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On computations with double Schubert
automaton and stable maps

of multivariate cryptography

Vasyl Ustimenko1

Abstract. The families of bijective transformations Gn of affine space
Kn over general commutative ring K of increasing order with the property
of stability will be constructed. Stability means that maximal degree of
elements of cyclic subgroup generated by the transformation of degree
d is bounded by d. In the case K = Fq these transformations of Kn

can be of an exponential order. We introduce large groups formed by
quadratic transformations and numerical encryption algorithm protected
by secure protocol of Noncommutative Cryptography. The construction of
transformations is presented in terms of walks on Double Schubert Graphs.

Keywords: Affine Cremona Group, Double Schubert Automaton, Mul-
tivariate Cryptography, Noncommutative Cryptography, Post Quantum
Cryptography

1 Introduction

In 2017 the international tender of the National Institute of Standartisa-
tion Technology (NIST) of the USA for the selection of public key based on
postquantum algorithms was announced. It has been considering algorithms
for the encryption task and for the procedure of digital signature. The last
third round of this competition started in summer time of 2020. Only one
candidate from the multivariare cryptography area remains. This is a special
case of ‘’Rainbow like unbalanced oil and vinegar” digital scheme.The final list
does not contain algorithms of Multivariate Cryptography for the encryption
task. This outcome stimulates alternative research on numerical encryption
asymmetrical postquantum algorithms of Multivariate cryptography such as
algorithms which are not public keys and use the composition of several non-
linear maps of bounded degree. Our paper is dedicated to new postquantum
secure cryptosystem with the encryption process based on bijective quadratic
maps of large order. Postquantum status of these encryption is justified by
recent results of Noncommutative Cryptography.

In March 2021 it was announced that prestigious Abel prize will be shared
by A. Wigderson an L. Lovasz. They contribute valuable applications of the-
ory of Extremal graphs (see [20]) and Expanding graphs [21] to Theoretical
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Computer Science. We have been working on applications of these graphs to
Cryptography (see [22], [23], [24], [25] and further references). This paper is
dedicated to the problem of postquantum secure encryption of rather large
files in terms of Multivariate Cryptography but with usage of ideas of Non-
commutative Cryptography. We will use Double Schobert graphs which belong
to class of geometrical expanders introduced in [26]. Remarkable symbiotic
combination of absolutely secure one time pad with Diffie-Hellman protocol in
terms of groups F ∗

p , p is prime, can not be used in our postquantum times
because classical discrete logarithm problem can be solved in polynomial time
vith usage of quantum computer. The proof of this fact waspublished by Peter
Shor in 1995. We present a possible substitutor of mentioned above symbiotic
combination.

Classical encryption tools of Multivariate Cryptography are nonlinear
polynomial maps F of affine space Kn over finite commutative ring K into
itself. Traditionally a map F is presented in the form T1GT2, where T1 and T2
are representatives of affine general group AGLn(K) of all polynomial bijective
transformations of Kn of degree 1 and central G is a nonlinear polynomial
map. We refer to F as linear deformation of G. Popular computer tools for
the generation of G are packages for symbolic computations (“Mathematica”,
“Maple”, “Sage”, “Magma” and special symbolic tools for professionals). Alter-
native approach to the construction of core maps G via numerical computations
with sparse algebraic graphs was presented at some talks at CANA conference
of FedSCIS [16], [17], [18]. The idea is to convert algebraic graphs into spe-
cial automata for computations in polynomial ring K[x1, x2, ..., xn] in terms
of “arithmetical” operations of addition and multiplication in the ring. It al-
lows to use standard C++ or Java languages for the construction of polynomial
maps over finite fields, arithmetical and Boolean rings. It is interesting that
automata was constructed from bipartite algebraic graphs defined by systems
of equations xi − yi = xlyk, some properties of graphs (stability, degree, in
particular) were obtained theoretically but other properties (orders, density)
were investigated via computer simulation.

This paper is a theoretical one, we present theoretical results which demon-
strate potential of the graph based approach. It turns out that the method
allows to generate a stable nonlinear polynomial maps of chosen degree with a
prescribed density and exponentially growing order. Results are obtained via
explicit constructions of automaton maps based on bipartite graph DS(n,K)
over general commutative ringK such that point (x1, x2, ..., xn, x11, x12, ..., xnn)
is incident to line [x1, x2, ..., xn, x11, x12, ..., xnn] if and only if xij − yij = xiyj ,
i = 1, 2, ..., n, j = 1, 2, ..., n. Special walks on this graph of even length induce
nonlinear map of affine space Kn(n+1) to itself. The graph has geometrical
nature, in case of K = Fq it is induced subgraph of the incidence relation of
finite projective geometry.

The approach was motivated by cryptographical applications. That is why
explicit constructions lead to some new cryptosystems. In Section 2 we discuss
the concepts of postquantum security and multivariate cryptography (MC),
some references on usage of cryptographical properties of algebraic graphs are
given. Next section is devoted to the concept of stable transformation con-
nected with the investigation of discrete logarithm problem in the affine Cre-
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mona group C(Kn) of all bijective polynomial transformations of affine space
Kn such that their inverses are also polynomial maps. This problem is moti-
vated by related multivariate Diffie–Hellman key exchange protocol and corre-
sponding El Gamal cryptosystem. In Section 4 we modify El Gamal algorithm,
one can use high non commutativity of C(Kn) and conjugate the inverse of the
generator of large cyclic group. In the next section we state theorems on the
existence of families of nonlinear stable multivariate maps over finite fields of
exponentially growing order with prescribed degree and density. The existence
of corresponding explicit construction is also formulated. The impact of such
theorems is an option of implementation of multivariate key exchange protocols
and related shifted El Gamal cryptosystems in case of family of cyclic subgroups
of exponentially growing order in affine Cremona group over Fq. In Section 7
we discuss natural restriction on parameters for such algorithm. The Double
Schubert graph and related automaton are introduced in Section 8. The sketch
of proof of the main theorem on the existence of stable maps of exponentially
growing order is given as a chain of lemmas.

