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1 Introduction

Nicholas of Cusa (1401 — 11 August 1464), also referred to as Nicholas
of Kues and Nicolaus Cusanus, was a German philosopher, theologian, ju-
rist, mathematician and astronomer. One of the first German proponents of
Renaissance humanism, he made spiritual and political contributions in Euro-
pean history. A notable example of this is his mystical or spiritual writings
on “learned ignorance”, as well as his participation in power struggles between
Rome and the German states of the Holy Roman Empire.

As papal legate to Germany from 1446, he was appointed cardinal for his
merits by Pope Nicholas V in 1448 and Prince-Bishop of Brixen two years later.
In 1459, he became vicar general in the Papal States.

Nicholas has remained an influential figure. In 2001, the sixth centennial of
his birth was celebrated on four continents and commemorated by publications
on his life and work.

Most of Nicholas’s mathematical ideas can be found in his essays, De Docta
Ignorantia (Of Learned Ignorance), De Visione Dei (On the Vision of God) and
On Conjectures. Actually, mathematical ideas of Nicholas were deeply related
with his philosophy and, in certain sense, were consequences of philosophical
structures. We will be concentrated on his concept of the infinity. Note that
Nicholas considered infinities of different types. In the first case he is dealing
with pure infinity. This object is characterized by coincidence of opposito-
rum (opposites). He argues that infinite set of natural numbers is possible if
there exists an infinity, i.e., an infinite number. In fact, this number he under-
stood as a limiting object. The concept of the limit was a pioneering idea of
Nicholas that was much before Newton and Leibnitz. This infinity is absolute
and invisible.
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The second type of infinity is, in his terminology, the bounded infinity (BI).
In this infinity we shall see separated elements which form such object. There
shall be a transition from the absolute infinity to BI. Moreover, the intrinsic
structure of BI is important. This infinity we call call the transfinite one.
BI has a structure, even infinitely many of structures.

Finally, Nicholas introduced the third type of infinity. In this type any
element of BI includes again the infinity as its intrinsic structure.

Our first aim is to give a rigorous mathematical meaning to the concept
of BI. Secondly, because the infinity is related with a limit transition from
the natural numbers, we are interesting to see how standard aspects of the
theory of natural numbers will be extended to the limiting space of BI. And the
last question we would like to discuss concern the third infinity. We will give
a mathematical model of this object.

Definitely, to realize these aims we will need more extended point of view
which will include possible relation with other disciplines where such concept
is relevant. Interdisciplinary studies represent one of the main trends in mod-
ern science. Several essential problems in science and its applications require
a combination and interaction of methods and ideas from different areas of our
knowledge. However, there appear to be many practical difficulties in the real-
ization of an interdisciplinary approach. One of the challenges is that subject
matter specialists may only have a superficial familiarity with the research done
in related fields outside of their core area of expertise. For example, we witness
an active development of mathematical models in biology and ecology, but the
usage of such models by the experts in these disciplines is restricted by the lack
of mathematical skills. On the other hand, the models themselves may be too
generic and high level to be of practical use. The only way to overcome these
difficulties is to create a practical and patient collaboration between scientists
from different disciplines.

Another traditional topic of discussions concerning interdisciplinary re-
search is the relation between mathematics and natural sciences on one side
and philosophy and social sciences on the other. In the time of Newton and
Leibnitz the concept of Naturphilosophie was a commonly accepted basis for the
unification of several scientific disciplines. Since then, the necessary specializa-
tion and inevitable dissipation of particular sciences resulted in the divergence
of philosophy and natural sciences. Although concrete results in physics, bi-
ology, etc. are still very stimulating for the philosophical studies, we would
like to show that there is a fruitful reverse influence. The aim of this work is
to illustrate some natural applied aspects of particular philosophical concepts
in a mathematical framework by choosing a concrete mathematical object for
this illustration. Due to the interdisciplinary character of this journal, we re-
stricted ourselves to a few basic observations on this subject. Consequently, our
explanations are done at the less advanced mathematical level in order to be
accessible by the non-mathematical audience. For the detailed mathematical
descriptions of related structures we refer to [4].

