov
Theorem, see [30], for jump diffusion process, see, e.g., [39, 42]. In particular
for a Geometric Itô–Lévy process, we recall that it has the following form:
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Theorem 4.1. (Girsanov Theorem for geometric Itô–Lévy processes)
Let (Ω,F ,P) be a filtered probability space. Let Xt a Geometric Itô–Lévy

process of the form

dXt = Xt−

[
at dt+ bt dWt +

∫
R∗
ct(u) Ñ(dt, du)

]
.

Let ut, vt(u) be two predictable processes with respect to Ft such that

(i) at − rt + ut βt +

∫
R∗
ct(u) vt(u) ν(du) = 0,

(ii) the process vt(u) satisfies vt(u) > −1,
(iii) the process Zt defined by the solution of the following SDE{

dZt = Zt−
[
ut dWt +

∫
R∗ vt(u) Ñ(dt, du)

]
,

Z0 = 1,
(25)

is well-defined and satisfies

E [ZT ] = 1.

Then there exists a probability measure Q on FT which is equivalent to P
and such that

dQ = ZT dP .
Moreover the discounted process of Xt is a local martingale with respect to Q.

Th.(4.1) straightforward implies the following result.

Corollary 4.2. Let ut and vt(u) > −1 be a predictable processes such that the
process Zt satisfying

dZt = Zt−

[
ut dWt +

∫
R∗
vt(u) Ñ(dt, du)

]
,

is well-defined for 0 ≤ t ≤ T . Suppose that

E[ZT ] = 1,

and define the probability measure Q on FT by

dQ = ZT dP,

then
(i) the process WQ

t defined by

WQ
t = Wt −

∫ t

0

us ds, (26)

is a Q-Brownian Motion and
(ii) the random measure ÑQ(dt, du) defined by

ÑQ(dt, du) = Ñ(dt, du)− vt(u) ν(du)dt, (27)

is such that∫ t

0

∫
R∗
ÑQ(ds, du) =

∫ t

0

∫
R∗
Ñ(ds, du)−

∫ t

0

∫
R∗
vs(u) ν(du)ds .

is a Q-local martingale.
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In the following we exploit results given in Sec. 3.1, together with Th.(4.1),
to characterize a financial market whose dynamic is described by a BSDE with
jumps, see, e.g. [8]. In particular we will interpret eq.(15) as the equation of
the price of a contingent claim on the underlying asset S1

t .
Let us consider the Geometric Itô–Lévy process (23) modelling the be-

haviour of the risk asset S1
t and the process Zt describing by (9).

If βt and γt are predictable processes such that

− γt(u) > −1, dP⊗ dt⊗ ν(du) a.s., (28)

− E[ZT ] = 1 on FT , (29)

− µt − rt + σt βt +

∫
R∗
lt(u) γt(u) ν(du) = 0. (30)

it is possible to define an equivalent martingale measure Q such that

dQ
dP

= ZT .

By Doléans–Dade formula the Radon–Nikodym density ZT is given by

ZT = E(M)T = exp

{∫ T

0

βsdWs −
1

2

∫ T

0

β2
s ds−

∫ T

0

∫
R∗
γt(u)ν(du)ds

}

×
∏

0≤s≤T

(1 + γs(∆Ys)) . (31)

In eq.(31) the first term is the usual Radon–Nikodym derivative for the
Brownian Motion. The change in the distributions of the Brownian motion
components follows from standard Girsanov Theorem. The remaining terms,
again independent of each other, provide the Radon–Nikodym derivatives of
the Poisson random measure. Details on Girsanov’s measure transformation
for Poisson random measures can be found, e.g., in [42].

