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Forgotten motives:
the varieties of scientific experience

Yuri Manin1

Le gros public:
A poêle, Descartes! à poêle!

R. Queneau, Les Oeuvres
complètes de Sally Mara

When I arrived in Bures-sur-Yvette in May 1967, the famous seminar
SGA 1966–67, dedicated to the Riemann–Roch theorem, was already drawing
to an end. Mlle Rolland, then Léon Motchane’s secretary at the IHÉS, found
for me a nice small apartment in Orsay. Each early morning, awoken to the
loud chorus of singing birds, I walked to Bures, anticipating the new session
of private tutoring on the then brand-new project of motives, by the Grand
Mâıtre himself, Alexandre Grothendieck. Several pages, written by his hand
then, survive in my archive; in particular, the one dedicated to the “Standard
Conjectures”. These conjectures remain unproved after half a century of vain
efforts. Grothendieck himself saw them as the cornerstone of the whole project.
In the letter to me dated March 20, 1969, he wrote:

Je dois avouer à ma honte que je ne sais plus distinguer à première vue ce
qui est démontrable (voire plus ou moins trivial) sans les conjectures standard,
et ce qui ne l’est pas. C’est évidemment honteux qu’on n’ait pas démontrées
les conjectures standard!

Still, during the decades that have passed since then the vast realm of
motives kept rewarding the humility of many researchers prepared to be happy
with what they could do using the tools they could elaborate.

Several times Grothendieck invited me to his house at rue de Moulon.
He allowed me to browse through his bookshelves; I borrowed a few books to
read at home. When I last visited him a day or two before my departure, I
asked him to sign a book or paper for me. To my amazement, he opened “Les
Œuvres complètes de Sally Mara” by Raymond Queneau and scribbled on the
first page:

Hommage affectueux R. Queneau
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Early history of motives

Having returned to Moscow in June 1967, after five or six weeks of intense
training with Grothendieck, I spent several months writing down his main
definitions related to motives and studying necessary background material in
the literature. I was very pleased when it turned out that I could answer one
of his questions and calculate the motive of a blow-up without using standard
conjectures. My paper [Ma68] containing this exercise was submitted next
summer and published in Russian. It became the first ever publication on
motives, and Grothendieck recommended it to David Mumford (in his letter of
April 14, 1969) as “a nice foundational paper” on motives.

Grothendieck wrote a letter in Russian to me about this paper (05/02/1969).
This seems to be the only document showing that he had some Russian, pro-
bably, learned from his father.

The first step in the definition of a category of (pure) motives is this. We
keep objects of a given algebraic-geometric category, say of smooth projective
varieties over a fixed field V ark, but replace its morphisms by correspondences.
This passage implies that morphisms X → Y now form an additive group, or
even a K-module rather than simply a set, where K is an appropriate coefficient
ring. Moreover, correspondences themselves are not just cycles on X × Y but
classes of such cycles modulo an “adequate” equivalence relation. The coarsest
such relation is that of numerical equivalence, when two equidimensional cycles
are equivalent if their intersection indices with each cycle of complementary
dimension coincide. The finest one is the rational (Chow) equivalence, when
equivalent cycles are deformations over a base which is a chain of rational
curves. Direct product of varieties induces tensor product structure on the
category.

The second step in the definition of the relevant category of pure motives
consists in a formal construction of new objects (and relevant morphisms) that
are “pieces” of varieties: kernels and images of projectors, i. e. correspondences
p : X → X with p2 = p. This produces a pseudo-abelian, or Karoubian
completion of the category. In this new category, the projective line P1 becomes
the direct sum of the (motive of) a point and the Lefschetz motive L (intuitively
corresponding to the affine line).

The third, and last step of the construction, is one more formal enhance-
ment of the class of objects: they now include all integer tensor powers L⊗n,
not just non-negative ones, and tensor products of these with other motives.

Various strands of intuition are interwoven in this fundamental pattern
discovered by Grothendieck, and I will now try to make them (more) explicit.

The basic intuition that guided Grothendieck himself, was the image of
the category of pure Chow motives Motk as the receptacle of the “universal
cohomology theory” Vk →Motk : V 7→ h(V ). The universal theory was needed
in order to unite various cohomological constructions, such as Betti, de Rham-
Hodge, and étale cohomology.

What looked paradoxical in this image was the following observation
about transcendental cycles on an algebraic variety X. One could get hold
of these cycles for k = C by appealing to algebraic topology, or else to compli-
cated constructions of homological algebra involving all finite covers of X.
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But in the category of pure motives, from the start one dealt only with
algebraic cycles, represented by correspondences, and it was intuitively not at
all clear how on earth they could convey information about transcendental cy-
cles. Indeed, the main function of the “Standard Conjectures” was to serve as a
convenient bridge from algebraic to transcendental. Everything that one could
prove without them was indeed “plus ou moins trivial” — until people started
treating correspondences themselves using sophisticated homological algebra
(partly generated by the development of étale cohomology and Grothendieck–
Verdier’s introduction of derived and triangulated categories).