The last section of the paper present new encryption algorithm of Post
Quantum Cryptography. Encryption is descrribed in terms of Quadratic Mul-
tivariate Cryptography. The speed of encryption is standard for this area.
Suggested cryptosystem is Post Quantum Secure. It is not a public key. So it
differs from candidates investigated by well known NIST competition. Cryp-
tosystem combines secure protocol with quadraticsable platform of polynomial
transformations with flexible encryption procedure.

2 On Post Quantum and Multivariate Cryptography

Post Quantum Cryptography serves for the research of asymmetrical cryp-
tographical algorithms which can be potentially resistant against attacks based
on the use of quantum computer.

The security of currently popular algorithms is based on the complexity
of the following three well known hard problems: integer factorisation, discrete
logarithm problem, discrete logarithm for elliptic curves. Each of these prob-
lems can be solved in polynomial time by Peter Shor’s algorithm for theoretical
quantum computer. o cryptographers already started research on postquantum
security. They also have to investigate the impact of the new results on general
complexity theo complexity estimates of graph isomorphism problem obtain

We have to notice that Post Quantum Cryptography (PQC) differs from
Quantum Cryptography, which is based on the idea of usage of quantum phe-
nomena to reach better security.

Modern PQC is divided into several directions such as Multivariate Cryp-
tography, Lattice based Cryptography, Hash based Cryptography, Code based
Cryptography, studies of isogenies for superelliptic curves.

The oldest direction is Multivariate Cryptography which uses polynomial
maps of affine space Kn defined over a finite commutative ring into itself as an
encryption tool. It exploits the complexity of finding solution of a system of
nonlinear equations from many variables.

This is still young promising research area with the current lack of known
cryptosystems with the proven resistance against attacks with the use of ordi-
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nary Turing machines. Studies of attacks based on Turing machine and Quan-
tum computer have to be investigated separately because of different nature of
two machines, deterministic and probabilistic respectively. Multivariate cryp-
tography started from the studies of potential for the special quadratic encryp-
tion multivariate bijective map of Kn, where K is an extention of finite field Fq
of characteristic 2. One of the first such cryptosystems was proposed by Imai
and Matsumoto, cryptanalysis for this system was invented by J. Patarin. The
survey on various modifications of this algorithm and corresponding cryptanal-
ysis the reader can find in [1]. Various attempts to build secure multivariate
public key were unsuccessful, but the research of the development of new can-
didates for secure multivariate public keys is going on (see for instance [2] and
further references).

Applications of Algebraic Graph Theory to Multivariate Cryptography
were recently observed in [3]. This survey is devoted to algorithms based on
bijective maps of affine spaces into itself.

3 On stable multivariate transformations for the key
exchange protocols

It is widely known that Diffie–Hellman key exchange protocol can be
formally considered for the generator g of a finite group or semigroup G. Users
need a large set {gk|k = 1, 2, ...} to make it practical. One can see that security
of the method depends not only on abstract group or semigroup G but on the
way of its representation. If G is a multiplicative group F ∗

p of finite field Fp
than we have a case of classical Diffie–Hellman algorithm. If we change Fp∗

for isomorphic group Zp−1 then the security will be completely lost. We get
a problem of solving linear equation instead of a discrete logarithm problem to
measure the security level.

Let K be a commutative ring. S(Kn) stands for the affine Cremona
semigroup of all bijective polynomial transformations of affine space Kn.

Let us consider a multivariate Diffie–Hellman key exchange algorithm for
the generator g(n) semigroup Gn of affine Cremona semigroup. Correspondents
(Alice and Bob) agree on the generator g(n) of group of kind

x1 → f1(x1, x2, ..., xn), x2 → f2(x1, x2, ..., xn), ..., xn → fn(x1, x2, ..., xn)

acting on the affine space Kn, where fi ∈ K[x1, x2, ..., xn], i = 1, 2, ..., n are
multivariate polynomials. Alice chooses a positive integer kA as her private
key and computes the transformation g(n)

kA (multiple iteration of g(n) with
itself).

Similarly Bob chooses kB and gets g(n)
kB . Correspondents complete the

exchange: Alice sends g(n)
kA to Bob and receives g(n)

kB from him. Now Alice
and Bob computes independently common key h as (g(n)

kB )kA and (g(n)
kA)kB

respectively. So they can use coefficients of multivariate map h = g(n)
kBkA

from Gn written in the standard form.
There are obvious problems preventing the implementation of this general

method in practice. In case n = 1 the degree deg(fg) of composition fg of
elements f, g ∈ S(K) is simply the product of deg(f) and deg(g). Such effect
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can happen in multidimensional case: (deg(g))x = deg(gx) = b. It causes
the reduction of discrete logarithm problem for multivariate polynomials to
a number theoretical problem. If g is a bijection of degree d and order m then
dx = b in cyclic group Zm. Similar reduction can appear in the case of other
degree functions s(x) = deg(gx). If s(x) is a linear function then multivariate
discrete logarithm problem with base g is reducible to the solution of linear
equation. The degenerate case deg(gx) = const is an interesting one because
in such situation the degree function does not help to investigate multivariate
discrete logarithm.

We refer to the sequence of multivariate transformations f(n) ∈ S(Kn)
as stable maps of degree d if deg(f(n)) is a constant d, d > 2 and deg(f(n)k) ≤
d for k = 1, 2, ... (see [3]). If τn is a bijective affine transformation of Kn,
i. e. a bijective transformation of degree 1, then the sequence of stable maps
f(n) can be changed for other sequence of stable maps τf(n)τ−1 of the same
degree d.

