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Control of multiscale systems with constraints

1. Basic principles of the concept of evolution
of systems with varying constraints

S. Adamenko,1 V. Bolotov,2 V. Novikov3

Abstract. Physical fundamentals of the self-organizing theory for the
system with varying constraints are considered. A variation principle,
specifically the principle of dynamic harmonization as a generalization of
the Gauss-Hertz principle for the systems with varying internal structure is
formulated. In compliance with this principle the system evolves through
dynamics of the processes leading to harmonization of the internal multi-
scale structure of the system and its connections with external actions as a
result of minimizing the dynamic harmonization function. Main principles
of the ‘shell’ model of self-organization under the action of the dominating
entropic disturbance are formulated.

1 Introduction

People for many centuries have been concerned with the problems of pre-
dictability and predeterminacy of events or, in other more general terms, with
the problems of irreversible evolution and invention of methods to influence
evolution in a desirable way. Revolutionary steps in understanding the pro-
cesses of evolution and self-organization of the systems of various types were
made in the second half of the previous century. I. Prigogine and his school
greatly contributed in resolving these problems. The interest to these problems
has quickened in the recent times.

For a long time science has mainly focused on analysis of the Nature
phenomena, however now is the time when the problems of synthesis and control
become especially urgent. Solution of the mankind energy problems is related
to solution of the problem on actual control for the nuclear structure synthesis.
However, despite of successes gained in the evolution theory, still there is a lack
of clear understanding of general laws of control for synthesis of new structures
and evolution trends, neither there are considerable advances in synthesizing
nuclear structures. Problems of controlling evolution trends have not yet been
solved and it is still impossible to reliably predict consequences of technogeous
interventions in the Nature evolution.
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At the same time ongoing successful synthesis of new biological struc-
tures and development of technologies for creation of the gene-modified objects
without clear understanding of their remote consequences for the biological
evolution enhances the potential environmental threats.

I. Prigogine’s works made it clear that in certain conditions under rapid
growth of electromagnetic pollutions our influence on the evolution may be
only inconsiderable, thus generating concerns with unpredictability of electro-
magnetic smog as an unconscious stimulus for the biological evolution with
unpredictable consequences. There is a long-felt need to address the problem
of controlling self-organization in various systems consisting of various elements.

One of the most general definitions of the system as a set of interrelated
components proposed by L. Bertalanffy in the general systems theory already
contains a notion of interplay between the elements, i.e. connections. Con-
straints or conditions disallowing the systems elements to occupy arbitrary
positions or have arbitrary velocities or other characteristics are called con-
straints. These are the constraints that ensure the system’s wholeness, struc-
ture and stability. Evolution of the system presents, in its turn, evolution of
the systems’ inner structure, i.e. evolution of the system’s constraints.

Unfortunately, the current self-organization theory does not use either
generalized structure parameters or bonding energy and mass defects as basic
variables. To our opinion, this factor is the limitation of the available dynamic
systems evolution theory, which does not allow its effective application for
governing the synthesis processes. Understanding of self-organization in any
system as a purposeful process of varying structure and bonding energy as
well as formulation of a general variation principle governing the open systems
evolution serve the grounds for the theory we are developing.

Recognizing specifics in governing evolution of various systems we see
common ways for solution of these problems in various spheres of knowledge
from cosmology to nuclear physics and from biology to sociology.

We are offering for your attention a series of works, which state the gen-
eral concept of evolution of complex systems with varying constraints and show
some applications of this concept for creating new methods of governing syn-
thesis of new structures in these systems.

The works [1–2] report the prehistory of creating the concept of collective
controlled synthesis of new nuclear structures with definite energy directiveness
and provide its fundamental principles based on the use of the following:

• Notions of binding energy and mass defect;
• Notions of mass forces and accelerations;
• Relations of the sign of mass defect and accelerations;
• Collective processes for effective initiation and control of the synthesis

of systems with the required mass defect;
• Variation principle of the complex systems evolution—the principle of

dynamic harmonization.
A notion of dissipative structures introduced by Prigogine (see, for exam-

ple [3]) proved very useful in many spheres of science and engineering. Essential
aspects of the dynamic systems control theory are developed in the framework
of the theory of chaos, fractal physics and synergetics with their successful
application in many spheres of science and technology. Nuclear physics is prac-
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tically the only science where the notions of the theory of dissipative structures,
dynamic chaos and self-organization are not yet effectively applicable, while so-
lution of the problems on nucleosynthesis control is vital for obtaining answers
to the following questions:

• How to solve the problem of the world’s growing energy needs in the
most harmonious and environmentally friendly way?

• What key phenomena and effects can serve as a basis for creating new
efficient energy technologies and governing the potential energy oppor-
tunities in the surrounding Nature?

On the other hand, development of the theory of complex systems self-
organization is hindered by the fact that such physical values as bonding energy
and mass defect defining energy potential in any physical processes and being
widely used in the nuclear physics are not yet employed in the theory of evo-
lution.

We will try to include these new aspects into the complex systems self-
organization theory in these series of works. We will provide in this work physi-
cal substantiation of the concept basic principles while theoretical development
of these concepts will be reported in the next two works.

2 Main notions of the concept: bonding
energy, structure, mass defect, scaling,
fractal dimension and clusters

All primary energy sources in Nature have common basis, namely the processes
of the system bonding energy variation. This is related both to the most
common energy sources based on transformation of the bonding energy at the
atomic and molecular levels, for example in organic fuel combustion, and in
nuclear processes generated by the variation of the bonding energy of nucleons
in the atom nuclei during nuclear reactions.

Under the bonding energy B of a system consisting of i components (par-
ticles) one understands the difference between the apparent energy of a system
of bodies or particles W and the total energy of the same bodies or particles
in the state of equilibrium in the absence of any interaction

∑
i

Wi:

B =
∑
i

Wi −W, (1)

where Wi — apparent energy of i component in the unbound rest state. Mass
defect of the system ∆m is the difference between the sum of the system ele-
ments masses mi and total mass of the system m

∆m =
∑
i

mi −m. (2)

Mass defect of the system is characterized by its stability. In addition
to mass, the system inertia in response to the forces acting on the system is
its another most significant characteristic. Mass of the system depends on
its structure and relations within it, and determines inertia of the system at
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rest. Inertia in contrast to the mass depends on the coordinate system (see,
for example [4]).

