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1 Introduction

When it comes to analyze a financial time series, volatility modelling 
plays an important role. As an example, the variance of financial returns often 
displays a dependence on the second order moments and heavy-peaked and 
tailed distributions. In order to take into account for this phenomenon, known 
at least from the work of [22] and [14], econometric models of changing volatility 
have been introduced, such as the Autoregressive Conditional Heteroskedasticity 
(ARCH) model by Engle, see [13]. The idea behind the ARCH model is to make 
volatility dependent on the variability of past observations. Taylor, in [26], 
studied an alternative formulation in which volatility was driven by unobserved 
components, and has come to be known as the Stochastic Volatility (SV) model. 
Both the ARCH and the SV models, covered in Section 2, have been intensively 
studied in the past decades, together with more or less sophisticated estimation 
approaches, see [25], as well as concerning concrete applications, see, e.g., [9], 
and references therein.

Parallel to the study of discrete-time econometric models for financial time 
series, more precisely in the early 1970’s, the world of option pricing experienced 
a great contribution given by the work of Fischer Black and Myron Scholes. 
The Black-Scholes (BS) model, see [4], assumes that the price of the underlying 
asset of an option contract follows a geometric Brownian motion. Latter type 
o f approach has been also used within the framework of interest rate dynamics, 
see, e.g., [6], and references therein. One of the most successful extensions has 
been the continuous-time Stochastic Volatility (SV) model, introduced with the 
work of Hull and White, see, [19]. A major contribution was successively due 
to Heston in [18], indeed he developed a model which led to a quasi-closed 
form expression for European option prices. Differently from the BS model, 
the volatility is not longer considered constant, but it is allowed to vary trough 
time in a stochastic way. In Section 3 we will start from a sub-class of SV 
models, which is the one of Local Volatility (LV), being characterized by a 
deterministic time-varying volatility, and then we will consider the general SV 
case, providing information about the pricing equation as made, e.g., in [5] or, 
from a point of view more centred towards applications, in [12], and references 
therein.
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2 Discrete-time models
Discrete-time models for the volatility, as said in the introduction, are 

born in order to analyze and reproduce the behavior of real financial time 
series, which are often characterized by a number of stylized facts, i.e., features 
of particular interest.

• The variance of returns of financial products is often subject to the so 
called volatility clustering effect. This means that the returns show an 
high serial autocorrelation: periods of high volatility are followed by 
periods with the same feature and viceversa.

• As noted in the pioneer works by Mandelbrot, see [22], and Fama, see 
[14], the variance of financial returns often displays a dependence on the 
second order moments and heavy-peaked and tailed distributions.

• Stock returns often exhibit the so called leverage effect: the conditional 
variance responds in an asymmetric way with respect to rises or falls of 
the asset price.

• The covariation effect captures the fact that the volatilities of different 
financial assets could be correlated: large changes in the returns of an 
asset can induce a similar behavior in other assets.

In the following we will briefly introduce the ARCH model, see [13], trying 
to emphasize its limits. Then, we will treat the SV model, see [26], and related 
extensions, in order to model the aforementioned stylized facts. It is worth 
to mention that different, more numerically oriented methods, can be also 
fruitfully exploited, as, e.g., suggested in [10, 11] and references therein.

2.1 A R C H  model

One of the most popular discrete-time models for the stochastic volatility 
is the ARCH model, which establishes a connection between the past squared 
returns of a financial asset and its current conditional variance. We let { y t}t==1
be the return process of some observation model. In the original formulation
of Engle, see [13], the dynamic of the ARCH(1) was given by

yt|Ft-i -  N (m,^2), (1)

a 2t =  w +  a y t -1  (2)

where w, a  >  0 are real non-stochastic parameters, F t denotes the global in­
formation up to time t. Naturally, eq. (2) could be generalized to the general 
ARCH(p) case

p
at =  w +  ^ 2  a®y2-1, a® >  0,

i=1
in which the conditional variance is given by a linear combination of p-lagged 
squared error terms. As noted by Nelson, see [23], the ARCH model presents 
at least 2 drawbacks:

• Constraints must be imposed on the parameters in order to guaran­
tee the positivity of the conditional variance, however they are often 
violated in the classical estimation procedures.
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• It is not possible to model the conditional variance as a random oscil­
latory process, which is a recurrent situation observed in real data.

In the following we will present the Stochastic Volatility (SV) model due to 
Taylor, see [26] and [27], and able to overcome the aforementioned difficulties.