The myth of Plato’s Cave served as one of the motivations for developing
his concept of a world of ideas and a world of things. In the dialogue “State” he
gives several examples illustrating this concept. As we know, Plato considered
mathematics as one of the most important building blocks used to construct
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his philosophical system. Mathematical theories can serve as simple and il-
lustrative tools for the existence of a world of ideas and a world of things.
In a number of model situations, we are dealing with objects that appear from
our observations in physics, biology, ecology, etc., yet full understanding of the
mathematical structures of these models requires consideration of more gen-
eral mathematical theories, which under some canonical mapping leads to the
model situations in question.

2 From natural numbers to configurations

In this section we will use partially our recent paper [5]. The set of
natural numbers N = {0, 1, 2, ...} is a fundamental object in the mathematics.
In certain sense N is the root of all modern mathematics. Other mathematical
structures may be created as a logical development of this object. The latter
motivated L. Kronecker who summarized “God made the integers, all else is the
work of man”. There is famous citation from I. Kant: “Two things fill the mind:
the starry heavens above me and the moral law within me”. a mathematician
may continue: “and natural numbers given to my mind”.

From the time of Pythagoras philosophers was trying to see hidden mean-
ing of natural numbers and their mystical properties. Considering N as a set
of real things in mathematics we will ask ourself about possible ideas behind
these numbers. The myth of Plato’s Cave served as one of the motivations for
developing his concept of a world of ideas and a world of things. In the dialogue
“State” he gives several examples illustrating this concept. As we know, Plato
considered mathematics as one of the most important building blocks used to
construct his philosophical system. Mathematical theories can serve as simple
and illustrative tools for the existence of a world of ideas and a world of things.
In a number of model situations, we are dealing with objects that appear from
our observations in physics, biology, ecology, etc., yet full understanding of the
mathematical structures of these models requires consideration of more gen-
eral mathematical theories, which under some canonical mapping leads to the
model situations in question.

The first and essentially obvious observation here is the following. a num-
ber n ∈ N we interpret as a number of objects (a population) located in a loca-
tion space X. For simplicity we take X = Rd. The collection of all n-point sub-
sets (or configurations with n elements) form a locally compact space Γ(n)(Rd).
It is the space (quite huge) of ideas for the number n. Then to N corresponds
the set

Γ0(Rd) = ∪∞
n=0Γ(n)(Rd)

of all finite configurations.
We can consider additionally the set Γ(Rd) consisting all locally finite con-

figurations. This set may be considered as the space of ideas which corresponds
to the BI notion. Each configuration presents particular structure of BI. If we
introduce a probability measure on Γ(Rd), then we can speak about random
infinity.

Configuration spaces form an important and actively developing area in
the infinite dimensional analysis. On one hand side, these spaces represent rich
mathematical structures which combine, in a very non-trivial way, continuous
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and combinatoric aspects of the analysis. On the other hand side, config-
uration spaces give natural mathematical techniques for solving problems of
mathematical physics, biology and ecology.

In such extension of N we arrive in the main question. Namely, most
important mathematical theories related to natural numbers we need to develop
to this new level. It concerns, first of all, the combinatorics that play central
role in many mathematical structures and applications from probability theory
to genetics. In this note we will try to show such possibility trying to be as
much as possible on technically simple ground. To be friendly to more wide
audience, we restrict out explanations to descriptions of main constructions and
formulation of some particular results. For detailed discussions and extended
references we refer to the recent paper [2].

3 Classical combinatorics

The combinatorics is dealing with the set of natural numbers N and rela-
tions between them. As an important object we introduce binomial coefficients:Ç

n

k

å
=
n(n− 1)...(n− k + 1)

k!

defined for n ∈ N and 0 ≤ k ≤ n. Introducing the falling factorial (n)k we can
write Ç

n

k

å
=

(n)k
k!