However, the passage from the set of morphisms to the K-module of
correspondences involves one more intuitive idea, and it can be most succinctly
invoked by referring to physics, namely the great leap from the classical mode
of description of nature to the quantum one. This leap defined the science of
the XXth century. Its basic and universal step consists in the introduction of
a linear span of everything that in classical physics was only a set: points of a
phase space, field configurations over a domain of space-time etc. Such quantum
superpositions then form linear spaces on which Hilbert-like scalar products are
defined, that in turn allow one to speak about probability amplitudes, quantum
observations etc.

I have no evidence that Grothendieck himself thought then about quantum
physics in relation to his algebraic geometry project. We do know that concerns
about weapons of mass destruction and collaborationist behaviour of scientists
towards their governments and military-industrial complexes inspired in him
deep disturbance and aversion. The most direct source of his inspiration might
have been algebraic topology which, after the 1940s, laid more stress on chains
and cochains than on simplices and the ways they are glued together.

However, in my personal development as a mathematician in the 1970’s–
80’s and later, the study of quantum field theory played a great role, and
feedback from theoretical physics — that was ahead — to algebraic geometry
became a great source of inspiration for me. I was and remain possessed by
a Cartesian dream, poetic rationalism, whatever history has yet to say about
Der Untergang des Abendlandes.

Below I will sketch a map of two branches of the development of Grothen-
dieck ideas about motives that approximately followed two intuitions invoked
above: from homological algebra and from physics respectively. The references
at the end of this essay constitute the bare minimum of the relevant research,
but the reader will be able to find much additional bibliographical material in
the survey collection [Mo91] and in [A04], [VoSuFr00], [Ta11].

Motives and homological algebra

The most common linear objects are modules over rings in algebra and
sheaves of modules in algebraic geometry. Free modules/locally free sheaves are
the closest to classical linear spaces.

General algebraic variety X, or a scheme, is a highly non-linear object.
In classical algebraic geometry over, say, the complex numbers, the vari-

ety X used to be identified with the topological space X(C) of its C-points,
and could be studied by topological methods involving triangulations or cell
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decompositions. In the geometry over, say, finite fields, this did not work, and
when in 1949 André Weil stated his famous suggestion that point counting over
finite fields should be done using trace of the Frobenius endomorphism acting
upon appropriately defined (co)homology groups of X, it generated a flow of
research.

The first product of this research was the creation of the cohomology the-
ory of coherent sheaves of modules F on varieties X or more general schemes.
Now, in a constructive definition of H∗(X,F), one could either stress combi-
natorics of covers of X by open sets in the Zariski topology (Čech cohomology)
or, alternatively, “projective/injective resolutions” of F , that is special exact
complexes of sheaves . . . → F2 → F1 → F0 := F → 0 or similarly with arrows
inverted. This passage from the dependence of H∗(X,F) on the non-linear ar-
gument X to the dependence on the linear argument F was very characteristic
for the early algebraic geometry of 1950’s and 1960’s. “Homological Alge-
bra” by H. Cartan and S. Eilenberg, the famous FAC, “Faisceaux Algébriques
Cohérents” by J.-P. Serre, became the standard handbooks for every aspiring
young algebraic geometer.

David Mumford and I started our training as algebraic geometers at the
same time, about 1956, he at Harvard, I at Moscow University. David remi-
nisces that his teacher Zariski “was motivated by the need to make the work
of the Italian school rigorous by using the new methods of commutative alge-
bra”. My teacher Shafare-vich also suggested to us to study glorious Italian
algebraic geometry, approaching it armed with modern insights and techniques
developed by Serre, Grothendieck and their school.

I had no time nor use for a course in “Instant Italian”, so I tried to read
two books simultaneously, “Le Superficie Algebriche” by Federigo Enriques
(Zanichelli, 1949) and “La Divina Commedia”, and each time that I opened
Enriques (or for that matter, SGA), I recited mournfully: lasciate ogni speranza
voi ch’entrate...

Nevertheless, it worked. When I brought xeroxed papers by Gino Fano
back from Bures in 1967, Vassya Iskovskikh and I could read them without
bothering much in which language they have been written, and then produce
the first examples of birationally rigid varieties, and unirational but not rational
threefolds using Fano methods.