2.2 Stochastic volatility (SV) model

The peculiarity of the SV model by Taylor is that the variance of the 
returns is modeled as an unobserved process. In [27] Taylor shows that this 
model can be transposed into a continuous time version, useful when it comes 
to price options and other modern financial instruments.

Denoting again {y t} t= 1 as the return process of some observation model, 
the SV parametrization sets

yt =  exp(ht/2)et, £t — N (0,1)
ht =  w +  aht - 1  +  nt, nt — N  (0 ,a?)

2 (3)

where the £t’s and the nt’s are independent. Notice that {h t}t==1 represents 
nothing but the logarithm of the volatility of the return process { y t}t==1. In
this way, the positivity of the related variance is guaranteed. a  can be seen
as a persistence parameter. Notice that {h t}t==1 is a standard autoregressive 
AR(1) process only when |a| <  1, case in which it is strictly stationary with 
mean an variance

2
Mh =  E[ht] =  W , ah =  Var(ht) =  -— r- 4 t .1 — a  1 — a 2

Equation (3) is not the unique way to write the dynamic of the model, see [24] 
for equivalent formulations. In particular, the SV model can be extended in 
order to take into account the following stylized facts, see [21] for further details:

• In some cases, the kurtosis of a financial time series is greater than 3. 
This corresponds to fatter tails with respect to a normal distribution. 
The problem can be solved by allowing et in equation (3) to have a 
Student t-distribution.

• A financial asset can exhibit the so called leverage effect, that is, the 
volatility responds in an asymmetric way to rises or falls in the returns. 
This fact can be incorporated in the SV model by introducing a negative 
instantaneous correlation between et and nt in equation (3).

2.2.1 Estimation procedures

Differently from the ARCH-type models, we do not know the conditional 
distribution of yt in closed form, see equation (1). For this reason, the stan­
dard Maximum Likelihood (ML) approach is hard to implement. Indeed, if we 
denote by y =  (y1, . . .  , y N) the vector of N  consecutive observations of the pro­
cess yt, by h =  (h1, . . . ,  hN) the corresponding vector for the log-volatilities, 
and by в =  (w,a ,a1)  the vector of parameters, then the likelihood can be 
written as

L (y ; в) =  J p (y , h |e) dh =  J p (y |h , e)p(h |e) dh, (4)
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where we integrate with respect to the joint probability distribution of the 
data. The N  -dimensional integral in equation (4) requires the use of computa­
tionally involved numerical methods and for this reason the estimation of the 
parameters is hard. Following [24], we briefly cite some alternative estimation 
procedures:

• Generalized Method of Moments (GMM): this method was introduced 
by Taylor, see [26]. The basic idea is to match the empirical moments 
of the observed vector y with the corresponding theoretical ones, which 
can be computed explicitly, hence the key advantage is that the con­
ditional distribution of yt is not required. More precisely, we need to 
minimize the objective function Q =  g 'W g  with respect to the vector 
of parameters 9, where

and W  is a positive definite, symmetric weighting matrix of dimension 
(т +  2) x (т +  2). It is possible to minimize Q using standard numerical 
routines.

• Quasi-Maximum Likelihood estimation (QML): this approach is based 
on the linearization of the SV model in equation (3). Assuming є t ~  
N (0 ,1 ) and defining wt =  log y^, it is possible to prove that

where £t =  log є 2 — E[log є)2], Var(£t) =  n2/2 . Even if the errors £t do not 
have a normal distribution, the underlying idea of the QML approach 
is to suppose £t ~  N(0, n2/2 ) i.i.d., and to apply the Kalman filter to 
equation (5) in order to produce one-step ahead forecasts of wt as well 
as ht. Decomposing the prediction error, it is possible to construct the 
Gaussian likelihood of the data, to be minimized in order to estimate 
the vector of parameters 9, see [17].

2.2.2 The multivariate case

A stylized fact which can not be captured by the standard univariate 
SV model is the so called covariation effect, that is, roughly speaking, the 
presence of a correlation between the volatilities of different financial series. 
Often, large changes in the returns of an asset are followed by large changes 
in other ones. This can be due to the presence of common unobserved factors 
influencing the dynamics of a set of assets. Volatilities are also subject to the 
coming of new information, such as trading volume, quote arrivals, goverment’s 
health, dividend announcements and so on. All these phenomena suggest that a 
multivariate model could be better than an univariate one in term of adherence 
to real data.