.

These coefficients may be extended using embedding N ⊂ R to polynomials

Nk(t) :=

Ç
t

k

å
=
t(t− 1)...(t− k + 1)

k!
=

(t)k
k!

, t ∈ R

which are called Newton polynomials. For Newton polynomials hold Chu-
Vandermond relations:

(t+ s)n =

n∑
k=0

Ç
n

k

å
(t)k(s)n−k.

An alternative definition is given by the generation function

eλ(t) := et log(1+λ) =

∞∑
n=0

λn

n!
(t)n =

∞∑
n=0

λnNn(t).

Such transition to continuous variables makes possible to apply in discrete
mathematics methods of analysis. Note that using many particular generation
functions we may create different polynomial systems.

Transition to continuous variables makes possible to apply in discrete
mathematics methods of analysis. In particular, let us define for functions
f : R → R difference operators

(D+f)(t) = f(t+ 1) − f(t),
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(D−f)(t) = f(t− 1) − f(t).

By a direct computation we obtain

D+(t)n = n (t)n−1,

D−(t)n = −n (t− 1)n−1.

Additionally,
D+eλ(t) = λeλ(t).

In this way we arrive in the framework of difference calculus closely related with
the combinatorics [3]. There are specific questions inside of difference calculus
as, e.g., an analysis of Newton series

∞∑
n=0

anNn(t)

and many others.
For functions a : N → R we define b : N → R as

b = Ka, b(n) =

n∑
k=0

Ç
n

k

å
a(k).

This operator K (aka combinatorial transform) is very useful in combinatorics
and its inverse gives so-called inclusion-exclusion formula:

a(n) =

n∑
k=0

Ç
n

k

å
(−1)n−kb(k).

Note that for a : N → R, a(j) = 0, j ̸= k, a(k) = 1

(Ka)(n) =

Ç
n

k

å
= k!Nk(n).

4 Spatial combinatorics

Any n ∈ N we interpret as the size of a population. It is convenient in the
study of population models. There is a natural generalization leading to spatial
ecological models. Now we would like to consider objects located in a given
locally compact space X. For simplicity we will work with the Euclidean space
Rd. For the substitution of N in this situation we can use two possible sets.
Denote Γ(Rd) the set of all locally finite configurations (subsets) from Rd:

Γ(Rd) = {γ ⊂ Rd | |γ ∩K| <∞, any compact K ⊂ Rd}.

It is the first version of the space in the spatial (continuous) combinatoric
we will use.

Another possibility, is to introduce the set of all finite configurations
Γ0(Rd). Then

Γ0(Rd) = ∪∞
n=0Γ(n)(Rd),
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where Γ(n)(Rd) denoted the set of all configurations with n elements. We will
see that in the continuous combinatoric the spaces Γ(Rd) and Γ0(Rd) will play
very different roles. It is a specific moment related with transition to the
continuum. In this sense N is splitting in these two spaces of configurations that
makes corresponding combinatorics essentially more reach and sophisticated.

Configuration spaces present beautiful combinations of discrete and con-
tinuous properties. In particular, in these spaces we have interesting differential
geometry, differential operators and diffusion processes etc., see e.g. [1]. From
the other hand side, discreteness of an individual configuration makes possible
to introduce proper analog of the difference calculus.

Note from the beginning, that the analog of the extension N ⊂ R now
naturally play the pair Γ(Rd) ⊂ M(Rd) where we have in mind an imbedding
of configurations in the space of discrete Radon measures on Rd and, as a result,
in the space of all Radon mesures on Rd :

Γ(X) ∋ γ 7→ γ(dx) =
∑

M×Rd∈γ

δy(dx) ∈ M(Rd).

Therefore, instead of pair
N ⊂ R

we have
Γ(Rd) ⊂ M(Rd).

As a result, the transition to “continuous” variables in the considered situation
leads to functions on M(Rd). In spatial combinatorics many objects will be
measure-valued.