We would like to underline that, with respect to necessary conditions to
define the equivalent martingale measure, we have that

� since the expectation of the process Zt, at time T , satisfies

E[ZT ] = 1, (32)

and MT is a local martingale, then we have that E(M)T = ZT has to be
a martingale.
Note that, if the random variable βt, γt satisfies∫ T

0

β2
s ds+

∫ T

0

||γs||2ν ds is bounded,

condition (32) is assured by Proposition (3.3).
� by the condition

µt − rt + σt βt +

∫
R∗
lt(u) γt(u) ν(du) = 0, (33)
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we have that the parameters in the Radon–Nikodym derivative determine
a family of equivalent martingale measures for the model, from which
a suitable choice is made, moreover the terms βt and γt represent the
market price of risk associated with the Brownian risk, respectively the
new component associated to the jump risk.
Let us now consider the problem of pricing and hedging a contingent claim

whose payoff at maturity time T is given by ξ as in the framework described
in Sect.4.1.

A contingent claim is said to be hedgeable if there exists a self-financing
strategy (Vt, πt) such that{

dVt = rtVtdt+ πt (µt − rt) dt+ πt σt dWt +
∫
R∗ πt lt(u) Ñ(dt, du),

VT = ξ.
(34)

Exploiting condition (33), we can rewrite eq.(34) as

dVt = rt Vtdt+ πt (µt − rt) dt+ πt σt dWt +

∫
R∗
πt lt(u) Ñ(dt, du) =

= rt Vtdt − πt σt βt dt+ πt σt dWt −
∫
R∗
πt γt(u) lt(u) ν(du) dt +

+

∫
R∗
πt lt(u) Ñ(dt, du) =

= rt Vtdt − πt σt βt dt− 〈γt, πt lt〉ν dt+ πt σt dWt +

∫
R∗
πt lt(u) Ñ(dt, du) .

Hence, eq.(15) can be interpreted as a model for the value of an hedging
strategy against a contingent claim ξ, choosing

� δt = −rt the risk free rate,
� πt = πt σt, which includes the volatility for Brownian component,
� lt = πt lt, which includes the volatility for jump component.

We can also consider that the total wealth process is also dependent on a
certain consumption function ct which expresses the consumer spending. The
resulting dynamic satisfies

dVt =− ct dt+ rt Vtdt − πt σt βt dt− 〈γt, πt lt〉ν dt

+ πt σt dWt +

∫
R∗
πt lt(u) Ñ(dt, du),

and we can apply Th.(3.4) to obtain a formula for pricing a contingent claim
in a market consisting of a risky asset driven by a jump-diffusion dynamic,
namely we have

Xt = E

[
ΓtT ξ +

∫ T

t

Γts ϕs ds | Ft

]
, 0 ≤ t ≤ T a.s.,

where the process Γt is defined by

Γt = e−
∫ t
0
rs ds Zt,

and it represents the discounted value of Zt.
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If ct = ϕt = 0, then eq.(3) for a jump-diffusion market, becomes

Xt = E
[
e−
∫ T
t
rs ds ZtT ξ

]
= EQ

[
e−
∫ T
t
rs ds ξ

]
, 0 ≤ t ≤ T a.s., (35)

therefore the market price of a contingent claim in a jump-diffusion market can
be computed as in the Black–Scholes context, see, e.g. [10].

In particular such a price results in a discounted expectation of the ter-
minal payoff with respect to a martingale measure Q.

Remark 4.1. Let us emphasize some relevant aspects.
� A fundamental difference between Black–Scholes and jump-diffusion set-

ting concerns the equivalent martingale measure Q. In the first case it
is uniquely defined instead in the second there are many equivalent mar-
tingale measures to choose from, each yielding different distributions for
the jump components. In fact, if we consider eq.(33) for market prices
of risk, an equivalent martingale measure can be obtained by specifying
choices of βt and γt.
Hence, when the underlying stock price dynamics are modeled by a jump-
diffusion model, the market is incomplete. The latter can be interpreted
in the light of Arrow’s work, see [4], as a result of lack of Arrow–Debreu
securities compared with the number of (possibly stochastic) states of
nature. One can then apply the risk-neutral pricing formula to price
derivative securities, but this formula can no longer be justified by a
hedging argument. More precisely, pricing a contingent claim ξ using an
equivalent martingale measure does not longer correspond to the initial
price of a hedging strategy.
Methods of evaluating contingent claims in an incomplete market are,
e.g., the local risk-minimizing trading strategy approach, see Schweizer
[56], or the minimum entropy martingale measure analysis, see [57], or
the risk indifference approach, see, e.g., [42]. See also [37, 38] for a com-
prehensive treatment of the incomplete markets’ theory.

