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1 Introduction

In this paper we shall describe recent applications of billiards in aerody-
namics and optics. More precisely, we shall explain how to construct perfectly
streamlining bodies in the framework of Newtonian aerodynamics and invisible
objects in geometric optics. The methods we shall use are quite elementary
and accessible to students of the high school; they include focal properties of
curves of the second order and unfolding of a billiard trajectory.

2 Perfectly streamlining bodies in
aerodynamics

To start with, let us consider a rigid body moving through a rarefied
medium of point particles. The medium has zero absolute temperature; this
means that the particles are initially at rest. When hitting the body, particles
are reflected in the perfectly elastic manner. The medium is so rarefied that
particles never hit each other.

The (generalized) Newton aerodynamic problem consists in finding the
best streamlining body from a given class of bodies. This means that the force
of resistance exerted by the medium on the body is minimal in this class of
bodies. This problem was solved by Newton himself in the class of convex axi-
ally symmetric bodies with fixed length and width [13], and by several authors
in various classes of bodies, provided that each particle hits the body at most
once [2–9, 11, 12].

In a reference system connected with the body one observes a flow of
medium particles with equal velocities incident on the body at rest. Choose
the reference system in such a way that the velocity of the flow is (0, 0,−1).
If the body surface turned to the flow is the graph of a function z = u(x, y)
and each particle hits the body only once, the projection of the resistance force
of the body on the z-axis R(u) (which will be referred to as resistance in the
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Fig. 1: Two concentric squares with a built-in channel system.

sequel) can be written down in a comfortable analytical form

F (u) =

∫∫
1

1 + |∇u(x, y)|2 dx dy.

If one allows multiple reflections of particles, the formula of resistance
is more implicit. Let B ⊂ R3 be the body under consideration, and let the
particle of the flow that moves according to (x, y,−t) for t sufficiently small,
after several reflections from the body move freely with the velocity vB(x, y) =
(vxB(x, y), vyB(x, y), vzB(x, y)) ∈ S2. The resistance equals

R(B) =
1

2

∫∫
(1 + vzB(x, y)) dx dy.

Note that in the particular case when the condition of single reflection is sat-
isfied and the front part od the body surface is given by z = u(x, y), one has
F (u) = R(B).

If multiple reflections of the particles are allowed, and therefore the theory
of billiards is applicable, one comes to some very surprising conclusions. First,
in the class of bodies that contain a bounded convex body C1 and are contained
in another bounded convex body C2 (where C1 ⊂ C2 and ∂C1 ∩ C2 = ∅) the
infimum of resistance is zero [15]. In other words, the resistance of a convex
body can be made as small as we please by small perturbation of the body near
its boundary. Let us illustrate this in the case when C1 and C2 are rectangular
parallelepipeds with the edges parallel to the coordinate axes.

[The construction with two rectangles follows. An explanation of motion
in channels should be given. The 3D construction is obtained by making a
”sandwich” whose layers are as in the 2D construction.]
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Fig. 2: Union of two trapezoids.

Let us now consider modification of this construction. Consider a rect-
angle with a single built-in channel (see Fig. 2). As first conjectured by E.
Lakshtanov, under a certain condition (to be specified below) on the parame-
ters of the figure, the final velocity of a particle of the parallel flow will always
be equal to the initial velocity of the flow (vertical in Fig. 2).

Indeed, let E be the point of intersection of the lines BC and B′C ′, and
let β = ]BOB′. Consider the broken line formed by the segment CC ′ and its
rotations by the angles β, −β, 2β,−2β, . . . (while the modulus of the angle is
smaller than π), and assume that the lines AB and A′B′ touch this broken line
(see Fig. 3). The initial velocity of the particle is v = (0,−1); let us prove that
its final velocity is also v.

[The proof (based on unfolding of a billiard trajectory) follows.]
It follows that the union of two trapezoids in Fig. 2, when moving in the

vertical direction, has zero resistance. Now it is easy to obtain 3D bodies with
zero resistance. First, one can rotate the union of trapezoids about its vertical
symmetry axis. Second, one can translate it in the direction orthogonal to the
plane of the figure.

Let us further simplify the construction. Let C and D coincide and α =
π/6 in Fig. 2; then we obtain a union of two triangles, as shown in Fig. 4. This
is probably the simplest figure of zero resistance.

Remarkably, we have found perfectly streamlined bodies. This means that
they can move perpetually in a homogeneous rarefied medium without slowing
down the velocity. However, the medium will resist to attempts of maneuvering.
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Fig. 3: Unfolding of a billiard trajectory.

Additionally, the resistance is nonzero, if the medium is not homogeneous. For
instance, the body will slow down when getting into a homogeneous cloud, and
will recover its original velocity when going away.

3 Invisible objects

The ideas of the previous section can be used in geometric optics when
constructing invisible objects. Indeed, put together two bodies of zero resis-
tance mutually symmetric with respect to a plane orthogonal to the direction
of the flow; as a result we will obtain an object invisible in this direction (see,
e.g., Fig. 5).

[The explanation.]
Now when we have constructed an object invisible in a direction, it is

natural to ask, if there exist objects invisible from a point. They really exist,
and the underlying construction is based on focal properties of curves of the
second order.

The following geometrical statement plays an important role in problems
of Newtonian aerodynamics [1, 14]. It allows one to build ”invisible object”
like the curvilinear triangle ABC shown in fig. 9 at the end of this paper. In
this note we are going to prove this statement.