Homological algebra proved more resistant, and here I learned most of
what I understand now from the next generation of eager young Moscow stu-
dents, who by now have been mature researchers themselves for a long time.

We first learned, of course, about the basic Grothendieck–Verdier pre-
sentation of homological algebra as the theory of derived, and more generally,
triangulated categories. Passage from the Bourbaki language of structures to
the now domineering language of categories (and then polycategories) involved
several radical changes of intuition, and as is now clear, led into the garden of
forking paths. The passage from one crossroad to another one always involved
a decision about what should be disregarded, and later it could happen — and
always did happen — that one was bound to turn back again and recollect
some forgotten ideas.

The story of derived categories started with categories, whose objects were
complexes (of abelian groups/sheaves/objects of an abelian category) conside-
red modulo homotopy.
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In the framework of Grothendieck–Verdier triangulated categories, one
forgot about initial objects-complexes and focused on an abstract additive ca-
tegory, endowed with a translation functor and a class of diagrams, called dis-
tinguished triangles. But the problem of non-functoriality of cones led back to
the complexes of abelian groups, this time upgraded to the level of morphisms
rather than objects.

This was, of course, a special case of enriched categories, which in the
simplest incarnation postulate Bourbaki-structured morphism sets Hom(X,Y ),
but with an upgrading: this time one clearly had to deal with the case of cate-
gorified morphism sets. However, when one allows morphisms to be objects of
a category, then morphisms of this second floor category might form a category
as well ... and we find ourselves ascending the Tower of Babel that could cause
despair even in Grothendieck himself.

For the limited purposes of this note, I will disregard subtleties and various
versions of the notion of triangulated/dg-categories, and will only sketch several
basic discoveries of the last decades relating such categories with motives.

Roughly speaking, starting with a category of varieties (or schemes) X,
one may consider either the replacement of each X by a triangulated cate-
gory D(X) of complexes of (quasi)-coherent sheaves on X, or else return to
the initial Grothendieck insight, but replace correspondences by complexes of
correspondences.

The latter approach led to the Voevodsky’s motives ([VoSuFr00]). I will
focus on some achievements of the first one.

One of the first great surprises was Alexander Beilinson’s discovery ([Be83])
that a derived category of a projective space can be described as a triangula-
ted category made out of modules over a Grassmann algebra. In particular, a
projective space became “affine” in some kind of non-commutative geometry!
The development of Beilinson’s technique led to a general machinery descri-
bing triangulated categories in terms of exceptional systems and extending the
realm of candidates to the role of non-commutative motives.

D. Orlov ([Or05]) proved a general theorem to the effect that if X,Y
are smooth projective k-varieties and if there is a fully faithful functor F :
Db(X) → Db(Y ), then the Chow motive h(X) is a direct summand of h(Y )
“up to translations and twists by Lefschetz/Tate motives”.

M. Kontsevich formalised the properties of dg-categories, expressing pro-
perness and smoothness in case of the derived categories of varieties, and defi-
ned the respective class of categories (modulo homotopy) as “spaces” in non-
commutative algebraic geometry. He then defined the respective class of Chow
motives and has shown that there exists a natural fully faithful functor em-
bedding Grothendieck’s Chow motives (modulo twists) into non-commutative
motives. These ideas were further developed by Tabuada, Marcolli, Cisinski et
al., cf. the recent survey [Ta11] and references therein.

Motives and physics

In the mid-1970’s and later, algebraic geometry interacted with physics
more intensely that ever before: self-dual gauge fields (instantons), completely
integrable systems (Korteweg-de Vries equations), emergence of supergeome-
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try (based upon formal rules of Fermi statistics), the Mumford form and the
Polyakov measure on moduli spaces of curves (quantum strings) have been dis-
cussed at joint seminars and local and international conferences of physicists
and mathematicians.

Motives did not yet appear in this picture. However, in 1991 something
new and unexpected happened.

B. Greene in his book “The Elegant Universe. Superstrings, Hidden Di-
mensions and the Quest for the Ultimate Theory” tells the following story:

“At a meeting of physicists and mathematicians in Berkeley in 1991, Can-
delas announced the result reached by his group using string theory and mirror
symmetry: 317 206 375. Ellingsrood and Strømme announced the result of their
very difficult mathematical computation: 2 682 549 425. For days, mathemati-
cians and physicists debated: Who was right? [...]

About a month later, an e-mail message was widely circulated among par-
ticipants in the Berkeley meeting with the subject heading: Physics Wins! El-
lingsrood and Strømme had found an error in their computer code that, when
corrected, confirmed Candelas’s result.”