The first families of special bijective transformations of Kn of bounded
degree were generated by discrete dynamical systems defined in [4] in terms of
graphs D(n,K). In the paper [5] the fact that each transformation from these
families of maps is cubic was proven. In [6] authors notice that this family is
a stable one, the order of its members grows with the increase of parameter n
and suggests key exchange protocols with generators from these families. Other
results on the usage of algebraic graphs for construction of families of nonlinear
multivariate maps of degree ≤ 3 the reader can find in [7], [8].

Recall that the other important property for the generator g(n) in the
described above protocol is a large cardinality of {g(n)k|k = 1, 2, ...}. Let us
assume that g(n) is bijection.

The famous family of linear bijections of Fqn of exponential order is formed
by Singer cycles s(n), they have order qn − 1 (see [11], [12] and further ref-
erences). Statements on the existence of explicit construction of families of
nonlinear maps of exponential order are formulated in the section 5 of this
paper.

The above mentioned key exchange protocol can be used for the design of
the following multivariate El Gamal cryptosystem (see [9], [10]).

Alice takes generator g(n) of the group Gn together with its inverse
g(n)−1. She sends the transformation g(n)−1 to Bob. He will work with the
plainspace Kn as public user.

At the beginning of each session Alice chooses her private key kA. She
computes f = g(n)kA and sends it to Bob.

Bob writes his text (p1, p2, ..., pn), chooses his private key kB and creates
the ciphertext fkB ((p1, p2, ..., pn)) = c.

Additionally he computes the map g(n)−1kB = h(n) and sends the pair
(c1, c2, ..., cn), h(n)(x) to Alice.

Alice computes h(n)
kA(c) = (p1, p2, ..., pn).

Remark 1. It is proven (see [9]) that the security level of above multivariate
Diffie–Hellman and El Gamal algorithms is the same. It is based on the mul-
tivariate discrete logarithm problem on solving the equation gx = d, where g
and d are elements of special cyclic subgroup Gn of affine Cremona group.
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4 On the shifted multivariate El Gamal cryptosystem

We suggest here the following modification of above described algorithm.
Alice takes generator g(n) of the group Gn together with its inverse g(n)−1.
At the beginning of each session Alice chooses her private key kA and pair
(h(n), h(n)

−1
), where h(n) is an element of affine Cremona group. She com-

putes f = g(n)kA and sends it to Bob together with transformation m(n) =

h(n)g(n)
−1
h(n)

−1. Public user Bob writes his text (p1, p2, ..., pn), chooses his
private key kB and creates the ciphertext fkB ((p1, p2, ..., pn)) = c.

Additionally he computes the map m(n)kB = a(n) and sends the pair
(c1, c2, ..., cn), a(n)(x) to Alice.

Alice computes h(n)−1a(n)
kAh(n)(c) = (p1, p2, ..., pn).

The shifted algorithm can have better protection against attacks by ad-
versary. One can choose h(n) to make the discrete logarithm problem in affine
Cremona group with base m(n) harder than one in a case of base g(n)

−1.
Additionally the adversary has to compute the inverse of f = g(n)

kA .
Alice can work with a stable map g(n) of a large polynomial degree and a

polynomial density of a large order such that its inverse conjugate with stable
map m(n) of prescribed small constant degree d.

Remark 2. It is clear, that the algorithm above can be formally considered for
the general pair of bijective nonlinear polynomial transformations g(n) and h(n)
of affine Cremona group of the free module Kn. But the best computational
complexity will be achieved in the case of quadratic stable elements g(n) and
m(n) = h(n)g(n)−1h(n)−1. In the case of a family m(n) of exponential order
corresponding discrete logarithm problem looks as a hard one.

5 Results on existence of families with prescribed
properties

Recall that the density of multivariate polynomial f ∈ K[x1, x2, ..., xn] is
its number of monomial terms. The density of a transformation F of Kn given
by rules x1 → f1(x1, x2, ..., xn), x2 → f2(x1, x2, ..., xn), ..., xn → fn(x1, x2, ..., xn)
is defined as a maximum of densities of fi, i = 1, 2, ..., n.

We refer to F (n) : Kn → Kn as a family of density d if a density of F (n)
is estimated by Cnd, where C is a positive constant. If each transformation
F (n) of a density d has constant degree t, then d ≤ t.

We refer to a family of bijective linear transformation τ(n) given by rule
(x1, x2, ..., xn) → (x1, x2, ..., xn)A of affine space Kn as sparse transformations
if each row and column of matrix A(n) contains only finite number of nonzero
entries and this number is bounded by some positive constant. We refer to
G(n) = τ(n)F (n)τ(n)−1 as a sparse deformation of a family F (n). if one of the
families F (n) and G(n) has density d then the density of the other is also d.

Theorem 1. For each pair (d, T ), where d ≤ T there is a family F (n) of stable
transformations of Kn, n = k(k+1) of degree T and density d of order bounded
below by

√
n− 1.

In the case of finite fields we get the following statement.
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Theorem 2. Let Fq be a finite field. For each pair (d, T ), where 1/2 ≤ d ≤ T
there is a family F (n) of stable transformations of Kn of degree t, density d
and order at least q

√
n−1 − 1.

Sketches of proofs ot the theorems 1 and 2 are presented in the section 6.
This technique is used also for the proof of the following statement.

Theorem 3. Let Fq be a finite field. For each pair (d, T ), where 1/2 ≤ d ≤ T
there is a family F (n) of stable transformations of Fqn, n = (k + 1)2 − 1 of
degree T , density d and order at least q2k − 1.

Each proposition is proven via explicit construction of F (n).