Now we will introduce an analog of the generation function from classical
combinatorics. For a test function from the Schwarz space of test functions
D(Rd) 0 ≤ ξ ∈ D(Rd) consider a function

Eξ(ω) = e<ln(1+ξ),ω>, ω ∈ D′(Rd)

that is a function on the space of Schwarz distributions. The power decompo-
sition w.r.t. ξ gives

Eξ(ω) =

∞∑
n=0

1

n!
< ξ⊗n, (ω)n > .

Generalized kernels (ω)n ∈ D′(Rnd) are called infinite dimensional falling facto-
rials on D′(Rd). Define binomial coefficients (Newton polynomials) on D′(Rd)
as Ç

ω

n

å
=

(ω)n
n!

.

Note that these objects are defined now on the very big space of distributions.
In particular cases we shall restrict them on the space of configuration or Radon
measures.

In particular, infinite dimensional Chu-Vandermond relations on configu-
rations is

(γ1 ∪ γ2)n =

n∑
k=0

Ç
n

k

å
(γ1)k ⊗ (γ2)n−k.
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Theorem 1. For ω ∈ M(Rd)

(ω)0 = 1,

(ω)1 = ω,

(ω)n(x1, ..., xn) = ω(x1)(ω(x2) − δx1
(x2))...(ω(xn) − δx1

(xn) − ...− δxn−1
(xn)).

In the particular case ω = γ = {xi | i ∈ N}

(γ)n = n!

Ç
γ

n

å
=

∑
{i1....,in}⊂N

δx1
⊙ ...⊙ δxn

,

where δx1
⊙ ...⊙ δxn

denotes symmetric tensor product.
We have

Γ(Rd) ∋ γ 7→ γ(dx) ∈ M(Rd).

Due to our construction
(γ)n ∈ M(Rnd)

is a symmetric Radon masure. Therefore, we arrive in measure valued Newton
polynomials. The latter is the main consequence of continuous combinatoric
transition.

5 Difference geometry for spatial combinatorics

For any x ∈ γ define an elementary Markov death operator (death gradi-
ent)

D−
x F (γ) = F (γ \ x) − F (γ)

and the tangent space T−
γ (Γ) = L2(Rd, γ). Then for ψ ∈ C0(Rd)

D−
ψF (γ) =

∑
x∈γ

ψ(x)(F (γ \ x) − F (γ))

is the directional (difference) derivative.
Similarly, we define for x ∈ Rd

D+
x F (γ) = F (γ ∪ x) − F (γ)

and the tangent space T−
γ (Γ) = L2(Rd, dx). Then for φ ∈ C0(Rd)

D+
φF (γ) =

∫
Rd

φ(x)(F (γ ∪ x) − F (γ))dx

is another directional (difference) derivative.
For φ ∈ C0(Rd) define a function

Eφ(γ) = exp(< γ, log(1 + φ) >), γ ∈ Γ.

It is the generation function for the system on falling factorials (Newton poly-
nomials) on Γ:

Eφ(γ) =

∞∑
n=0

1

n!
< φ⊗n, (γ)n > .
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Then
D+
ψEφ(γ) =< φψ > Eφ(γ).

An explicit formula for the falling factorials (as measures on (Rd)n) is

(γ)n =
∑

{x1,...,xn}⊂γ

δx1 ⊙ δx2 ⊙ · · · ⊙ δxn ,

where δx1 ⊙ δx2 ⊙ · · · ⊙ δxn denotes the symmetric tensor product of measures.
The action of difference derivatives on Newton monomials is given by

D+
ψ < φ(n), (γ)n >= n

∫
Rd

ψ(x) < φ(n)(x, ·), (γ)n−1(·) > dx,

D−
ψ < φ(n), (γ)n >= −n

∑
x∈γ

ψ(x) < φ(n)(x, ·), (γ \ x)n−1(·) > .

6 Harmonic analysis on Γ(Rd)

Functions G : Γ0(Rd) → R we call quasi-observables. Note that G re-
stricted on Γ(n)(Rd) is given by a symmetric kernel G(n)(x1, ..., xn) and then

G = (G(n))∞n=0.