� In finance, the existence of an equivalent martingale measure is linked
with the absence of arbitrage property. If the process βt and γt satisfies
condition (28) and (29), the set of equivalent martingale measures is not
empty but not reduced to a singleton. Indeed, the second fundamental
Theorem of asset pricing, see, e.g. [58], guarantees that the market is free
of arbitrage. However the lack of uniqueness for the martingale measure
implies that the market is incomplete, so in this case perfect hedging is
not possible.

We would also like to underline that some financial considerations can be
made with respect to Corollary (3.5), in particular

� the choice of parameter γt, which represents the market price of risk for
jump process, such that

γt(u) ≥ −1, dP⊗ dt⊗ dν(u) a.s.,

guarantees, by eq.(11), the non negativity of Zt.
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Moreover, by Cor.(3.5), if ct ≥ 0 and ξ ≥ 0, then the price of a contingent
claim Xt satisfies

Xt ≥ 0, 0 ≤ t ≤ T a.s.

� the choise of parameter γt such that

γt(u) > −1, dP⊗ dt⊗ dν(u) a.s.,

assures, by Th.(4.1), the existence of, at least, one a martingale measure.
This fact implies, by the first Theorem of asset pricing, the non existence
of arbitrage condition, indeed the second statement in Cor.(3.5) is clearly
a non-arbitrage condition.

5 Dynamic risk measures

In this section we shall establish links between continuous-time dynamic risk
measures and BSDEs with jumps. We would like to recall Sec.13 of [20] and
references therein, for a detailed treatment of the subject with related actuarial
applications. In finance, we are often exposed to risk in capital, whether as
investors, traders or corporations. It seems therefore useful to quantify the
riskiness of our financial position and hence to decide if such a risk is acceptable
or not. The latter need naturally leads to the definition of measures of risk.
During years, several classes of risk measures were proposed in literature. Let
us give a brief résumé of their importance, see, e.g., [18, 22, 27] for further
details.

Measuring and managing risks is one of the key activities in financial
frameworks. Risk management provides methods to determine how to best
handle different risk exposures, identify acceptable positions and determine
minimum capital requirement that are required by financial institutions in order
to ensure their stability.

One possible tool to measure risk is the Value at Risk (VaR), the most
diffuse risk measure accepted in the financial industry. Nevertheless such a
tool has been controversial at least from the end of last century, both from
a qualitative and quantitative point of view. As examples it useful to recover
the so called Jorion–Taleb debate (1997), where major criticisms addressed
the VaR claimed ability to give accurate estimates for the rare events risks
which is impossible by nature, the discussion within the Global Association of
Risk Professionals Review, see, e.g., [13] and the conclusions obtained in [5]
with respect to the VaR underestimation of extreme events probabilities, see
also [41].

Moreover VaR is not a coherent risk meassure since it is not subadditive,
see, e.g., [22]. In particular the VaR of a combined portfolio can be larger
than the sum of its components’ VaRs. Possible generalizations which allow to
answer such criticisms are provided by the conditional VaR (CVaR), see [51]
and references therein, and the Entropic VaR (EVaR), see, e.g., [2].

To overcome previously recalled shortcomings, an axiomatic approach to
risk measure has been shown to be a key point for further developments in risk
management and mathematical finance.
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In particular, the concept of coherent and convex measures can provide
an axiomatic approach resulting in a robust theory. First steps towards this
direction are in the papers by Artzner, Delbaen, Eber and Heath, [5], while
Föllmer and Schied [24, 25], and Fritelli and Rosazza Gianin [27, 28], have
developed the theory of convex risk measures. Aximonatization of dynamic
risk measures has been given by Riedle [50], see also [6, 7] and [53].