With all versatility of particles and systems motions, the latter may be
classified. Nature abounds with periodic regular phenomena ranging from pen-
dulum motion to atomic oscillations. Most of the real phenomena are non-linear
and instead of periodicity produce aperiodic and chaotic motions while the gen-
erated geometric structures are not continuous. With all variety of nonlinear
evolution there are general properties uniting many of them, which are self-
similarity and invariance in relation to the scale variations (scaling). Scaling
manifests itself in many non-linear physical processes, especially when studying
critical phenomena characterizing behavior of the substances in the vicinity of
the phase transition points.

Proceeding from the general definition of the system it follows at once
that the system has at least two spatial scales—internal microscopic scale L,
determining its specific dimensions as an integral object, and minimal spatial
scale l1, related to specific dimensions of minimal system elements (monomers)
being the parts of the system. In this case monomers are considered as objects
without internal structure. Thus, the most important characteristics of the
system for general analysis of self-organization are as follows:

• Space limitation and, thus, its space scale;
• Internal structure of its relations and complexity, that may be appro-

priately characterized by any of the fractal dimensions;
• Space and mass characteristics of the structural elements of the system

(monomers).
Clusters of various scales are a general model of such systems [5]. One

may say that the systems evolves through formation of mesoscopic structures,
which are clusters with scales li satisfying the inequality l1 � li � L.

Growth of the structure from a A set of monomers naturally divides the
system into two parts—the structured one consisting of Acog monomers and
the structureless one consisting of the remaining Ag = A − Acog monomers.
A proportion of all monomers in composition of the structured part is called
‘order parameter’ η ≈ Acog/(Acog +Ag).

Thus, the system evolution results in formation of the cluster consisting of
monomers. This cluster is composed of elements, which in their turn are fractal
clusters of a smaller scale li from Ai monomers. Multiscale systems possessing
scale invariance in the sphere of l1 � li � L scales are the most important for
implementing control processes.

In the general case, constraints in the system and their complexity may be
characterized by a fractural dimensions, for example, connectedness dimension
Dc, determined by the structure of constraints or mass fractal dimension of
the system Df , determined by distribution of the substance in the system [6].
Dependence of the angle-averaged correlation function on a distance from its
geometrical center is one of the exponential functions typical for the fractal.
In this case average density of particles in the cluster ρ (r) with moving away
from the center within the cluster varies according to the law complying with
the law of space correlations decay:

ρ (r) = ρm(lm/r)
3−Df , (3)

ρm—density of monomers from which the fractal structure is composed.
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From these general correlations of the fractal geometry a simple corre-
lation between the mass number of the fractal cluster A (i.e., the number of
monomers of which the cluster consists), the cluster overall dimension RA and
the monomers characteristic dimension lm follows:

A ∝ (RA/lm)
Df , or RA = lmA

1/Df . (4)

From the correlation (3) it also follows a dependence of the fractal di-
mension of the cluster with the mass number A and its average density ρ on
the mass number Am and density ρm of the structureless units—monomers of
which the cluster is composed:

Df = 3
ln (A/Am)

ln (A/Am) + ln (ρm/ρ)
, ρ = ρm

(
Am
A

)3−Df

Df (5)

The fractal dimension characterizes properties of the system’s scale invari-
ance related to the system’s coherence parameter. Let us estimate correlation
between the coherence parameter and the fractal dimension.

The coherent part of the system in the sufficiently general case may be con-
sidered as a fractal cluster. Since the potential energy of the substance is mainly
proportional to the density, then it obeys the exponential law (3), true for the
cluster substance. That is, the cluster potential energy is the function with the
similarity coefficient ksc = Df−3: U (r) ∝ ρ (r) ∝ rksc , i.e. U (αr) = αkscU (r).
From the virial theorem for the systems with potential energy possessing simi-
larity a correlation between the mean values of the kinetic Wkin and potential

energies U satisfies the equality
Wkin

U
=

ksc
2

. If it is remembered that the

coherent part possesses mainly the potential energy, while all kinetic energy is
concentrated in the non-regular and non-coherent component, then one may ob-

tain the estimate of the order parameter η ≈ Ū
/

(Wkin+Ū) = 1
/ (

1 +
ksc
2

)
.

Whence it follows:

η ≈ (3−Df ) / (Df − 1) , 0 6 η 6 1. (6)

Each stage of the scales hierarchy ranging from the largest to the smallest
scale may have its own order parameters. If the order parameters at different
scales proved to be connected, then one may state that a whole multi-scale
macroscopic object appeared.

3 Bonding energy in a system of particles with
internal cluster structure

Let us consider a simple but at the same time important example of the clas-
sical multi-scale systems—a system of many correlating particles capable to
transform the cluster structure inside the system. The simplest general model
of such systems may be represented by a drop of liquid composed of A molecules
able for form clusters of several molecules.
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We will denote these clusters Am, where m—the number of molecules
in the cluster. These clusters in their turn may create the dendrite structure
with the fractal dimension Df . It means that the drop itself is a multi-scale
macroscopic object composed of the coherent part formed by the dendrite
of monomers Am, comprising η A molecules, and structureless liquid part of
(1− η )A molecules.

Correlation of the liquid molecules may be approximately described by
the Lennard-Jones potential

U (r) = ε0

(
(rmin/r)

12 − 2(rmin/r)
6
)
, (7)

which corresponds to the molecules attraction at sufficiently large distances r �
rmin and their sharp repulsion at smaller distances r � rmin. Such correlation
pattern provides integrity to the system of molecules with typical distances
between them rmin and positive energy of bonds between the molecules of the
order ε0.