6 Remarks on the size of numerical parameters and
choice of generators

We propose a constructive method of generation of bijective families F (n)
of stable bijective multivariate maps of vector space Fq of dimension n = k(k+
1) or n = (k + 1)2 − 1 of prescribed polynomial degree s, polynomial density
d ≥ 1/2 and exponential order ≥ qk − 1. It allows to generate F (n) and its
inverse in polynomial time.

We suggest the described above algorithms with the usage of such F (n) de-
fined over Fq and integer parameters kA and kB are of size O(ndA) and O(ndB ).
Such choice insures the polynomial time for the computation of F (n)

kA , F (n)
kB

and F (n)
kAkB in the case of key exchange protocol. Notice that density of

F (n)
KA can be higher than d, it is bounded from above by s. Alice sends the

generator F (n), F (n)
kA in a standard form to Bob together with parameter

dB which restricts his choice of the private key.
The precise computation of the order of F (n) is a difficult task. In the

case of El Gamal algorithm our scheme below allows Alice to compute F (n)
−1

without the knowledge of order of F (n).
Shifted El Gamal cryptosystem requires additional transformation h(n).

Notice that the map F (n)
−1 is hidden.

The known function is M(n) = h(n)F (n)h(n)
−1. The adversary has to

solve for kB the discrete logarithm problem with the base M(n) and given
M(n)kB . Our method allows to generate both F (n) and M(n) as stable bi-
jective transformations with prescribed degrees nF and nM and densities dF
and dM .

7 Double Schubert graphs and automata for the
generation of stable maps

We define Double Schubert Graph DS(k,K) over commutative ring K
as incidence structure defined as disjoint union of points from PS = {(x) =
(x1, x2, ..., xk, x1,1, x1,2, ...xk,k)| ∈ (x) ∈ K(k+1)k} and ines from LS = {[y] =
[y1, y2, ..., yk, y1,1, y1,2, ...yk,k]| ∈ (y) ∈ K(k+1)k} where (x) is incident to [y] if
and only if xi,j − yi,j = xiyj for i = 1, 2, ..., k, j = 1, 2, ..., k. It is convenient to
assume that indices of kind i, j are placed in lexicographical order.
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Remark 3. The term Double Schubert Graphs is chosen because points and
lines of DS(k, Fq) can be treated as subspaces of Fq2k+1 of dimensions k + 1
and k which form two largest Schubert cells. Recall that the largest Schubert
cell is the largest orbit of group of unitriangular matrices acting on the variety
of subsets of given dimensions (see [12] and further references).

We define the colour of point (x) = (x1, x2, ..., xk, x1,1, x1,2, ...xk,k) from
PS as tuple (x1, x2, ..., xk) and the colour of line

[y] = [y1, y2, ..., yk, y1,1, y1,2, ...yk,k]

as tuple (y1, y2, ..., yk). For each vertex v of DS(k,K) there is a unique neigh-
bour Nα(v) of given colour α = (a1, a2, ..., ak), ai ∈ K, i = 1, 2, ..., k.

The symbolic colour g from K[z1, z2, ..., zk]k of kind

f1(z1, z2, ..., zk), f2(z1, z2, ..., zk), ..., fk(z1, z2, ..., zk),

where fi are polynomials from K[z1, z2, ..., zk] defines the neighbouring line of
point (x) with colour

f1(x1, x2, , ..., xk), f2(x1, x2, ..., xk), ..., fk(x1, x2, ..., xk).

Let us consider a tuple of symbolic colours (g1, g2, ..., g2t) ∈ K[z1, z2, ..., zk]k

and the map F of PS to itself which sends the point (x) to the end v2t of
the chain v0, v1, ..., v2t, where (x) = v0, viIvi+1, i = 0, 1, ..., 2t − 1 and
ρ(vj) = gj(x1, x2, ..., xk), j = 1, 2, ..., 2t. We refer to F as closed point to point
computation with the symbolic key (g1, g2, ..., g2t). As it follows from defini-
tions F = Fg1,g2,...,g2t is a multivariate map of Kk(k+1) to itself. When symbolic
key is given F can be computed in a standard form via elementary operations
of addition and multiplication of the ring K[x1, x2, ..., xk, x11, x12, ..., xkk]. Re-
call that (x1, x2, ..., xk, x11, x12, ..., xkk) is our plaintext treated as symbolic
point of the graph. Let Sk(k,K) be the totality of all symbolic keys. We
define product (g1, g2, ..., g2t)(h1, h2, ..., h2s) of symbolic keys (g1, g2, ..., g2t)
and (h1, h2, ..., h2s) as (g1, g2, ..., g2t, h1(g2t), h2(g2t), ..., h2s((g2t)).This product
converts Sk(k,K) to a semigroup. It is easy to check that the map kη send-
ing (g1, g2, ..., g2t) to Fg1,g2,...,g2t is the homomorphism of Sk(k,K) onto C(Kn)
where n = k(k + 1). We refer to kη as linguistic retraction morphism.

We write fg to the composition g(f(x)). If (g1, g2, ..., gk) are elements of
affine Cremona group C(Kk) then Fg1,g2,...,g2t = Fg1Fg1−1g2Fg2−1g3 ...Fg−1

2t−1g2t
.

We refer for expression Fg1,g2,...,g2t as automaton presentation of F with
the symbolic key g1, g2, ..., g2t. Notice that if g2t is an element of affine Cremona
group C(Kk) then Fg1,g2,...,g2t ∈ C(Kk(k+1)) and automaton presentation of
its inverse is Fg−1

2t g2t−1,g2t−1g2t−2,...,g2t−1g1,g2t−1 .
The restrictions on degrees and densities of multivariate maps gi of Kk to

Kk and size of parameter t allow to define a polynomial map F of polynomial
degree and density.