Links between dynamic risk measures and BSDEs are given in [54], see
also [23, 26] and the Dynamic Risk Measures chapter, by Acciaio e Penner
in [1]. Other authors have exploited dynamic risk measures induced by a BSDE
in the Brownian case, see, e.g., [49] and [55], while in what follows, we give an
overview about connections between dynamic risk measures and BSDEs with
Lévy perturbations, see, e.g. [52].

5.1 Static risk measure

Risk measures were introduced in the literature to “evaluate future losses”
providing criteria on the acceptability of risk exposures, and also for pricing
purposes, see, e.g., [55].

Let (Ω,F ,P) be a probability space, T > 0 be a fixed future date and X
be the space of all financial positions in which we are interested; for simplicity
assume that X = Lp(Ω,F ,P), with 1 ≤ p ≤ +∞.

For instance, an element of X may be the net worth at the maturity time
T of a financial contract.

Definition 5.1. A static risk measure is a functional ρ : X −→ R, satisfying
some properties induced by financial considerations. We present a list of axioms
for ρ:

1. convexity

ρ(αX + (1−α)Y ) ≤ αρ(X) + (1−α) ρ(Y ), ∀α ∈ (0, 1), ∀X,Y ∈ X ;

2. positivity

if X ≥ 0 then ρ(X) ≤ ρ(0);

3. constancy

ρ(α) = −α ∀α ∈ R;

4. translability

ρ(X + β) = ρ(X)− β ∀β ∈ R, ∀X ∈ X ;

5. sublinearity

ρ(αX) = αρ(X), ∀X ∈ X , ∀α ≥ 0;

ρ(X + Y ) ≤ ρ(X) + ρ(Y ), ∀X,Y ∈ X ;

6. lower semi-continuity

{X ∈ X : ρ(X) ≤ γ} is close in X for any γ ∈ R .
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In the following, we will interpret ρ as follows: given a financial position
X, the quantity ρ(X) represents the riskiness of X and, by convention, X is
acceptable when ρ(X) < 0, unacceptable otherwise.

Under translability, property (4) above, ρ has an extra interpretation. In
particular translability implies

ρ(X + ρ(X)) = 0,

hence ρ(X) is the amount of money that makes the positionX neutral-acceptable.
In other words, for an unacceptable position X, the quantity ρ(X) ≥ 0, rep-
resents the minimum capital that we have to add to the initial position X in
order to get an acceptable new position.

Between the set of all static risk measure, standard literature gives a
special attention to coherent and convex measures.

Definition 5.2. A functional ρ : X −→ R, is a coherent risk measure if it
satisfies properties (2), (4), and (5).

Definition 5.3. A functional ρ : X −→ R, is a convex risk measure if it
satisfies properties (1), (6), and ρ(0) = 0.

Risk measures, at this moment, are defined starting from a set of finan-
cial positions, however they can be also generated alternatively. In particular,
following [49] it is also possible to establish a link between “g-expectations”,
a particular expectation depending on a functional g, and risk measures for
BSDEs. A financial interpretation of g will be given and motivated exploiting
particular BSDEs which provides well established financial model. In particu-
lar g could depend on the preferences of the investor and on some parameters
to which our financial position is characterized.

This new way of defining risk measures has been widely studied in the
classical Black–Scholes framework, see, e.g. [49] and [54], in what follows we
shall cover the same subject, but in a jump-diffusion framework following [48],
see also Sec.13 of [20]. Let us consider the non linear BSDE given in eq.(3)
with driver g,−dXt = g(t,Xt− , πt, lt(·)) dt− πt dWt −

∫
R∗
lt(u) Ñ(dt, du),

XT = ξ,
(36)

In this equation, see also Sect. (4.1), XT is the payoff of the contingent
claim at maturity T , while Xt represents the value of the replicanting strategy
at time t ∈ [0, T ]. We focus our attention on the first component Xt of the
solution (36), i.e., the so-called “g-expectation”.