т >  1,

wt =  —1.2704 +  ht +  £t,
ht =  w +  aht-1  +  nt, nt ~  N (0 ,^ ) ,

(5)
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The first multivariate SV model was proposed in [16]. We denote by 
y t =  (y1,t, . . . ,  yN,t)T the vector of returns related to N  different assets at time 
t. The dynamic of the i-th component is assumed to be

(yi,t =  exp(hM/2^ i,t,
\hi,t =  w® +  a.ihi,t-1 +  ni,t,

where єt =  (є 1,t, . . . ,  єN,t) and nt =  (n1,t, . . . ,  nN,t) are mutually independent 
and normally distributed. Moreover

Var(nt) =  ,

Var(єt) =  =

(

1 P1,2
P1,2 1

P1,N P2,N

P1,n \
P2,N \

1.

where |P®,j | <  1, so that is a correlation matrix. The weakness of the model 
is that it does not allow the covariances of the assets to evolve in an independent 
manner of the variances. If i =  j ,

Cov(yi,t,yj,t|ht) е [ум уЫ ^ ] Pi,j exp

and since
Var(y®,t|ht) =  exp (h i,t),

it follows that the model has constant correlations, which can be a limiting fact 
in some situations, see, e.g., [25]. As in the univariate case, it is possible to 
estimate the parameters through a QML approach, see [16], by linearizing the 
corresponding equations.

The multivariate SV model admits also other representations, e.g., the 
factorial one, see [20]. The main advantage with respect to the previous mul­
tivariate model, is the reduction of the dimensionality of the parameter space: 
the returns vector y t =  (y1t, . . . ,  yN,t)T is a linear combination of unobser­
ved and common factors following a univariate SV dynamic. If we denote by 
ft =  ( f 1,t, . . . ,  f K,t)T the set of common factors at time t, then

y t =  B  ft +  wt ,

f i t  =  exp(hM/2 ^ i,t , .i =  1, . . . ,  K,
hi,t =  Mi +  Фі -̂і^ - 1 +  Пі,Ь

where B is a constant matrix of dimension N  x K , K  <  N , w t ~  N (0, П) 
is the error vector and it is assumed independent of all the other term. The 
random variables є®̂  and n®,t are serially and mutually independent and nor­
mally distributed. We assume also that |ф® | <  1 so that the factor log-volatility 
processes hi t are stationary. For more details about the model, see [20], [24].
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3 Continuous-time models
In the early 1970’s the world of option pricing experienced a great contri­

bution given by the work of Fischer Black and Myron Scholes. They developed 
a new mathematical model to treat certain financial quantities publishing the 
related results in the article The Pricing of Options and Corporate Liabilities, 
see [4]. The latter work became soon a reference point in the financial scenario. 
Nowadays, many traders still use the Black and Scholes (BS) model to price 
as well as to hedge various types of contingent claims. An important property 
of the BS model is that all the involved parameters are not influenced by the 
risk preferences of investors. In particular, the BS approach is based on the 
so-called risk-neutral pricing assumption which greatly simplifies the associated 
derivatives analysis.

In particular, in the classical BS-model, the volatility parameter, let us 
indicate it with a, is assumed to be constant. Latter hypothesis cannot be 
considered realistic, as simple empirical analyses can easily show. In particular 
it is rather simple to show that the implied volatility of a financial asset is not 
constant but varies with time to maturity T  >  0, and with respect to the strike 
price K . Such a fact has started to become more and more evident since the 
general market crash in 1987. As a consequence, the real values of the volatility 
parameter that can be observed in the market do not give rise to a flat shape 
as the BS-model forecasts. In fact, if we fix the strike price value and we look 
at the corresponding implied volatility section, e.g., with respect to a plain 
vanilla option, the typical figure that appears justifies the definition of the so- 
called smile/smirk effect. The latter because, especially for short maturities, 
the implied volatility sections assume a shape which resembles a smile or a 
smirk.

As a consequence of the BS-model lack of description accuracy, new mo­
dels have been developed to overcome issues of the type mentioned so far. This 
has been also produced approaches able to treat the increasingly complexity 
characterizing modern financial instruments. Between such alternatives to the 
BS analysis, we focus our attention on the so called local volatility (LV) and 
stochastic volatility (SV) models.

3.1 Local volatility models

The LV models can be seen as the simplest extension of the classical BS 
case, in order to achieve an exact reproduction of the volatility smile, through 
calibration to market data. The main difference is that in LV models, the 
instantaneous volatility is, in general, a function of the current time and the 
current asset price. If we denote by St the price of the asset at time t, we can 
write the related SDE as

dSt =  M(t, St)St dt +  a(t, St)St dWt ,

where So >  0, ^(t, St) is the instantneous drift, a(t, St) is the instantaneous 
volatility at time t, and Wt a Brownian motion. If a(t, St) =  a >  0 then we 
turn back to the BS case.
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The first LV model appeared in the literature is the so called Constant 
Elasticity of Variance (CEV) model, see [7]. The latter is characterized by a 
volatility defined as

a(t, St) =  aS^ 1, a >  0,

where y must be determined with a calibration to market data. With 7  = 1  
we find the BS model, while 7  =  0 leads to normally distributed returns.