Let us assume that gi = (h1
i, h2

i, ..., hk
i), i = 1, 2, ..., 2t is the symbolic

key of the closed point to point computation F = F (k) of the symbolic automa-
ton DS(k,K). We set that g0 = (h1

0, h2
0, ..., hk

0) = (x1, x2, ..., xk). We set
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that h10, h20, ..., hk0) = (z1, z2, ..., zk). Then F is a transformation of kind

z1 → h1
2t(z1, z2, ..., zk), z2 → h2

2t(z1, z2, ..., zk), ..., zk → hk
2t(z1, z2, ..., zk)

z11 → z11 − h1
1z1 + h1

1h1
2 − h1

3h1
2 + h1

3h1
4 + ...+ h1

2t−1h1
2t

z12 → z12 − h1
1z2 + h1

1h2
2 − h1

3h2
2 + h1

3h1
4 + ...+ h2

2t−1h1
2t

...

zkk → zkk − hk
1zk + hk

1hk
2 − hk

3hk
2 + hk

3hk
4 + ...+ hk

2t−1hk
2t

Lemma 1. The degree of F is bounded by a maximum M of γr,s,i(n) =
deg(hr

i) + deg(hs
i+1), 0 ≤ i ≤ 2t, 1 ≤ r ≤ k, 1 ≤ s ≤ k. The density of F

is at most a maximum of d(r, s), where d(r, s) − 1 is the sum of parameters
den(hr

i) × den(hs
i+1) for i = 0, 1, ..., 2t.

We say that closed point to point computation F is balanced if its degree
coincides with parameter M of the previous lemma.

Lemma 2. If the map g2t : Kk → Kk is a bijection then the presentation
defines one to one transformation of PS = Kk(k+1) to itself. The order of F is
bounded below by the order of g2t.

Lemma 3. If the map g2t : Kk → Kk is an affine bijective transformation
(deg(g2t) = 1) and the computation is balanced then the map F is stable one
two one transformation of PS = Kk(k+1) to itself.

Proof of Theorems 1 and 2. Theorem 1 and 2 can be deduced from Lemmas 1,
2, and 3. We assume that parameter t is a constant and n = (k + 1)k. Let
us choose F as Fg1,g2,...,g2t such that (g2t) ∈ AFLn(K)) and parameter M of
Lemma 1 equals T . Other maps gi, 1 ≤ i ≤ 2k − 1 can be chosen to keep
the density of balanced F in the interval C1n

d and C2n
d where C1 and C2

are constants, C1 ≤ C2. In the case of Theorem 1 we can choose g2t as linear
permutation map corresponding to cycle of length k. This parameter k gives
the lower bound for the order of bijective map F . In the case of theorem 2 we
can take Singer cycle in Fqk as g2t. So |F | ≥ gk − 1.

Proof of Theorem 3. Let us consider the edge of the graph DS(2k, Fq). It con-
tains a point (p) = (x1, x2, ..., xk, x11, x12, ..., xkk) and incident line [l] of colour
(y1, y2, ..., yk). We consider a chain of kind (p), [l], (p1), [l1], (p2), [l2], ..., (ps),
[ls] of odd length 2s + 1 such that ρ(pi) = gi ∈ Fq[x1, x2, ..., xk, y1, y2, ..., yk]

k,
ρ(li) = hi ∈ Fq[x1, x2, ..., xk, y1, y2, ..., yk]

k, i = 1, 2, ..., s.
If pair (x1, x2, ..., xk) → g2s(x1, x2, ..., xk, y1, y2, ..., yk), (y1, y2, ..., yk) →

h2s(x1, x2, ..., xk, y1, y2, ..., yk) defines bijective map ∆ of Fq2k, then the map
F sending edge p, l to the edge p2s, l2s is bijective transformation of edge set
E(2k, q) of DS(2k, Fq). Notice, that E(2k, q) is isomorphic to Fq

k(k+1)+k =

Fq
(k+1)2−1. If we chose ∆ as Singer transformation of the vector space Fq2k,

then the order of F will be bounded below by q((k+1)2−1)−1. Similarly to lemma
1 the degree and density of F are maximum of parameters deg(gi) + deg(hi),
i = 0, 1, 2, ..., s, deg(hi) + deg(gi+1), i = 0, 1, 2, ..., s (deg(g0) = deg(h0) = 1).
So appropriate choice of the symbolic key insure that degree of transformation
F is T and density d.
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8 Double Schubert automaton as a stable groups
generator

We refer to a subgroup G in S(Kn) as a stable subgroup of degree d if
the maximal degree for its representative g equals d.

Let AGSn(K) be the semigroup of affine transformations of Kn, i. e. the
group of all transformations of degree 1.

It is easy to see that symbolic keys of kind (g1, g2, ..., gr) of even length
from the semigroup Sk(k,K) with gi ∈ AGSk(K), i = 1, 2, ..., r − 1 and gr ∈
AGLk(K) form a subgroup. We denote it as Lk(k,K). The degree of the
transformation Fg1,g2,...,gr for < g1, g2, ..., gr > from Lk(k,K) is bounded
by 2. Let us consider the group Ek(K) =k η(Lk(k,K)). As it follows from
lemma 1 group Ek(K) is stable subgroup of degree 2 in C(Kn(n+1)). The
family of groups Ek(K) can be used for the following cryptosystem which can
process rather large file. It consists on following protocol, step of exchange of
encryption rules and encryption process.

Protocol. Correspondents use family of group Ek(Fq) for chosen papameters
k and q. Alice computes n = k(k+ 1) and selects affine transformation T from
AGLn(Fq). She computes T−1. Alice selects positive integers t and r together
with two strings a = (g1, g2, ..., gk) and b = h1, h2, ..., hr of elements gi and
hj from AGSk(Fq) such that gt and hr are Singer cycles from GLk(Fq), i. e.
elements of order qk − 1.