Full volumetric bonding energy Bv of the liquid drop is determined by the
integral Bv =

∫
U (r − r′) ρ (r)ρ (r′) d3rd3r′ and because of sharp repulsion at

smaller distances it proves proportional not to the square but to the first order
of the molecules quantity in the drop A. Corrections grow along with density
because the system of particles is not ideal [7] and it may be written as:

Bv ≈ g0A+ a0ρ
2/3A, g0 ≈ ε0. (8)

According to the principles of a simple and effective classical Ya. Frenkel
theory of the liquid drop [8] in addition to the indicated positive contribution
to the bonding energy there is a negative contribution from the surface energy
of the interface boundary Bsurf , which is proportional to the boundary square
Sdrop:

Bsurf = −σSdrop, Sdrop = 4πR2
A(A/Am)

2/Df−2/3
, RA = lm

(
A

Am

)1/3

.

(9)
The system of particles in addition to the potential energy has a kinetic

energy of the chaotic motion Bkin with temperature T , reducing the bonding

energy of the cluster Bkin = −3

2
T

(
A

Am

)
. Using for estimation a general

polytropic process
T

ργ−1
= const with an indicator γ:

Bkin = −aT
(
ρ

ρm

)γ−1

A (10)

If a part of the system is ionized and has the charge Z, then instead of one
component of the system with the density ρ, there appear three ones—neutral
with density ρ0, a positively charged component with density ρZ and electron

component with density ρel: ρ0 =
A− Z
A

ρ, ρZ =
Z

A
ρ.
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Contributions to the volumetric part of the bonding energy and to the
kinetic energy of the neutral and charged component take the form:

Bv ≈ g0A+ a0ρ
2/3
0 (A− Z) + a0ρ

2/3
Z Z

= g0A+ a0ρ
2/3
m

((
1− Z

A

)5/3

+

(
Z

A

)5/3
)(

Am
A

)2

3

(3−Df )

Df A,

Bkin = −aT
(
ρ

ρm

)γ−1

,

A = −aT
(
ρ0

ρm

)γ−1

(A− Z)− aT
(
ρZ
ρm

)γ−1

,

Z = −aT ργ−1
m

((
1− Z

A

)γ
+

(
Z

A

)γ)(
Am
A

)(γ−1)
3−Df

Df A.

(11)

Moreover, new contributions appear in the bonding energy—bonding energy re-
sulted from the Coulomb repulsion of the like-charged particles Bq and bonding
energy of electrons Bel (calculated in approximation of the degenerate electron
Fermi—liquid with regard of quasi-neutrality):

Bq = −3

5

e2Z (Z − 1)

RA(A/Am)
1/Df−1/3

, Bel = −3

4
aε

(
ρ

ρm

)4/3(
Z

A

)4/3

(12)

By introducing a variable y =
1

2
− Z

A
, one may take advantage of a

convenient approximation:(
1− Z

A

)γ
+

(
Z

A

)γ
=

(
1

2
+ y

)γ
+

(
1

2
− y
)γ
≈
y�1

21−γ + γ (γ − 1) y2

= 21−γ +
γ (γ − 1)

4

(
1− 2

Z

A

)2

and present the full bonding energy as:

Bdrop =

(
c0 − c3

(
1− 2Z

A

)2)
A− c1A2/3 − c2

Z2

A1/3
− cel

(
Z

A

)4/3

, (13)

c0 = g0 + a0ρ
2/3
m

1

22/3

(
Am
A

)2

3

(3−Df )

Df , c1 = 4πσl2m

(
A

Am

) 2

Df ,

c2 =
3

5

e2Z2

lm

(
Am
A

) 1

Df , c3 = − 5

21/39
a0ρ

2/3
m

(
Am
A

)2

3

(3−Df )

Df ,

cT = ρm

(
Am
A

)3−Df

Df T, cel =
3

4
aε

(
ρ4/3
m

(Am
A

)4

3

3−Df

Df

)
.
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Expression for the bonding energy of the drop with the cluster structure

(13) allows from the equilibrium condition
∂

∂Z
Bdrop = 0 determining the charge

of the quasi-stationary cluster with a maximal bonding energy. This algebraic
equation has an exact solution, which may be approximately presented in a
simple form:

Z

A
≈ 1

2 +
c2
2c3

A2/3
.

Evolution of the cluster presents transitions between quasi-stationary states
that may be described by the equations of the variation principle of the dynamic
harmonization obtained in the end of the work.

4 Mass defect, production of entropy and
entropic forces

One of the main problems of the evolution of systems with varying constraints
is the problem on the general laws governing variations of the fractal dimension,
the order parameter and the system’s inner structure over time.

Variation of the fractal dimension Df is accompanied, according to (13),
with variation of the bonding energy and mass defect δmi (Df ) = Bi (Df ) /c2.
Variation of the mass defect is related to the mass force and corresponding
acceleration:

Fm = −∆δm

τ
ui, am = − 1

m

dδm

dt
ui ≈ σ̄sui. (14)

In the last correlation it is considered that relation of the mass defect to
the total mass presents the value approximately equal to the order parameter,
while

− 1

m

dδm

dt
≈ δm

m

d

dt
(− ln η) ≈ σ̄s, (15)

where σ̄s—average production of the entropy in the system.
Processes of the entropy production and the entropy flows are caused by

the entropy forces. Apparently, existence of the entropy flows is conditioned
by the entropy gradients and we may determine these forces as follows:

FS = w (η)∇S. (16)

Coefficient w, depending on the current order parameter η, represents the
energy density of the processes related to the entropy flows. In case of the local
equilibrium, w−→

η→0
T and (16) is in agreement with the expression for the mass

entropy forces following from the main correlations of the locally equilibrium
thermodynamics.