Functions F : Γ(Rd) → R we call observables. For a quasi-observable G
define an operator

(KG)(γ) =
∑

η⊂γ,|η|<∞

G(η), γ ∈ Γ(Rd)

that is an observable. To be well defined we need certain assumptions about
G [6].

For G1, G2 : Γ0(Rd) → R define

(G1 ⋆ G2)(η) =
∑

η1∪η2∪η3=η
G1(η1 ∪ η2)G2(η2 ∪ η3).

Then
K(G1 ⋆ G2) = KG1KG2.

Let µ ∈ M1(Γ(Rd)).

K : Fun(Γ0) → Fun(Γ)

,
K∗ : M1(Γ) → M(Γ0).

K∗µ = ρ, ρ = (ρ(n))∞n=0.

The measure ρ is called correlation measure for µ (Fourier transform of µ).
Assume absolute continuity

dρ(n)(x1, ..., xn) =
1

n!
k(n)(x1, ..., xn)dx1...xn.
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We call k(n)(x1, ..., xn), n ∈ N correlation functions of the measure µ.
Transition from measures to CFs is one of the main technical aspects of

the analysis on CS in applications to dynamical problems.
Alternatively define the Bogoliubov functional

Bµ(ϕ) =

∫
Γ(Rd)

e<γ,log(1+ϕ>)dµ(γ).

Assuming Bµ is holomorphic in ϕ ∈ L1(Rd) we obtain

Bµ(ϕ) =

∞∑
n=0

1

n!

∫
k(n)(x1, ..., xn)ϕ(x1)...ϕ(xn)dx1...dxn.

7 From spatial to classical combinatorics

Having developed combinatorial structures in the continuum, we may con-
sider the inverse direction. Namely, how looks like our infinite-dimensional
objects in the one dimensional reduction. Surprisingly, it may give some new
structures even in this classical case.

Let a, b : N → R. Define a convolution

(a ⋆ b)(n) =
∑

j+k+l=n

a(j + k)b(k + l).

As before

(Ka)(n) =

n∑
k+0

Ç
n

k

å
a(k).

Then
K(a ⋆ b) = Ka ·Kb.

Introduce coherent states

eλ(·) : N → C, eλ(n) = λn, λ ∈ C.

(Keλ)(n) = (1 + λ)n.

The configuration space Γ(Rd) is the space of microscopic states in the
classical statistical physics of continuous systems. A measure µ ∈ M1(Γ(Rd))
is a macroscopic state of a continuous system in the statistical physics. Coming
back we can interpret (a bit naively) a measure µ ∈ M1(N) as a state of 0D
system.

For example, the Poisson measure for σ > 0 is defined as

πσ(n) = e−σ
σn

n!
.

Several characteristics we can incorporate in such a case from the analysis
on Γ(Rd). Introduce the Bogoliubov functional:

B(λ) =

∫
R+

(1 + λ)xdµ(x).



14 Yu.Kondratiev

(1 + λ)x =

∞∑
n=0

λn

n!
(x)n.

Theorem 2. Let µ ∈ M1(R+). Then µ(N) = 1 iff B(λ) has a holomorphic
extension.

Similarly we can define correlation measures∫
N

(Ka)(x)dµ(x) =

∫
N
a(x)dρµ(x).

ρµ(n) =
1

n!

∫
N

(x)ndµ(x) =

∞∑
m=n

Ç
m

n

å
µ(m).

8 Third infinity

8.1 The Cone of Positive Discrete Measure-Valued Radon
Measures

We will denote M the space of Radon measures M(Rd) or Γ(Rd) ⊂
M(Rd). The latter case will be of our main interest. Both spaces are Pol-
ish ones. Introduce a space M(Rd → M) of Radon measures on Rd with
values in M . It means that for η(ds, dx) ∈ M(Rd → M) and A bonded Borel
subset of Rd we have η(·, A) ∈M .