She uses the homomotphism η =k η from the semigroup Sk(k,K) onto
affine Cremona group C(Kn) and computes η(a) and η(b). Alice forms elements
G = Tη(a)T−1 and H = Tη(a)T−1 of orders at most qk−1. In fact high orders
of these elements are insured by the choice of linear transformations gt and hr.

Alice sends to Bob the transformations G and H presented in their stan-
dard forms xi →i g(x1, x2, ..., xn), xi →i h(x1, x2, ..., xn), i = 1, 2, ..., n where
monomial terms of polynomials ig and jh are listed in the lexicographical order.

Secondly Alice selects positive constant integers kA < qk − 1 and rA <
qk− 1. She computes standard form GA = HrAGkAH−rA and sends it to Bob.

In his turn Bob selects parameters kB < qk − 1 and rA < qk − 1. He
computes standard form of ZB = HrBGA

kBH−rB and keeps it safely.
Secondly Bob form GB = HrBGkBH−rB and sends its standard form to

Alice. She computes ZA = HrAGB
kAH−rA .

Noteworthy that Z = ZA = ZB is a collision element of the protocol.
In fact Alice and Bob share an element Z from the stable group Y (k, Fq) =

T kη(Sk(k, Fq))T
−1 of degree 2.

Step 2. Encryption tools exchange. Alice takes different from T affine
transformation T ′ such that TT ′ ̸= T ′T .

She forms G′ = Tη(a′)T ′−1 and H ′ = Tη(b′)T ′−1 of orders at least qk −
1. Correspondents again execute the protocol and elaborate another collision
map Z ′.

Secondly Alice (or Bob) selects extra two elements T1 and T2 fromAGLn(Fq)
such that elements of each pair selected from {T, T ′, T1, T2} does not com-
mute. She takes two strings b and c from Sk(k, Fq) of length O(1), computes
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P = T1η(b)T1
−1 and Q = T2η(b)T2

−1 together with their inverses. Finally
Alice sends Z + P and Z ′ +Q to Bob via open channel. He restores P and Q.

Asymmetric encryption procedure. Before the start of exchange session
Alicia and Bob agree on the tuple of integers (α1, α2, ..., αs) of length s = O(1)
(password of the session).

Bob takes his plaintext p = (p1, p2, ..., pn) and applies transformation P
to it α1 times and gets Pα1(p =1 p. In similar way he constructs Qα2(1p) =2 p.
Bob gets 3p via the multiple application of P to 2p. Let us assume for simplicity
that s is even. Then continuation of the process of recurrent applications of P
and Q forms the output Pα1Qα2 ...Pαs(p) = y. So Bob sends the ciphertext y
to his partner.

Alice uses natural decryption procedure. She takes reverse word (αs, αs−1,
..., α1). She applies P−1 to the ciphertext y with multiplicity αs and gets 1y,
applies Q−1 to 1y, .... Continuation of this process gives her the plaintext p.

Complexity estimates. Straightforward computation of the number of ele-
mentary operations shows that Alice can construct multivariate map G (as well
as H, G′, H ′ in O(k7) = O(n3.5). This bound can be used for time evaluation
of Step 2.

The execution time of presented above key agreement protocol is deter-
mined by the hardest operation to compute the composition of two quadratic
maps of dimension n = k(k + 1) given in their standard forms. This operation
requires O(n5).

It is easy to see that encryption of single message costs standard for Mul-
tivariate Cryptography time O(n3)

Elements of cryptanalisis. In the case of agstract finite group X twisted
key agreement protocol with input elements G ∈ X, H ∈ X and output Z ∈ X
is known instrument of noncommutative cryptography (see [27–38]). It
based on complexity of Power Conjugacy Problem. Adversary can intercept
GA = HrAGkAH−rA (or GB = HrBGkBH−rB ). To break the protocol he /
she hast find the presentation of GA in the form of word of kind HxGyG−x

Currently algorithm with the joint usage of Turing machine and Quantum
computer for breaking this problem in the case of affine Cremona group X =
C(Kn) are unknown. So adversary has no chances to break the protocol.
During single session of exchanges with the string (α1, α2, ..., αs) adversary
can estimate the degree of encryption map U = Pα1Qα2 ...Pαs as D = 2d,
d = α1 + α2 + ...+ αs. He/she can execute interception of nD pairs plaintext-
ciphertext and try to approximate U via costly linearisation attack. ( the cost
is at least ≥ O(n2D+1). To prevent this option correspondents can agree on
the maximal number M = cnD−1 of messages during the session. They can
start new session with other selected string without repetition of the protocol.

Noteworthy that increase of s to O(log2(k)) makes linearisation attacks
unfeasible. So correspondents can work with unlimited session for which en-
cryption costs O(n3 log2(n1/2)).
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Remark 4. Alice can increase the number of protocols sessions from 2 to
chosen l, l ≥ 2. It gives her opportunity of safe delivery of noncomputing
transformations G1, G2, ..., Gl and use this larger set of generators in the
described above encryption algorithm.

Remark 5. Alice can take l = 4 and G3 = G1
−1 and G4 = G2

−1. In this case
both sides have option to decrypt. So we have symmetric encryption algorithm.

9 Conclusion

Algebraic system on K[x1, x2, ..., xn], where K is a commutative ring with
operations of addition, multiplication and composition is the core part of Com-
puter Algebra. Let deg(f) be the degree of polynomial f ∈ K[x1, x2, ..., xn],
then deg(f)+deg(g) = max(deg(f),deg(g)). The general formula for deg(f(g))
does not exist, only inequality deg(f(g)) ≤ deg(f)deg(g) holds. The addition
and multiplication of n polynomials from K[x1, x2, ..., xn] of bounded degree
can be computed in polynomial time but there is no polynomial algorithm for
the execution of the computation of n elements from K[x1, x2, ..., xn]. It means
that in Cremona semigroup S(Kn) of all endomorphisms of K[x1, x2, ..., xn] the
computation of the product of n representatives is unfeasible task. Noteworthy
that each endomorphism F ∈ S(Kn) is defined by its values fi on xi and can
be identified with the rule xi → fi(x1, x2, ..., xn), i = 1, 2, ..., n, where fi is
given via the list of its monomial terms written in the lexicographical order.
Noteworthy that the semigroup S(Kn) and its subgroup C(Kn) of all auto-
morphisms of K[x1, x2, ..., xn] are core objects of Multivariate Cryptography
(MC). Classical Multivariate Cryptography considers only compositions of kind
T1FT2 of single nonlinear element F of small degree (2 or 3) with linear bijec-
tive endomorphisms T1 and T2 of degree 1 because of the heavy complexity for
the computation of compositions.