3.1.1 The pricing equation

Denoting by C  =  C(t, St; T, K ) the time-t price of a vanilla option having 
as underlying the asset price St, maturity T  and strike K  >  0, then it is possible 
to show, assuming existence and uniqueness of the risk-neutral measure, that 
C  solves the following PDE:

d C + r S d C  + 1 „ , t s )2 !fl  —  =  rC  (6)
at +  a s  +  2a ( i ' S) S aS 2 = rC ' (6)

where r >  0 is the constant instantaneous spot rate, to be coupled with appro­
priate boundary conditions, depending on the nature of the option of interest.
In particular, setting C(T, ST) to the option’s payoff and solving the equation 
backwards from T  to t, it is possible to find C(t, St).

3.1.2 The Dupire formula

Suppose to have a set of vanilla option’s prices related to time t. Is there 
a way to set a(t, S) in such a way to perfectly fit these prices? The answer is 
yes, and comes from the well known Dupire formula, see [3], [15], or [8]:

dC dC
-------+ r K -----

a (T ,K ) 2 =  a (T ,K ; t ,S t )2 = 2  dT dK  . (7)
K  2 —  

dK 2

In particular, if equation (7) holds at time t =  0, then the model is automati­
cally calibrated to the initial market volatility smile. Moreover, it is possible 
to show that the right hand side of equation (7) is always well defined if the 
real market is arbitrage free. Manipulating a little bit the Dupire formula, we 
can rewrite it in the following way:

§ + r K § — 2 a (T - K  )2K 2 ё = » .  <8>

Equation (8) is similar to (6) in many aspects, however must be solved forward 
in order to find option’s prices for all the values of K  and T, fixing t and St.

Suppose, for simplicity of exposition, that r =  0. Then the Dupire formula
(7) turns into

dC
a (T ,K  )2 =  ^ ^ d . _ .  (9)

K  2 — —
K d K 2



12 L. D i P ers io , N. Gugole

Usually, vanilla option prices are quoted in terms of the BS implied volatility 
a BS =  a BS(t, St; T, K ), i.e., that value of the volatility which, once inserted 
into the BS pricing formula, gives the market price:

C(t, St; K ,T ) =  Cb s (t, St; K ,T ,a B- ).

B y using the chain differentiation rules and the formulas of the BS greeks, it is 
possible to write equation in terms of a BS, instead if C , see [15], i.e.,

2 d ags  +  aBs
а (т K )2 =  ___________________________дт______ т_________________________

' k  2 -  d1v r  (^ y2 +  aB s (* ^ + ^ ) 2) '

where т =  T  — t and

d1 = d v ? ln (K ) + 2 aBs ̂ .

As a particular case, suppose that a BS is independent of K , i.e., the volatility 
smile has no skew, so ст(т, K ) =  ст(т), where

^  о daBS , 2 _  д / 2
a (T)2 =  2ra Bs~dr"-  +  a BS =  д т  (тстВs)

from which
/ a (u )2du =  ra g  -  . 

Jo

3.2 Stochastic volatility models

The SV models represent a natural extension of the LV models. We will 
consider the following couple of SDEs:

dSt =  ^  St)St dt +  V * St dWt ї E[dWtdZt] =  p d t , (10)
dvt =  a(t, St, vt) dt +  ^^(t, St, vt) V t  d Z t,

where n is the volatility of volatility, p represents the instantaneous correlation 
between the two Brownian motions W t and Z t, and 7  >  0. In the limit n ^  0, 
we retrieve the SV case.

The Heston model is, nowadays, the most know SV model; it was intro­
duced for the first time in [18]. Starting from equation (10), the Heston model 
corresponds to the choice

a(t, St, vt) =  e(v — vt), v >  0, в >  0,

^(t, St, vt) =  1.