It is noteworthy that the entropic forces introduced in the work [9], essen-
tially differ from the multi-scale structure-forming entropic forces (16). In (16)
the entropy gradient creates the force acting through the forces of the system
equally on all its particles, which is the mass force by definition.
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Behaviour of the system near the phase transition presents a simple ex-
ample demonstrating the appearance of the mass force. If to place a new phase
nucleus into the supercooled liquid, this will generate the explosive transition
to the nucleus phase accompanied by the mass entropy forces. In this case, in
contrast to the intermolecular forces, this force is not directly connected with
direct correlation between particles, but has a collective nature: as a result of
dynamics the systems evolves through temperature-related ‘trials and errors’
tending to transfer from the less probable state to the more probable one.

Since the dissipative factors may be neglected in the processes of multi-
scale self-organization under study while energy variations in the system are
mainly related to the evolution of the bonding energy in the system under the
action of the structure-forming entropic forces, then the arising structures may
be called entropic (informational) in contrast to the Prigogine’s dissipative
structures. It is notable that thereby the system creates a memory on the
action of mass entropic forces and even after termination of this action they
leave traces as the formed entropic structures whose further dynamics may be
determined by the Prigogine’s irreversible thermodynamics.

5 Mass forces and flow in the phase space

Approximation of the local equilibrium is based on the assumption that the
distribution functions in the variable point of the space in physically infinitesi-
mal volumes have an equilibrium form corresponding to the assumption on the
detailed balance with the flow in the phase space equal to 0. In this case the
distribution function parameters (temperature, density, the Fermi energy) may
depend on the point, while their evolution fully determines the evolution of
the disequilibrium states. However, with sufficiently powerful forces and drains
corresponding to the flows that exceed the dissipative flows in the system an
essentially different physical situation may develop.

The idea about the system’s elements—particles as material points causes
a number of problems. For example, the electromagnetic field energy is infinite
for charged point particles.

Consistent use of the system particles presentation through their distri-
bution in the coordinate space and other kinematic variables (velocities and
accelerations) remove these problems [10–12], while the main equations for the
system in the collective states are not only dynamic equations of the motion
of correlating particles but also kinetic equations for distribution functions of
the system’s elements. In the next article we will obtain and analyze the ki-
netic equations as generalization of the Vlasov’s kinetic equation for the open
systems with varying constraints while here we only give quality observations.

The kinetic equation for the system of particles in absence of external
forces may be written as the continuity equation in the phase space

∂f

∂t
+ divr(~j) = Ist, Ist = −divp(~j), ji = Dij

∂f

∂pj
+ Fif, (17)

since for the collision integral Ist we use representation as the flow divergence in
the phase space ji and the distribution function dynamics is represented by the
dynamics of the effective incompressible liquid. The flow is written through the
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diffusion coefficient Dij and friction force F in the phase space, which is true for
the kinetic equations, which in various forms consider collective correlation of
the particles through natural oscillations of the medium (equations of Vlasov,
Landau or Lennard-Balesku).

Let us assume that evolution is a number of bifurcations between a se-
quence of quasi-stationary states, which, thus, may be considered as the ones
determined by a system of equations:

divr(~j) = 0, divp(~j) = 0. (18)

The first equation is apparently satisfied in spatially homogeneous systems and
the stationary distribution functions for them should satisfy the equation:

divp(~j) = 0 or
∣∣~j∣∣ = P, P = const. (19)

Solution of this equation with permanent flow P (see [13–14]), different from
zero, corresponds to the action of the mass forces on the system.

Genuinely, the system by definition is called ‘mass’ if it acts not only on
the particles on the boundary of the system, but also on all particles inside
the system. If in this case the mass force exceeds the dissipative forces in the
system, then dissipation inside the system may be neglected, while all points
inside the systems may be considered as approximately equivalent. The mass
forces exceeding the dissipative ones will be called the general dominating dis-
turbance for this system. Therefore, the system under the action of the general
dominating disturbance may be well simulated by the spatially homogeneous
non-equilibrium system with flows in the phase space constant in each point of
the space.

Vlasov analyzed in [10–12] and in [15–16] important examples of physical
mechanisms fostering formation of structures in plasma due to renormalization
of particles correlation through natural collective oscillations of the medium.

The renormalization of particles correlation is determined by their distri-
bution function. It is generally regarded that the only stationary solution of
the kinetic equations in the spatially homogeneous system is the equilibrium
distribution function fT (p) ∝ exp

(
−p2/ (2mT )

)
, corresponding to P = 0 and

representing the trivial solution (17). It appears to be that the stationary states
of the spatially homogeneous systems in case of permanent, not equal to zero,
flows in the phase space have a power form or power asymptotics (see [13–14]).

As it will be shown in the next work, it is convenient to represent the power
solutions in the form of the solution of the generalized Vlasov’s equation:

fq (ε) = A expq (−ε/T ) , expq (x) = (1 + (q − 1)x)
1/(q−1)

. (20)

Here for notation of solutions we use the quasi-power generalizations of the
exponential functions introduced by C. Tsallis for his open systems thermo-
dynamics [17]. The distribution functions (20) describe the collective state
resulted from the action of the mass force while the parameter q ≈ 1 + αP is
determined by the value of the corresponding flow P . Average energy on the
particle in the non-equilibrium state (18) is equal to

T (1 + (1− q) Sq) , (21)
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where Sq = −lnqη—the entropy of the state (18), written with the use of the

expression for the generalized algorithm lnq(x) =
x1−q − 1

1− q
[17]. Solutions of

the (20) type in absence of the flow (i.e. with P = 0 and q = 1) form the
homogeneous equilibrium state.

In the general case the system has two components:
• A structureless one with thermal motion and, evidently, distribution

approaching equilibrium;
• A coherent one related to the appearance of the long-range orders and

with (18) type distribution.
Since proportion of the number of particles in the components is regulated by
the order parameter, then it is possible to use further and with good accuracy
the model representation for the distribution function as follows:

f (p, T, q) = (1− η) fT (p) + ηfq (p) (22)

It is noteworthy that existence of the two components of the distribution func-
tion with different average energy leads to the appearance of a new branch of
the medium natural oscillations with linear dispersion [18] and to renormaliza-
tion of the Coulomb interaction in compliance with the theory [19], owing to
the interaction through the exchange of these quantums of the medium natu-
ral oscillations. Renormalization depends on the order parameter and q, i.e.
finally on the mass forces and flows in the system.