Discovery of large stable subsemigroups X of S(Kn) of degree bounded
by constant degree d gives new option. One can compute the composition of
n representatives of X in polynomial time. So Diffie-Hellman protocol or its
modifications with generator from X are possible. Security of them requires
further investigations. The cases d = 2, 3 has computational advantage be-
cause the composition of two nonlinear map can be computed in time O(n5) and
O(n13). The existence of implemented models of quantum computers even with
restricted number of cubits stimulates studies of analogs of Diffie -Hellman pro-
tocol with at least two generators g1, g2, ..., gs and noncommutative semigroup
X =< g1, g2, ..., gs >. Current paper contains description of such protocol in
the case of stable subgroups X f degree 2 in S(Kn). The security of this algo-
rithms rests on hard Power Conjugacy Problem. In the case K = Fq one can
select generators of exponential order. For the construction of Postquantum
Secure Cryptosystem we combine this protocol with asymmetrical encryption
algorithm, which allows execution of encryption for Bob and decryption for
Alice in times O(n3) and O(n2) respectively. We consider the way to convert
encryption procedure into symmetrical algorithm in previous section.

Other cryptosystems with the same platform ot its expansion are pre-
sented in [39], [40]. They use Word Decomposition Problem instead Power
Conjugacy Problem. The implementations of such protocol of Noncommuta-
tive Cryptography for stable subgroups X of degree 3 is described in [24].



30 V.Ustimenko

References

[1] Ding, J., Gower, J. E., Schmidt, D. S. 2006. Multivariate Public Key
Cryptosystems. Springer, Advances in Information Security, V. 25.

[2] Porras, J. Baena, J. Ding, J. 2015. New Candidates for Multivariate
Trapdoor Functions, Revista Colombiana de Matematicas 49(1), 57–76.

[3] Ustimenko, V. A. 2015. Explicit constructions of extremal graphs and new
multivariate cryptosystems, Studia Scientiarum Mathematicarum Hun-
garica, Special issue “Proceedings of The Central European Conference,
2014, Budapest”, 52(2), 185–204.

[4] Ustimenko, V. 2007. Linguistic Dynamical Systems, Graphs of Large
Girth and Cryptography, Journal of Mathematical Sciences, Springer,
140(3), 412–434.

[5] Wróblewska, A. 2008. On some properties of graph based public keys.
Albanian Journal of Mathematics, 2(3), 229–234.

[6] Ustimenko, V. Wróblewska, A. 2011. On the key exchange with nonlinear
polynomial maps of stable degree, Annalles UMCS Informatica AI XI, 2,
81–93.

[7] Ustimenko, V., Romanczuk, U. 2013. On Dynamical Systems of Large
Girth or Cycle Indicator and their applications to Multivariate Cryptogra-
phy, in “Artificial Intelligence, Evolutionary Computing and Metaheuris-
tics”, In the footsteps of Alan Turing Series: Studies in Computational
Intelligence, 427, 257–285.

[8] Ustimenko, V., Wróblewska, A. 2012. Dynamical systems as the main
instrument for the constructions of new quadratic families and their usage
in cryptography. Annales UMCS Informatica AI, 12(3), 65–74.

[9] Klisowski, M. 2014. Zwiększenie bezpieczeństwa kryptograficznych algo-
rytmów wielu zmiennych bazujących na algebraicznej teorii grafów, PhD
thesis, Częstochowa.

[10] Klisowski, M., Ustimenko, V. 2015. Graph based cubical multivariate
maps and their cryptographical applications, in “Advances on Superelliptic
curves and their Applications”, IOS Press, NATO Science for Peace and
Security series – D: Information and Communication Security, 41, 305–
327.

[11] Babai, L. 2015. Graph Isomorphism in Quasipolinomial Time, arXiv:
1512 03547v1.

[12] Ustimenko, V. 2015. On Schubert cells in Grassmanians and new algo-
rithms of multivariate cryptography, Proceedings of the Institite of Math-
ematics, Minsk, 23(2):137–148 (Proceedings of international conference
“Discrete Mathematics, algebra and their applications”, Minsk, Belarus,
September 14-18, 2015, dedicated to the 100th anniversary of Dmitrii
Alexeevich Suprunenko).

[13] Cossidente, A., Ressmine, M. J. de. 2004. Remarks on Singer Cycle
Groups and Their Normalizers, Designs, Codes and Cryptography, 32,
97–102.

[14] Kantor, W. 1982. Linear groups containing a Singer cycle, J. of Algebra
62, 232–234.



On computations with Double Schubert Automaton and stable maps 31

[15] Ustimenko, V. A. 2O17. On the Families of Stable Multivariate Transfor-
mations of Large Order and Their Cryptographical Applications, Tatra
Mountains Mathematical Publications, 70(1), 107–117.

[16] Ustimenko, V. A. 2015. On algebraic graph theory and non–bijective maps
in cryptography, Algebra and Discrete Mathematics, 20(1), 152–170.

[17] Ustimenko, V. A. 2008. On the hidden discrete logarithm for some polyno-
mial stream ciphers, International Multiconference on Computer Science
and Informational Technology, 20-22 October, Wisla, Poland, CANA Pro-
ceedings.