Definition 5.4. For every ξ ∈ L2(FT ), the g-expectation of ξ is defined as

εg[ξ] := X0 .

The conditional g-expectation of ξ under Ft for every ξ ∈ L2(FT ) is defined as

εg [ξ | Ft] := Xt .
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In order to define a risk measure via g-expectation let us consider X =
L2(FT ), g a Lipschitz driver and set

ρg : L2(FT ) −→ R

as follows:
ρg(ξ) := εg [−ξ] , ξ ∈ L2(FT ).

ρ is a static risk measure satisfying axioms 2, 3 of Def (5.1).

Remark 5.1. (Interpretation of g)
As already pointed out, the functional g plays an important role in the

“construction” of risk measures, so its choice is crucial. Its financial interpreta-
tion will be given and motivated through some BSDEs well known in finance,
as the dynamic of a replicating strategy.

We emphasize that any X ∈ X denotes a general random variable repre-
senting the net worth of a financial position with maturity T .

In particular, it may happen that X “comes from” a stochastic process
(Xt)t∈[0,T ], the dynamic of which is known. For instance, Xt may represent the
net worth of a portfolio of shares at time t and XT its net worth at (horizon)
time T , namely when the portfolio is sold out. Furthermore, g could depend
on the preferences of the investor.

Let us consider a typical hedging problem that we have already study in
Sect.4.1.1: we are interested in pricing a contingent claimXt whose payoff at
final time T is specified by the condition XT = ξ.dVt = rtVtdt+ πt (µt − rt) dt+ πt σt dWt +

∫
R∗
πt lt(u) Ñ(dt, du),

VT = ξ.
(37)

It is well-known that the price at time 0 of a claim is simply the value V0

of the self-financing portfolio that replicates X at the maturity T .
Then the corresponding static risk measure

ρg(ξ) := εg [−ξ] = −V0,

represents the initial value of the replicating strategy of (−ξ).
Nevertheless it is clear that the case just presented results in a very partic-

ular scenario. In general situations, namely when markets are not complete, the
case of risk measures coming from acceptable sets formed with super-replicable
positions was analysed by Föllmer and Schied, see, e.g., [25].

5.2 Dynamic risk measure and BSDEs with jumps

Risk measures discussed so far deal with the problem of quantify today the
riskiness of financial position with maturity at future date T . In this sense,
such risk measure can be considered as static.
However, most investors are making portfolio decisions dynamically and a fur-
ther problem consists in monitoring the riskiness of our financial position at
different times between today and the final date T . In order to deal with this
problem we need to treat risk measures in a dynamic setting.
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A dynamic risk measure (ρt)t∈[0,T ], is defined, see, e.g. [55], as a map such
that at any instant t, ρt is a random variable wich represent the riskiness of
our financial position at time t, conditionally to the information avaible up to
that time t.

Moreover, dynamic risk measures should fulfill some boundary conditions
at time 0 and T .

Definition 5.5. We call a dynamic risk measure any map such that
� ρt : X −→ L0(Ft), ∀ t ∈ [0, T ],
� ρ0 is a static risk measure,
� ρT (ξ) = −ξ, ∀ ξ ∈ X .

In particular (ρt)t satisfies a set of desirable properties which are the same
of the static case, see, e.g., [28]. Similarly to the static case, we consider strong
connection between dynamic risk measure and conditional g-expectation.

Definition 5.6. We define the dynamic risk measure (ρt)t∈[0,T ], induced by
BSDE (36) with driver g, by the g-conditional expectation of ξ, that is actually
the first component of the solution, namely

ρgt (ξ, T ) := εg [−ξ | Ft] := −Xt(ξ, T ), ξ ∈ L2(FT ), t ∈ [0, T ] . (38)

We follow a typical axiomatic approach, see, e.g., [56]. In particular, a
dynamic risk measures, generated via conditional expectation, has to satisfies a
given list of axioms. Assumptions on the driver of BSDE and properties of the
related solution both induce such a list whose components are relevant from a
financial point of view (see, e.g., [31] for a detailed financial treatment of the
following axioms and [14] for other useful properties):

� Consistency
Let S ∈ τ0,T be a stopping time, for all t ≤ S,

ρt(ξ, T ) = ρt(−ρS(ξ, T ), S) a.s.,

or, equivalently

Xt(ξ, T ) = Xt(XS(ξ, T ), S) a.s. .