In other words, vt is a Cox-Ingersoll-Ross (CIR) process, where У is the so 
called long term mean and в represents the speed of reversion. This terminology 
reflects the fact that, for sufficiently large times, vt will move around the value 
v with an intensity depending on the magnitude of y. An important feature 
of the CIR process is, under some conditions on parameters, the positivity: in 
particular, we have to impose 2в-У >  n2.
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3.2.1 The pricing equation

In the BS case, as well as in the SV case, there is only one source of
randomness, more precisely the process Wt, but in the SV case we have also
random changes in the volatility to be hedged. The idea is to set up a portfolio 
containing the option of interest, a quantity —Д 1 of the underlying asset and 
a quantity — Д 2 of another asset depending on the volatility value vt. Differen­
tiating the portfolio value and imposing the usual risk-free conditions (random 
terms equal to zero and return equal to r), see [15] for further details, we end 
up with the following PDE:

9C  , 1 S2 д 2C  , S 8C  , eS d2C  . 1 2 д2C
a t  +  2 v' S' aS2 + rS ' a S  +  Pnv' e S  avaS  +  2 n v‘ e  a ?  (11)

a— ( )
=  rC  — (a  — ф в ^ і )  a y  ,

where ф =  ф(^ St, vt) is the so called market price o f volatility risk, and can be 
seen as the extra return (required by the investors) per unit of volatility risk. 
Defining

a =  a  — Фвл/^:

as the drift of the volatility vt process under the risk-neutral measure, we could 
rewrite equation (11) in a more compact way as

a c  1 о a2с  а с  a2c  1 2 n2 a2c  _ a c
a t  +  2" A  a S 2 + r S  a S + pnv‘ e S ‘ a v a S + 2 n v‘ e  w  = r C —a л  • (12)

Equation (12) is a good point to start with, if the aim is to calibrate the SV 
model to option prices, which are closely connected to the risk-neutral measure. 
In particular, we can assume that the SV model of interest, once fitted the 
related parameters to option prices, generates the risk-neutral measure such 
that the market price of volatility risk ф is equal to zero. This assumption makes 
sense when we are interested only in the pricing part, not in the statistical 
properties, which are described by the physical measure.

3.2.2 Calibrating the parameters of the Heston model

The main advantage of the Heston model with respect to other (poten­
tially more realistic) stochastic volatility models is the existence of a fast and 
easily implemented quasi-closed form solution for European options, see [15] 
for the derivation. This computational efficiency in the valuation of European 
options becomes useful when calibrating the model to real option prices. How 
can we perform the calibration? The simplest way is to minimize the distance 
between the observed European call option prices and the theoretical ones. If 
we denote by в the set of parameters of the Heston model, then we have to 
solve the non-linear least squares

N 2
в =  arg mill £  ( c ° bs — C j(e )) , (13)

j=1

where C?bs =  C obs(Kj, Tj), i =  1 , . . . ,  N, is the set of observed option prices, 
while — (в) =  C j(K j, Tj; в), i =  1 , . . . ,  N, is the set of option prices produced
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by the Heston model, and 0  denotes the parameter space. Alternatively, one 
could perform the minimization in equation (13) using a dataset of implied 
volatilities instead of the corresponding quoted option prices.

A different approach is adopted, for instance, in [1], and it is based on the 
Maximum Likelihood method. We can imagine the stock price St at time t as 
a function of a vector of state variables X t following a multivariate stochastic 
volatility dynamic as in equation (10), i.e., St =  f  (X t) for some function f . 
Usually, either the stock price itself (or its logarithm) is taken as one of the 
state variables, hence we write X t =  (St, Yt)T , where Yt is the remaining set of 
state variables of length N. In general, part of the state vector X t can not be 
directly observed. In [1], the idea is to assume that both a time series of stock 
prices and a vector of quoted option prices are observed. The latter vector at 
time t is denoted by Ct, and must be used in order to infer the time series for 
Yt. If Yt is multidimensional then a sufficient number of different option prices 
is needed. Roughly speaking, there are two ways to extract the value of Yt 
from observed data:

• The first method is to compute option prices as a function of St and Yt, 
for each parameter vector considered during the estimation procedure. 
In this way it is possible to identify the parameters both under the 
physical measure and the risk-neutral one.

• The second method consists in using the BS implied volatility as a 
proxy for the instantaneous volatility of the stock. This is a simplifying 
procedure, and it can be applied only in the case of a single stochastic 
volatility state variable.

Since, in general, the transition likelihood function for a stochastic volatility 
model is not known in closed form, then an approximation method must be 
used, see [2]. In this way it is possible to express, in an approximate closed form, 
the joint likelihood of X t. Then, in order to find the likelihood of (St,C t)T , 
which is entirely observed, it is necessary to multiply the likelihood of the 
vector X t by an appropriate jacobian term. The last step is not necessary 
when a proxy for Yt is used. For further details, see [1].
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