[18] Klisowski, M. Ustimenko, V. 2010. On the public keys based on the ex-
tremal graphs and digraphs, Internatio V.nal Multiconference on Com-
puter Science and Informational Technology, October, Wisla, Poland,
CANA Proceedings, 12 pp.

[19] Kotorowicz, J. Romanczuk, U. Ustimenko, V. 2011. Implementation of
stream ciphers based on a new family of algebraic graphs, Proceedings
of Federated Conference on Computer Science and Information Systems
(FedCSIS), 13.

[20] Grzesik, L A. Král’, D. Lovász L. M. 2018. Elusive extremal graphs,
preprint, arXiv:1807.01141.

[21] Hoory, N, Linial, A., Wigderson, A. 2006. Expander graphs and their
applications, Bull. Amer. Math Soc., 43, 439–561.

[22] Polak, M., Romanczuk, U., Ustimenko, V., Wróblewska, A. On the appli-
cations of Extremal Graph Theory to Coding Theory and Cryptography,
Electronic Notes in Discrete Mathe-matics, 43, 329–342.

[23] Ustimenko, V., Romanczuk-Polubiec, U., Wroblewska, A., Polak, M.,
Zhupa, E. 2019. On the constructions of new symmetric ciphers based
on non-bijective multivariate maps of prescribed degree, Security
and Communication Networks, Volume, Article ID 2137561, 15 pages
https://doi.org/10.1155/2019/2137561

[24] Ustimenko, V., Klisowski, M. 2019. On Noncommutative Cryptogra-
phy with cubical multivariate maps of predictable density, Proceedings
of “Computing 2019” conference, London, 16-17, July, Volume 2, Part of
Advances in Intelligent Systems and Computing (AISC), 99, 654–674.

[25] Ustimenko, V., Romanczuk-Polubiec U., Wroblewska, A. 2019. Expand-
ing Graph of the Extremal Graph Theory and expanded platforms of
post-quantum cryptography, Annals of Computer Science and informa-
tion Systems, 19, 41–46.

[26] Alon, N. 1986. Eigenvalues, geometric expanders, sorting in rounds, and
Ramsey Theory, Combinatorica, 6(3), 207-219.

[27] Moldovyan, D. N., Moldovyan, N. A. 2010. A New Hard Problem over
Non-commutative Finite Groups for Cryptographic Protocols, Interna-
tional Conference on Mathematical Methods, Models, and Architectures
for Computer Network Security, MMM-ACNS: Computer Network Secu-
rity, 183–194.

[28] Shpilrain, V., Ushakov, A. 2006. The conjugacy search problem in public
key cryptography: un-necessary and insufficient, Applicable Algebra in
Engineering, Communication and Computing, August, 17(3-4), 285–289.

https://doi.org/10.1155/2019/2137561


32 V.Ustimenko

[29] Kahrobaei, Delaram, Khan, Bilal. 2006. A non-commutative generaliza-
tion of ElGamal key exchange using polycyclic groups, In IEEE GLOBE-
COM 2006. Global Telecommu-nications Conference [4150920] https://
doi.org/10.1109/GLOCOM.2006

[30] Myasnikov, Alexei, Shpilrain, Vladimir, Ushakov, Alexander. 2008. Group-
based Cryptography. Berlin: Birkhäuser Verlag.

[31] Zhenfu Cao. 2012. New Directions of Modern Cryptography. Boca Raton:
CRC Press, Taylor & Francis Group. ISBN 978-1-4665-0140-9.

[32] Maze, G., Monico, C., Rosenthal, J. 2007. Public key cryptography based
on semigroup actions. Adv.Math. Commun. 1(4), 489–507.

[33] Kropholler, P.H., Pride, S.J., Othman, W.A.M., Wong, K.B., Wong, P.C.
2010. Properties of cer-tain semigroups and their potential as platforms
for cryptosystems, Semigroup Forum. 81, 172–186.

[34] Kumar, Gautam and Saini, Hemraj. 2017 Novel Noncommutative Cryp-
tography Scheme Using Extra Special Group, Security and Communica-
tion Networks, Volume, Article ID 9036382, 21 pages, https://doi.org/10.
1155/2017/9036382

[35] Roman’kov, V. A. 2016. A nonlinear decomposition attack, Groups Com-
plex. Cryptol. 8(2), 197–207.

[36] Roman’kov, V. 2019. An improved version of the AAG cryptographic
protocol, Groups, Complex., Cryptol, 11(1), 35–42.

[37] Ben-Zvi, A., Kalka, A. and Tsaban, B. 2018. Cryptanalysis via algebraic
span, In: Shacham H. and Boldyreva A. (eds.) Advances in Cryptology –
CRYPTO 2018 – 38th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, 10991, 255–
274, Springer, Cham.

[38] Tsaban, B. 2015. Polynomial-time solutions of computational problems in
noncommutative-algebraic cryptography, J. Cryptol., 28(3), 601–622.

[39] Ustimenko, V. 2019. On desynchronised multivariate algorithms of El
Gamal type for stable semigroups of affine Cremona group, Theoretical
and Applied Cybersecurity, National Technical University of Ukraine “Igor
Sikorsky Kiev Polytechnic Institute”, 1, 22–30.

[40] Ustimenko, V. 2020. On the usage of postquantum protocols defined in
terms of transformation semi-groups and their homomorphisma, Theoret-
ical and Applied Cybersecurity, National Technical University of Ukraine
“Igor Sikorsky Kiev Polytechnic Institute”, 2, 32–44.

https://doi.org/10.1109/GLOCOM.2006
https://doi.org/10.1109/GLOCOM.2006
https://doi.org/10.1155/2017/9036382
https://doi.org/10.1155/2017/9036382