The problem about which Greene speaks is this. Consider a smooth hyper-
surface V of degree 5 in P4. Denote by n(d) the (appropriately defined) num-
ber of rational curves of degree d on V . Calculating n(d) looks like perfectly
classical problem of enumerative algebra geometry, and in fact the numbers
n(1) = 2875 and n(2) = 609250 were long known. The physicists Ph. Candelas,
X. C. de la Ossa, P. S. Green, and L. Parkes using machinery and heuristics of
quantum string theory, calculated not just n(3), but gave an analytic expression
for a total generating function for these numbers, using the so called Mirror
Conjecture. The mathematicians G. Ellingsrood and S. A. Strømme produced
a computer code calculating n(3).

Omitting a lot of exciting developments of this rich story, I will briefly
explain only the part that refers to the new and highly universal motivic struc-
ture that emerged in algebraic geometry. I will speak about varieties, although
in fact Deligne–Mumford stacks form the minimal habitat for this structure,
and the respective extension of the construction of pure motives for them is
needed; this was done by B. Toën.

Roughly speaking, we now treat the general problem, inherited from clas-
sical enumerative geometry: given a projective variety V , (define and) calculate
the number of algebraic curves of genus g on V , satisfying additional incidence
conditions that make this number finite, as in the Euclidean archetype: “one
line passes through two different points of plane”. After considerable efforts,
one can define for all stable values of g, n a Chow class Ig,n on V n ×Mg,n

with coefficients in the completed semi-group ring, say Q[[qβ ]] where β runs
over integral classes in the Mori cone of V . This class expresses the virtual
incidence relation, described above, by reducing it to the positions of the re-
spective points in V n on the one hand, and to the position of the respective
curve in the Deligne–Mumford stack of curves of genus g with n marked points.

When this is done, a list of universal properties of the classes Ig,n tre-
ated as motivic morphisms, defines essentially the (co)action of the modular
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(co)operad with components h(Mg,n) in the category of motives upon each to-
tal motive h(V ) (I use the word total in order to stress that we are not allowed
to pass to pieces here, although twisting and translations are in fact present,
cf. [BehM96]).

The sophistication of both theoretical (and imaginative) physics and ab-
stract mathematics that cooperated to discover this picture is really amazing,
and I would like to draw attention to the fact that our traditional (mis)rep-
resentation of mathematics as a language and technical tool needed to make
physical intuition precise, was reversed here: physical intuition helped discover
mathematical structures that were not known before. One remarkable result of
this was Deligne’s generalisation of the Tannakian Galois formalism ([De02]):
it turned out that motivic Galois groups are actually supergroups, so that the
Fermi statistics now firmly resides in algebraic geometry as well, which up to
then was “purely bosonian”.

Of course, such reversals have happened many times in history, but here
the contemporary status of both theory of motives and quantum strings adds
a strong romantic touch to the story. The beautiful two-volume cooperative
project of the two communities trying to enlighten each other, [QFS99], is
branded by two epigraphs. The epigraph to the first volume is a quotation
from Grothendieck’s “Récoltes et Semailles”:

Passer de la mécanique quantique de Newton à celle d’Einstein doit être un
peu, pour le mathématicien, comme de passer du bon vieux dialecte provençal
à l’argot parisien dernier cri. Par contre, passer à la mécanique quantique,
j’imagine, c’est passer du français au chinois.

(In the pre-post-modern times one would have said: “It’s all Greek to
me!”).

The second volume starts with epigraph, written in Chinese logograms,
from Confucius’ “Analects”, 17:2. Here I give its translation:

The Master said: “Men are close to one another by nature. They drift
apart through behavior that is constantly repeated”.

This is the collective riposte of the two communities, arguing their close-
ness, but in the language that is foreign to both.

***

In his letter to me from Les Aumettes dated March 8, 1988, the last letter
that I have, Grothendieck has written:

...thanks for your letter of birthday congratulations, and please excuse my
being late in replying to this letter, as well as the previous one and thanking for
the reprint with dedication of november last year. Your letter struck me as so-
mewhat formal and kind of ill at ease, and surely my silence has contributed to
it. What I had to say about the spirits in mathematics today I said in the volu-
mes I sent you and a number of other former friends. I am confident that before
the year 2000 is reached, mathematicians (and even non-mathematicians) will
read it with care and be amazed about times strange at last left behind...
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I met Grothendieck almost half a century ago. Thinking back on his
imprint on me then, I realise that it was his generosity and his uncanny sense
of humour that struck me most, the carnivalistic streak in his nature, which I
later learned to discern in other anarchists and revolutionaries.

On the front cover of the issue no 14 of “Survivre ... et Vivre” (Octobre–
Novembre 1972) that miraculously reached me by post in Moscow, I read:

2 FRANCS
Canada 50 c
Communautés:
1 fromage de chèvre.
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