6 Shell model of self-organization of a system
with constraints

Gravitational forces are the most well known examples of the mass forces be-
cause being in the cosmic scale the main factor of evolution, they lead, as
the experiments show, to formation of the specific structures in the evolving
Universe—the ‘pancakes’ that further evolve into a cluster of galaxies. Increase
of the system coherence and decrease of characteristic dimensions towards co-
herence due to the action of the mass forces are, to our opinion, one of the key
elements for initiation of self-organization in any complex systems.

In the general case, a system, isotropic at the initial moment and with dis-
tribution of particles in the space with a typical scale l0 evolves into a deformed
state with the large number of external spatial scales. Let us in the simplest
case consider evolution anisotropy by introducing two scales as macroscopic
geometric characteristics of the system instead of only one—its radius:

• l⊥ < l0 in one direction;
• ls > l0 in orthogonal directions.
A smaller scale may be called the scale of the space coherence of the

system, which characterizes the ‘pancake’ thickness, while the larger scale—
the characteristic scale of interaction, which characterizes the maximal size of
correlations in the system.

The phase volume of the system Ωph = ΩpΩr is the product of the vol-
umes. Here Ωris the volume in the coordination space, while Ωp- in the pulse
space. The phase volume of the system may be estimated by the distribution
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function, hence the quasi-stationary distribution function of the system
∂f

∂t
≈ 0

is followed by the stationary condition of the phase volume
∂Ωph
∂t

≈ 0 under

meeting the condition of the flow constancy (19). If the flow equals zero, the
state of the system is in equilibrium, while Ωph is constant.

Methods of the regularization on the basis of the fractional operators
developed in the work [20] may provide qualitative description of the properties
of the quasi-stationary states with the non-zero constant flow in the phase
space. Stationary condition of the phase volume regarding regularization takes
the form:

D1−νΩph (t) = 0, (Dαf) (x) = − 1

Γ(1− α)

d

dx

τ∫
x

f(t)

(t− x)
α dt (23)

and has a solution

Ωph (t) = Ωph0
τν

(τ − t)ν
, (24)

where Ωph0 is the value of the phase volume at the initial moment of time. The
derivative index ν in this correlation is proportional to the mass force or flow
in the phase space and transforms into an equilibrium expression at ν = 0.
The above obtained expression for the phase volume of the system under the
action of the mass forces shows the appearance of the mode with aggravation
and reduction of the coherence scale l⊥ and leads to an increase of the typical
interaction scale ls in compliance with the correlation:

ls = l0

√
Ωp0
Ωps

√
l0
l⊥

= l0
1

(1− t/τ)
ν/2

√
l0
l⊥
. (25)

For the typical interaction scale in the correlation (25) the phase volume
of the systems is not preserved while an additional rheonomous multiplier ap-
pears and explosively changes the localization of the states due to the entropy
production.

To our opinion, initiation of the evolution not only in the cosmological
domain but also in the general case is related to the following: increase of the
system coherence is accompanied by the renormalization of the fundamental
interactions in the system and corresponding changes in its structure through
the increase of the typical space scales of interaction in the directions orthogonal
to the direction of the coherence. An effective reduction of the dimensionality
of many particles in the direction of the coherence growth of the system and
‘flattening’ of its collective state take place.

There appears a new class of phenomena related to the quantum nonlo-
cality while appearance of the coherent states and processes governed by the
external sources of energy and information act as a prerequisite.

In the course of interaction the quantum systems acquire classical fea-
tures, which correspond to the information available in the external sources
affecting the quantum system while nonlocality appears as a result of entangle-
ment of the quantum states in the irreversible processes under interaction with
the medium. One may say that the evolution of the open nonlocal quantum
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system generates internal information-intensive structures capable to exchange
information with external sources. In this situation the system loses many of
its specific quantum features and becomes to a certain degree classical. The
theory of such macroscopic quantum objects and quasi-stationary states will
be reported in the next articles on the basis of the modified Vlasov’s equation.

Self-consistent full ionization of substance is the physical basis of the
modes with aggregation. Ionization is known to lead to a density increase
when electron shells of atoms reduce their radius in the process of ionization.
Increase of the substance density may induce further ionization of the sub-
stance, which does not take place under the normal conditions because den-
sity increase resulted from ionization is not enough for further ionization, thus
providing stability of the surrounding substance preventing its spontaneous
collapse.

However, it is possible to create collapse of the electronic system by using
renormalization of the electromagnetic interaction in the medium thanks to its
polarization, which fits perfectly into the formalism of the dielectric permeabil-
ity ε

(
ω,~k

)
and exchange of quanta of the medium natural oscillations.

Fractal properties of the medium related with its scale invariance, reso-
nance properties and space limitation of the particles subsystems are the most
essential factors, which permit controlling properties of the dielectric perme-
ability (and thus, correlation of ions and nuclei). That is, the initial Coulomb
interaction of nuclei with the Fourier-transform of the potential written in the

form U (ω, k) =
4πZ2e2

k2
essentially changes as a result of interaction through

collective plasma oscillations and is determined by the dielectric permeability

ε
(
ω,~k

)
of the medium: U (ω, k) =

4πZ2e2

ε
(
ω,~k

)
k2

.

We will show that presence of the fractal structure in the system leads to
the renormalization of the vacuum interaction and further spontaneous growth
of fractal structures in its volume.

Fractals with the Cantor set structure (see [21]), which are built by a
similitude of the bounded interval with eliminated central part whose size equals
to ξth fraction of the whole interval 0 < ξ < 0.5 are convenient for simulation
and theoretical studies.

Let us consider a thin fractal layer of the lengthL, which the Cantor set

with the preset parameter ξ and, thus, with fractal dimension Df =
ln 2

|ln ξ|
.