Definition 3. 1) The cone of discrete measure-valued Radon measures is
defined as follows:

KM(Rd) :=

{
η =

∑
i

γi ⊗ δxi
∈ M(Rd →M)

∣∣∣∣∣γi ∈M,xi ∈ Rd
}

By convention, the zero measure η = 0 is included in KM(Rd).
2) We denote the support of η ∈ KM(Rd) by

τ(η) := {x ∈ Rd | 0 ̸= η({x}) =: γx(η) ∈M}.

If η is fixed, we write γx := γx(η). We stress that τ(η) is not a configu-
ration in general.

3) For η, ξ ∈ KM(Rd) we write ξ ⊂ η if τ(ξ) ⊂ τ(η) and γx(ξ) = γx(η) for
all x ∈ τ(ξ). If additionally |τ(ξ)| <∞, we write ξ ⋐ η.

4) For a function f ∈ Cc(Rd), denote the pairing with an element η ∈
KM(Rd) by

⟨f, η⟩ :=

∫
Rd

f(x)η(ds, dx) =
∑

x∈τ(η)

γxf(x)

that is a measure on Rd.
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8.2 Plato’s theory

In the theory, Plato stated that observations in the real world are mere
projections of higher forms or ideas. One way to picture this is the so-called
cave allegory, which was recited by Ross (1951) as follows: “A company of
men is imprisoned in an underground cave, with their heads fixed so that they
can look only at the back wall of the cave. Behind them across the cave runs
a wall behind which men pass, carrying all manner of vessels and statues which
overtop the wall. Behind these again is a fire. The prisoners can only see the
shadows [...] of the things carried behind the wall, and must take these to be the
only realities” . Applied to our setting, the space KM(Rd) is interpreted as the
shadows projected onto the cave wall. On the other hand, the space Π(M×Rd)
which will be introduced below is the space of forms or ideas, represented by the
objects carried in front of the fire. While the space KM(Rd) is taken to be our
reality, we use the space Π(M × Rd) to define mathematical operations. The
spaces are connected via the bijection R : Π(M × Rd) → KM(Rd) introduced
below. In accordance with the cave allegory, R is also called reflection mapping.

8.3 Configuration Spaces

As we will see in the next chapter, the Plato space Π(M×Rd) is a specific
subset of the so-called configuration space Γ(M × Rd).

In general, the space of locally finite configurations Γ(M×Rd) is the space
of all subsets of M × Rd which are finite in any bounded set Λ in the metric
space M × Rd. The following definition makes this notion more precise.

Definition 4. The space of locally finite configurations over M ×Rd is defined
as

Γ(M × Rd) = {γ ⊂M × Rd : |γ ∩ Λ| <∞ ∀Λ ⊂M × Rd bounded}

where | · | denotes the number of elements of a set.

The space Γ(M × Rd) is exactly the third type infinity in the sense of
Nicholas of Cusa. Namely, for each point x ∈ Rd from the discrete set that
present bounded infinity we prescribed an internal characteristic γx that is
again an element of bounded infinity.

8.4 Relation Between KM(Rd) and Γ(M × Rd)

In this section, we want to establish the connection between the con-
figuration space Γ(M × Rd) and the cone KM(Rd). Our goal is to define
a certain subspace Π(M × Rd) ⊂ Γ(M × Rd) such that there exists a one-to-
one-correspondence between Π(M × Rd) and KM(Rd) in the following form:

R : Π(M × Rd) → KM(Rd), γ =
∑

(µ,x)∈γ

δ(µ,x) 7→
∑

(µ,x)∈γ

µ⊗ δx.

In terms of Plato’s theory, this mapping takes ideas γ ∈ Π(M×Rd) and projects
(or reflects) them to objects η ∈ KM(Rd). Obviously, R is not defined on the
whole space Γ(M × Rd). Therefore, we need to construct a suitable subspace.