For each t smaller that S, the risk measure associated with position ξ and
maturity T coincides with the risk measure associated with maturity S
and position −ρS(ξ, T ) = XS(ξ, T ).

� Continuity
Let (θα)α∈R be a family of stopping times in τ0,T , converging a.s. to a
stopping time θ ∈ τ0,T , namely

θα −→
α→α0

θ .

Moreover (ξα)α∈R be a family of random variables such that

E
[
ess sup

α
(ξα)2

]
< +∞,

and for each α, ξα is Fθα -measurable. Suppose also that ξα converges
a.s. to an Fθ-measurable random variable, i.e.

ξα −→
α→α0

ξ,
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then, for each S ∈ τ0,T , the random random variable

ρS(ξα, θα) −→
α→α0

ρS(ξ, θ) a.s.

� Zero-one law
If g(t, 0, 0) = 0, then the risk-measure associated to the null position is
equal to 0. More precisely, the risk-measure satisfies the Zero-one law
property:

ρt(1A ξ, T ) = 1A ρt(ξ, T ), a.s. t ≤ T, A ∈ Ft, ξ ∈ L2(FT ) .

� Translation invariance
If g does not depend on x, then the associated risk-measure satisfies the
translation invariance property:

ρt(ξ + ξ′, T ) = ρt(ξ, T )− ξ′, ξ ∈ L2(FT ), ξ′ ∈ L2(Ft) .

Latter property requires, indeed, translation invariance not only with
respect to constants, but also with respect to any Ft-measurable random
variable or, roughly speaking, to any risky position that is completely
determined by the information available at time t.

� Homogeneous property
If g is positively homogenous with respect to (x, π, l), then the risk mea-
sure ρ is positively homogenous with respect to ξ, that is, for all λ ≥ 0,
the following holds

ρt(λ ξ, T ) = λ ρ(ξ, T ), ξ ∈ L2(FT ) .

Special attention should be paid to the financial interpretation of sublin-
earity. This axiom, which was originally motivated by liquidity reasons,
since it assures that the riskiness of a number λ of identical positions ξ
is λ times the riskiness of ξ.
For concrete applications in finance a further assumption on the driver g
of eq. (36), is required in order to enrich the set of properties possessed by
the risk measure ρ, see, e.g., [31]. In particular we require the following

Definition 5.7. (Assumption A) Let T > 0. We assume that for each
(x, π, l1, l2) ∈ [0, T ]× Ω× R2 × (L2

ν)2

f(t, x, π, l1)− f(t, x, π, l2) ≥
〈
θx,π,l

1,l2

t , l1 − l2
〉
ν
, dP⊗ dt a.s.

where

θ : [0, T ]× Ω× R2 × (L2
ν)2 −→ L2

ν

(t, w, x, π, l1, l2) −→ θx,π,l
1,l2

t (w, ·),

has to satisfies the following conditions:
– P ⊗ B(R2)⊗ B((L2

ν)2)-measurable,
– bounded,
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– for each (x, π, l1, l2) ∈ R2 × (L2
ν)2

θx,π,l
1,l2

t (u) ≥ −1 and |θx,π,l
1,l2

t (u)| ≤ ψ(u), dP⊗dt⊗dν(u) a.s.
(39)

where ψ ∈ L2
ν .

� Monotonicity
ρ is non increasing with respect to ξ, that is, for each ξ1, ξ2 ∈ FT ,

if ξ1 ≥ ξ2 a.s., then ρt(ξ
1, T ) ≤ ρt(ξ2, T ), 0 ≤ t ≤ T a.s.