Distribution of the potential and charge in such fractal thin layer is considered
homogeneous through all its thickness. Distribution of the charge density in the
perpendicular direction x (along surface of the layer where the charge density
distribution is the Cantor function ∆ξ (x)) is described by the Poisson equation:

d2U

dx2
= −4πe∆ξ (x) . (26)

The Fourier component of the potential in this layer is ( k⊥- the wave
number along layer):

Uk =
4πe

k2
γξ (k⊥L) , γξ (k⊥L) =

∞∏
n=0

cos

[
(1− ξ) ξn

2
k⊥L

]
. (27)
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Expression for the Fourier transform (25) coincides with the general ex-

pression through the dielectric permeability at ε (k⊥) =
1

γξ (k⊥L)
.

Fig. 1 shows the Fourier component of the Coulomb potential in the
medium with the fractal structures.

Fig. 1: Graph of the Fourier transformation of the potential in the fractal layer γξ(k),
ξ = 0.3

The medium fractality leads to the appearance of the large number of the
wave vector domains where the dielectric permeability is negative and interac-
tion of the similar charges has a nature of attraction.

The inverse Fourier transformation—the component Uk leads to the de-
pendence of the potential on the coordinate for the fractal layer as the fractal
function where the measure of non-zero values equals zero. That is, the volume
of domains with zero values of the potential fills practically all space, while the
volume of domains with the non-zero values of the potential tends to zero.

A set of points, on which the values of potential are concentrated, forms
the Cantor set while the potential may be represented as follows:

U (r) =
∑

i∈∆ξ(r)

exp (−κrri)
ri

, κr =
2π

δsh
, (28)

where ∆ξ (r)—the Cantor set on which the values of the potential are concen-
trated, kr—the wave number of the wave along direction r, where the shell is
limited and coherent, δsh—thickness of the shell.

Since almost everywhere (except a set of points of the zero measure) the
Coulomb interaction proved suppressed and nothing prevents the particles to
contact, then the fractal structure initiates its explosive growth.

A system of particles aggregated as a result of the pair contacts represents
a set of clusters of various sizes. Size distribution of the clusters, i.e. concen-
tration of the clusters of ksize (clusters composed of knucleons) as a function
of time is described by a system of reactions:

Ak0 +Ak0 → A2k0, Ak0 +A2k0 → A3k0 . . .

In this case the equation for concentrations Ck of clusters of k nucleons
may be described as the Smolukhovsky’s coagulation equation [22], where com-
petition of two processes is considered: (1) adhesion of the cluster components,
i.e. increase of the cluster size, and (2) collapse of the cluster components, i.e.
growth of the number of clusters smaller by weight. For probability Kij of the
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adhesion of clusters of the sizes i and j one may assume approximation under
which this probability is proportional to the product of the areas of the initial
clusters surface—Kij ∝ (ij)2/3.

The Smolukhovsky’s equation may be integrated analytically in this ap-
proximation of the permeability of the Coulomb nuclei barriers due to the
increase of correlation in the system, and it appears that the average size of
the cluster may become infinite for the finite time—the time of phase transition
in gel.

Solution of the problem on determination of the most general laws of the
structure growth is the most important element of the self organization theory,
which is reported below.

7 Variational principle for evolution of
complex systems—a principle of dynamic
harmonization in the non-covariant
Gaussian form

Variational principles are the most concentrated expression of the laws on dy-
namics of the particles system, therefore, it is desirable to formulate the laws
of the complex systems evolution in terms of the variational principles.

The variational principles of mechanics are its fundamental principles ex-
pressed in the form of variational correlations from which differential equations
of motion logically follow.

According to the variational principles, actual motions of the system un-
der the action of the preset forces are compared with the kinetically possible
motions prompted by the constraints applied on the system and satisfying
certain conditions. The variational principles differ by their form, variational
ranges as well as by generality, however each principle incorporates everything
in this sphere of science and unites all its principles in one formulation in the
frames of its applicability.

In [2] the variational principle of evolution of the systems with constraints
was formulated, which is the principle of dynamic harmonization. The system
self-organization results from variation of the structure of constraints between
the elements of the system in response to the system acceleration, and is aimed
at:

• either counteraction to the forced acceleration because of the steady
state due to the system energy inertia;

• or facilitation of the forced motion acceleration towards steady state at
the account of the system inertia decrease.

Changes in the system structure lead either to binding of free energy of the
external accelerating mass force in the structure or to a release of the previously
conserved free energy in various forms into the environment.

Below we will explain this principle and its analytical formulations.
The variational principles may have various forms for the dynamics of the

mechanical systems different in quality.
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The systems with constraints may be open (exchanging energy and/or
mass with the environment) and closed or conservative (not changing its en-
ergy and mass). Evolution of the system is always connected with structural
variations, therefore with variations in the bonding energy of the evolving sys-
tem and with mass defect, so in evolution processes we deal only with open
systems. As to the constraints in the systems, they have more detailed classi-
fication in mechanics. Let a system be characterized with the coordinates xi

and velocities ui = dxi/dt, i = 1, ..., n. The constraints existing in the system
in the general case are characterized by a set m of functions:

ϕj
(
x1....xn, u1....un, t

)
= 0, j = 1, ...,m (29)

As is know, the constraints are called:
• scleronomic, if functions ϕj are not time-dependent;
• rheonomic , if functions ϕj are time-dependent;
• holonomic, if functions ϕj are not velocity-dependent;
• non-holonomic, if functions ϕj are dependent not only on the coordi-

nates but also on the velocities.
It is clear that constraints in the evolving system of general position will

vary with time, i.e. rhenonomic, but may also be holonomic and non-holonomic.
Let us change the analysis of the variation principles describing develop-

ment of system particles with time.
The variation principles differ from one another by forms and varying

patterns as well as by the generality degree.
The most general differential principles characterizing the motion prop-

erties of open systems with constant and variable constraints for any given
point in time are the Gauss and Hertz variation principles, while the most gen-
eral integral principle characterizing the motion properties at any finite time
intervals, is the least action principle in the Hamilton–Ostrogradsky form [23].