16 Yu.Kondratiev

In other terms, the Plato space constructed below is also known as the set
of pinpointing configurations with finite local mass, denoted by Γpf(M × Rd).
We explore these two properties in more detail below.

Define the set of pinpointing configurations Γp(M ×Rd) ⊂ Γ(M ×Rd) as
all configurations such that if (µ1, x1), (µ2, x2) ∈ γ with x1 = x2, then µ1 = µ2.

Remark 5. The pinpointing property ensures that there are no two elements
of a system at the same position. Due to the shape of elements in KM(Rd),
it is obvious that this would not be possible.

Let us now take into account the second property of Π(M ×Rd). To this
end, we define the local mass of a configuration.

Definition 6. For a configuration γ ∈ Γp(M × Rd) and Λ ⊂ Rd compact, set
the local mass as

γ(Λ) =

∫
M×Rd

µ1Λ(x)dγ(µ, x) =
∑

(µ,x)∈γ

µ1Λ(x) ∈ [0,∞]

This notion enables us to define the Plato space.

Definition 7. The Plato space Π(M × Rd) ⊂ Γ(M × Rd) is defined as the
space of all pinpointing configurations with finite local mass, i.e.

Π(M×Rd) := Γpf(M×Rd) = {γ ∈ Γp | γ(Λ) ∈ M(Rd) for all Λ ⊂ Rd compact}.

Remark 8. 1) The property of finite local mass ensures that the system only
has finite mass in any bounded volume, which makes it physically viable.

2) The pinpointing property as well as the finiteness of local mass are suffi-
cient to make R : Π(M × Rd) → KM(Rd) bijective.

3) The state space needs to be of the specific form M ×Rd for the notion of
pinpointing configurations to make sense.

Definition 9. Let f ∈ Cc(M × Rd) and η ∈ KM(Rd). Define the following
pairing:

⟨⟨f, η⟩⟩ := ⟨f,R−1η⟩ =
∑

(s,x)∈R−1η

f(s, x)

9 Topology and Measure-Theoretical Structures

In this chapter, we want to introduce a suitable topology on the cone
KM(Rd). To this end, we consider the topology induced on Π(M × Rd) by
the extended configuration space Γ(M × Rd). Next, we use the mapping R to
induce a topology on KM(Rd).

9.1 Topology on the Cone KM(Rd)

The Plato space Π(M×Rd) naturally inherits the topological structure of
Γ(M × Rd), i.e. the topology is given by the vague topology induced from the
space of Radon measures M(M ×Rd). For a detailed description of topological
and metric characterizations, see e.g. [4].
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From a naive point of view, it seems to make sense to consider the em-
bedding KM(Rd) ⊂ M(Rd,M) of the cone into the space of Radon measures,
equipped with the vague topology. Unfortunately, this topology has no relation
to the vague topology introduced above on Π(M ×Rd). In the spirit of Plato’s
theory of ideas, the connection between Π(M × Rd) and KM(Rd) is essential.
Therefore, we consider the final topology on KM(Rd) induced by the reflection
mapping R, i.e. the finest topology such that the mapping

R : Π(M × Rd) → KM(Rd), γ =
∑

(sx,x)∈γ

δ(sx,x) 7→
∑

x∈τ(γ)

sxδx

is continuous. Here, we set for γ ∈ Π(M × Rd),

τ(γ) := {x ∈ Rd | ∃s ∈M : (s, x) ∈ γ}

the support of γ. The usage of this topology has the obvious side effect that R
becomes a homeomorphism, which is helpful in and of itself in other regards.

In the further development of the considered theory is important to im-
plement the construction of a class of probability measures on Π(M × Rd),
namely, Poisson measures. The construction may be done on the larger space
Γ(M×Rd). For the class of Poisson measures, we can show that they assign full
mass to the Plato space Π(M × Rd). To obtain measures on KM(Rd), we use
the pushforward of measures on Π(M × Rd) under the mapping R. A certain
subclass of specific interest is the class of Gamma measures. For the detailed
analysis we refer the reader to [4].
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