Note that the monotonicity of ρ implies that if two financial position are
such that ξ1 ≥ ξ2, then their risk measures have to satisfy ρ(ξ1) ≤ ρ(ξ2).
Note that the opposite inequality holds because of financial interpretation
of the risk measure.
The proof of this result follows from a comparison theorem between the
solutions of two non linear BSDEs imposing different hypotesis on ter-
minal conditions, see [48] and [52] for further details. Before show how
this result can be proven, let us underline that,contrary to the Brownian
case, the monotonicity property does not generally holds, and requires an
additional assumption.

Theorem 5.1. (Comparison theorem for BSDEs with jumps)
Let ξ1 and ξ2 ∈ L2(FT ). Let f1 be a Lipschitz driver and f2 be a driver.
For i = 1, 2, let (Xi

t , π
i
t, l

i
t) be a solution in S2,T ×H 2,T ×H 2,T

ν of BSDE−dXi
t = fi(t,X

i
t , π

i
t, l

i
t)dt − πit dWt −

∫
R∗
lit(u) Ñ(dt, du),

Xi
T = ξi.

(40)

Assume that there exists a bounded predictable process γt such that

− γt(u) ≥ −1, dP⊗ dt⊗ ν(du) a.s., (41)

− |γt(u)| ≤ ψ(u), dP⊗ dt⊗ ν(du) a.s. with ψ ∈ L2
ν , (42)

− f1(t,X2
t , π

2
t , l

1
t )− f1(t,X2

t , π
2
t , l

2
t ) ≥ < γt, l

1
t − l2t >ν , (43)

dP⊗ dt a.s.

Assume that

− ξ1 ≥ ξ2 a.s., (44)

− f1(t,X2
t , π

2
t , l

2
t ) ≥ f2(t,X2

t , π
2
t , l

2
t ), 0 ≤ t ≤ T dP⊗ dt a.s., (45)

then
(i) X1

t ≥ X2
t , 0 ≤ t ≤ T, dP⊗ dt a.s.

(ii) Moreover, if inequality (43) is satisfied for (X1
t , π

1
t , l

1
t ) instead of

(X2
t , π

2
t , l

2
t ) and if f2, instead of f1, is Lipschitz and satisfies (45),

then (i) still holds.
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� Convexity
If g is concave with respect to (x, π, l), then the dynamic risk measure ρ
is also convex, that is for any λ ∈ [0, 1], ξ1, ξ2 ∈ L2(FT )

ρt(λ ξ
1 + (1− λ) ξ2, T ) ≤ λ ρt(ξ

1, T ) + (1− λ) ρt(ξ
2, T ) .

Subadditivity property encourages the diversification through portfolios
of risks since, the riskiness of a portfolio (ξ1 +ξ2) is smaller than the sum
of the riskiness of the single positions ξ1 and ξ2 .
On the contrary, convexity assures only diversification through portfolios
originated by “ad hoc weighted” sums of single positions.

� No arbitrage
Now we assume that in Assumption A the following additional require-
ment holds

θx,π,l
1,l2

t > −1 dP⊗ dt⊗ dν(u) a.s.

For each ξ1, ξ2 ∈ L2(FT ), if
- ξ1 ≥ ξ2,
- ρt(ξ

1, T ) = ρt(ξ
2, T ) a.s. on an event A ∈ Ft,

then

ξ1 = ξ2 a.s. on A .

Note that generally, contrary to the monotonicity property, the no arbi-
trage property is not required for risk-measures.

We would like to underline that while static risk measures provide useful
details for risk management purposes over a fixed period of time with fixed
boundary conditions in that period, dynamic risk measures allow us to better
follow how the riskiness of a financial position behaves continuously in time
whit respect to continuous time-variations of data upon which it depends. The
latter implies that we can take decisions, e.g. changing portfolio composition
and/or modifying capital requirement for the liability, at time t ∈ [0, T ], if T is
the expiration date of our investment, according to what is happening, hence
resulting in a more efficient global financial strategy.
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