For constructing the variation principle for the self-organizing open sys-
tems we start from the most general variation principle of dynamics, which is
also true even for systems with non-stationary non-holonomic constraints—the
Gaussian principle.

Gauss introduced the general principle of mechanics as the mechanical
analog of the least square method underlain all statistical studies and it is called
the principle of least constraint. According to the Gauss principle, positions
occupied by the points of the system at the moment t + τ in true motion are
distinguished among all positions allowed by the constraints by the fact that

the constraint measure in them ZG =
N∑
i=1

mis
2
i has a minimal value (here si—

length of the vector between the points representing true or any other position
of the point). The Gauss principle has the following peculiarities:

• addition of inertia mass forces to the external forces acting on the sys-
tem;

• varying of accelerations under preset coordinates and velocities (the
Gauss variation).

The inertia mass force proves inseparable from the corresponding accel-
eration, which shows its key role in self-organization processes. For the closed
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systems (the systems in which Hamiltonian is explicitly time-nondependent)
the Gauss principle is reduced to the principle of the Hamiltonian least action.

However, even in the general variation principle of mechanics the non-
stationary constraints in the system are assumed to be fully prescribed prior to
the dynamic process initiation, hence this principle in its initial form cannot be
the basis for the self-organization theory. Dirac [24] was the first to consider
the dynamic systems with the variable structure where not only trajectories of
particles but also constraints were viewed as variable parameters.

For self-organizing systems with the particle dynamics occurred in the
configuration space it is necessary to take into account a possibility for the sys-
tem of particles to evolve through varying the constraint fields and generation
of system’s most steady and optimal structures.

Moreover, since variation of the system’s inner structure is connected with
variation of its mass (with mass defect of the system), such processes are most
effective in the course of the system evolution and may serve as a source of
energy for the evolution itself. Therefore, it is evident that control of the system
with the help of the laws of evolution of its constraints (variational principles
for the systems with varying constraints) is the only effective way for desirable
transformations in the system at the account of its internal energy resources
instead of direct ‘forcing’ the system by external energy only.

It follows from the above that the use of the general dominating distur-
bance specially selected for the given system is the tool for initiation of the
self-organization processes (dynamic harmonization) of the structure of con-
straints in the system.

In order to write analytically the principle of dynamic harmonization let us
calculate a shift of the particle sias a result accelerations variation. Considering
time variation τ small with the accuracy to the second order it appears that:

si (t+ τ) =
1

2
δai (t) τ2, where δai = wi −

Fi (t) + Fm
mi (Df )

. (30)

By inserting the shift of particles from (30) into the constraint function we

receive:
N∑
i=1

mis
2
i =

N∑
i=1

(
τ2

2
(miwi − Fi + (miam)ui (t))

)2 /
mi. From here

it follows that in view of the value τ4/ (4mi) > 0 the dynamic harmonization
function may be represented as follows:

Zdh =

N∑
i=1

(mi (Df )wi − (Fi + Fm))
2
, mi (Df ) = (Aimp − δmi (Df )) (31)

Finally, the principle of the dynamic harmonization may be formulated as fol-
lows: the system varies its trajectory and structure under the action of external
forces so that to be in the harmony with the environment and external actions
as a result of minimization of the generalized constraint function Zdh regarding
all constraints in the system. In other words, the system tends to make trajecto-
ries of its forced motion under the action of mass forces maximally approaching
the trajectory of its own natural undisturbed motion.

In (31) summation is performed both by collective variables and by all par-
ticles. Since the structure variation is inseparably connected with the variation
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of entropy and information, the dynamic harmonization principle simultane-
ously describes purposeful exchange of information and entropy by the system
with the environment.

At the first glance, a property of the quadratic function minimality (31) is
explicit and produces nothing new but the Newton equation miwi = Fi + Fm.
However, this is not true. From (31) for variable determining the state of
the system and its internal structure, after accelerations variation ai regarding
constraints at the fixed positions and velocities of all particles follow differential
equations, which do not coincide with the Newton equations for dynamic of
particles under the action of forces when constraints are in place.

In order to obtain a specific form of the dynamic harmonization equations
and effectively apply it, it is necessary to use an expression for constraints in
the system. It turns out that all open systems with varying constraints have
significant similarities, and can suggest a general model for the evolution of
such systems based on the principle of dynamic harmonization.

8 Dynamic harmonization equation

In accordance with the dynamic harmonization principle the evolution equa-
tions are determined by a minimum of the dynamic harmonization function
Zdh under variation.

Let us consider an example of the liquid drop with radius R, which
depends on the structure internal system using the equation of constraints
R = g (Df ), and write the dynamic harmonization function for it:

Zdh =
1

2
(mwR − FR)

2
, m = m0 −BA (Df )

/
c2. (32)

For applying the principle let us consider that force FR may be expressed
through the bonding energy gradient BA (Df ):

FR (Df ) =
∂BA (Df )

∂R
. (33)

Not counting the constraints, the conditions of the constraint quadratic
function lead to general Newton equations. However, owing to the constraint
R = g (Df ) acceleration wR cannot vary independently and is expressed through
acceleration of the fractal dimension under preset values of the coordinates and
velocities (the Gaussian variation of accelerations). The Gaussian variations
are the variations of the second order tangent plane of the tangency at a fixed
plane of the first order of tangency. Variations of the accelerations of all or-
ders, i.e. vectors in the respective different planes are independent, therefore
the Gaussian variations lead to the following: the correlations for the variations
of accelerations are similar to correlations for the variation of the respective
coordinates, and the first derivatives are absent in the following correlations
for accelerations:

wR =
d2

dt2
R = gRD̈f , gR =

∂2g

∂2Df
. (34)
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Inserting the obtained expression for acceleration into Zdh, we obtain the
dynamic harmonization function as dependent on acceleration of the fractal
dimension:

Zdh

(
D̈f

)
=

1

2

(
gRD̈f −

FR (Df )

m

)2

. (35)

Condition for minimum of the dynamic harmonization function in rela-

tion to accelerations of the fractal dimension,
∂Zdh

(
D̈f

)
∂D̈f

= 0, leads to the

differential equation determining evolution of the dynamic system with vary-
ing constraints:

mstrR0D̈f − FR (Df ) = 0, mstr = mgR. (36)

In the simplest case when considering evolution of the system with slowly
varying forces the equation may be once integrated and presented as the La-
grange equation with the corresponding Lagrangian function:

Lstri = mstr (Df )R0

Ḋ2
f

2
+BA (Df ) , (37)

where the system structural inertia appears mstr (Df ). Analysis of the specific
models of the system of particles regarding correlations of (25) type for space
scales and bonding conditions (for example, nuclear structure models) shows
an explosive growth of structural inertia with the order parameter growth,

which may be approximated by the dependence mstr (Df ) =
m0str

(1− η (Df ))
γ .

Such dependence provides hysteresis phenomenon under structure formation.
Under the action of the forces with positive acceleration, structures form from
the state with initial value of the order parameter while the order parameter
grows and achieves corresponding maximal value. Acceleration reverses its
sign while the action of the mass forces is coming to an end and these forces
tend to zero, and the order parameter somewhat decreases in compliance with
the harmonization equations (the Lagrangian equation with the Lagrangian
function Lstri). However, since the structural inertia has already grown, the
order parameter does not reduce down to its initial value and the ’residual’
order parameter appears as an element of the system memory.

Structural inertia (mass) appears in the phenomena accompanied by the
symmetry disturbance. This fact is well known in the theory of elementary
particles. Spontaneous disturbance of the symmetry in the calibration theories
may lead to the appearance of the finite mass in massless calibration particles.

After completion of the action of external entropy force, which disturbed a
symmetry of the system, the long-range order, characterized by the parameter
η, may appear in the system. It is the structural inertance, characterized by the
order parameters at each hierarchy level that accounts for inertance of the self-
organization processes. In the general case the structural inertia (mass) mstr,
connected with the appearance of the fractal clusters is expressed through the
fractal dimension or the order parameter.
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Conclusion

Consistent theoretical development of the basic principles of the concept on
self-organizing synthesis of new structures in the dynamic systems opens new
potentials for creation of the theory on self-organization of the complex systems
and for the development of fundamentally new technologies.

This work proposes generalization of the Gaussian variation principle,
which is a mathematical formulation of the dynamic harmonization principle
for the open systems with varying constraints. The proposed variation princi-
ple allows obtaining equations that describe the self-organization process and
expose the nature of the constraints fields and their collective states.

It makes intuitive sense that self-organization of the system is inseparably
connected with evolution of its structure and leads to the changes in its mass,
stability and bonding energy. However, the available self-organization theo-
ries (for example, the Prigogine non-equilibrium thermodynamics) where the
system self-organization is determined by the gradients of the thermodynamic
parameters inside the system, while the distribution functions are locally equi-
librium, are not applicable for the open systems with varying constraints. At
the same time the theory on the basis of the variational principle of dynamic
harmonization may claim to become the general theory on self-organization of
the open systems with varying constraints .

Formalism of the variation principle of dynamic harmonization presented
in the work suggests a general platform for solution of the problems of self-
organization and control for evolution of various complex systems from the
general positions of the theory of thermodynamic systems with varying con-
straints.

Since entropic forces have a considerable contribution to the proposed
theory of self-organizing synthesis it is necessary to mention Kozyrev’s works
(see, for example [25]), where time plays a key role. Kozyrev also considered
the open systems with not only degradation processes (law of the energy degra-
dation), but also the processes of the structure synthesis and, thus the entropy
reduction. He stated that the time density value, introduced in his theory,
depends in a given point of the space on the processes occurring in the vicin-
ity of this point. In the processes, where the entropy grows, the time density
increases, therefore such processes are time-emitting. Hence, time density in-
creases when a substance loses its organization. Kozyrev noted that even this
circumstance suggests a conclusion that time contains organization or negative
entropy that may be transmitted to another object in the vicinity of such pro-
cesses. In other words, time affects the substance. It is especially interesting
that Kozyrev could observe evolution in stars and stars motion from the lab-
oratory on the Earth using his time theory in the real time mode. Using our
theory on self-organization of systems with varying constraints it is possible to
disclose the essence of time density variation according to Kozyrev.

In the next works we will show that this is connected with metrics change
and appearance of the local space-time curvature determining in the simplest
cases the value of the natural and laboratory time relations.

Herz paid attention to the fact that varying accelerations according to
Gauss with minimality of the constraint function corresponds to the variations
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in motion on condition of the trajectory curvature minimality, hence real mo-
tion always chooses the straightest path coordinated with constraints. This
principle is represented by Herz also in the form of the functional minimum
denoting the length of the system path from n particles with weights mi.

It will be shown that the principle of dynamic harmonization regarding the
Hertz ideas can be transformed to the functional minimum representing not the
length of the path in the three-dimensional space but the length of world lines
of particles in space-time stated and formulated as follows: The system with
constraints evolves in space-time by geodetic lines with the space-time curvature
tensor corresponding to the evolution of the internal system constraints, being
harmonized in response to the action of mass forces

The works of this series will show that the idea of a liquid drop with a
fractal structure can be naturally applied to a drop of nuclear liquid and a
range of possible values of the nuclei binding energies is much broader than
it is accepted in nuclear physics. The appearance of the internal structure of
nuclei in the nucleon scale, which is reflected by introduction of a new nuclear
option—their fractal dimension, opens up great prospects for synthesis of new
nuclear structures based on self-organization of nuclear matter obeying the
dynamic harmonization principle.

The concept of self-organizing synthesis allows obtaining theoretical and
experimental results that may be applied in many fields of science and tech-
nology.
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