Theorem. Let F1F2C be a right triangle with the right angle at F2, and let E
and H be the confocal, with foci at F1 and F2, ellipse and hyperbola through C.
(We consider only the branch of the hyperbola H that contains C.) Consider
a ray with the vertex at F1, which intersects the ellipse E and the branch of
the hyperbola H at some points A and B. Then the segment F2C forms equal
angles with the segments F2A and F2B: α = β (see Fig. 6).
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Fig. 4: A body of zero resistance: basic construction.

Notice the following property, which is a direct consequence of the theo-
rem.

Corollary. Let A1 be the point of intersection of the ray F2A with the
branch of the hyperbola H, and let the ray F1A1 intersect the ellipse at B1 (Fig.
6). Then, according to the theorem, the points B, B1, and F2 lie on the same
straight line. In other words, each of the triples, F1AB, F1A1B1, F2A1A, and
F2B1B, is collinear.

The proof of the theorem makes use of the following characteristic prop-
erty of an angle bisector in a triangle.

Lemma. Consider a triangle ABC and a segment BD joining the vertex
B with a point D lying on the opposite side AC. Denote a1 = AB, a2 = BC,
b1 = AD, b2 = DC, and f = BD (see Fig. 7). The segment BD is the bisector
of the angle B, if and only if (a1 + b1)(a2 − b2) = f2.

Proof. Let f = BD be the bisector of the angle B to the side AC. Let us prove
the following relations on the values a1, a2, b1, b2, and f :

1. a1/a2 = b1/b2;

2. a1a2 − b1b2 = f2;

3. (a1 + b1)(a2 − b2) = f2.

The equalities 1 and 2 are well known; each of them is a characteristic property
of triangle bisector as well.
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v

Fig. 5: A body invisible in the direction v. It is obtained by taking 4 truncated cones
out of the cylinder.

The first property is a consequence of the following formula that com-
pares areas of triangles:

a1
a2

=

1

2
a1f sinα

1

2
a2f sinα

=
SABD
SBCD

=

1

2
b1h

1

2
b2h

=
b1
b2

, (1)

where α = ]ABD = ]CBD, and h is the height put from the vertex B on the
side AC.

The second property of the bisector is based on the notion of ”degree”
of a point relative to a circumference. Let us circumscribe the circumference
ω around the triangle ABC. Take a chord through a point D inside a circum-
ference ω; this chord is divided by D into two segments. The product of the
lengths of these segments is called the degree of the point D (all such products
are equal for the given point D). Denoting DE = g, we get for the point D
that b1b2 = fg (Fig. 7).

Note that 4ABE is similar to 4DBC by two angles:

]ABE = ]DBC = α and ]AEB = ]ACB =
1

2

_

AB .

Therefore
a1

f + g
=

f

a2
,
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Fig. 6: α = β.

whence

a1a2 = f2 + fg ⇒ f2 = a1a2 − fg = a1a2 − b1b2,

Q.E.D.
Let us now prove that the bisector f satisfies the equality 3, and vice

versa, a segment BD satisfying this equality is the bisector. Notice that we are
unaware of any mentioning of this property in the literature.

One easily sees that the algebraic relations 1, 2, and 3 are ”linearly de-
pendent”: any two of them imply the third one. Therefore the properties 1
and 2 of the bisector imply the direct statement: the bisector f satisfies the
property 3.

In order to derive the inverse statement, we need to apply the sine rule
and some trigonometry. Denote α = ]ABD, β = ]CBD, and γ = ]BDC
(see Fig. 7 (b)). We are going to prove the equality α = β. Applying the sine
rule to 4ABD, we have

a1
sin γ

=
b1

sinα
=

f

sin(γ − α)
,

and applying the sine rule to 4BDC, we have

a2
sin γ

=
b2

sinβ
=

f

sin(γ + β)
.
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Fig. 7: The proof of the direct (a) and inverse (b) statements on the bisector.
Fig. 7: The proof of the direct (a) and inverse (b) statements on the bisector.

This implies that

a1 + b1 =
f

sin(γ − α)
(sin γ + sinα) = f

sin
γ + α

2

sin
γ − α

2

,

a2 − b2 =
f

sin(γ + β)
(sin γ − sinβ) = f

sin
γ − β

2

sin
γ + β

2

,

and using the condition 3, one gets

f2
sin

γ + α

2
sin

γ − β
2

sin
γ − α

2
sin

γ + β

2

= f2,

whence

sin
γ + α

2
sin

γ − β
2

= sin
γ − α

2
sin

γ + β

2
,

cos
α+ β

2
− cos

(
γ +

α− β
2

)
= cos

α+ β

2
− cos

(
γ − α− β

2

)
,

cos
(
γ +

α− β
2

)
= cos

(
γ − α− β

2

)
.

The last equation and the conditions 0 < α, β, γ < π imply that α = β,
Q.E.D.

Let us now proceed to the proof of the theorem.
Extend the segment BF2 until the second intersection with the ellipse at

a point A′. Denote

f = F1F2, c = F2C, a1 = F1A
′, b1 = F2A

′, a2 = F1B and b2 = F2B

(see Fig. 8). Let the second point of intersection of the ellipse with the branch
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Fig. 8: Auxiliary construction.

of the hyperbola H be denoted by C ′. By the focal property of the ellipse, one
has the equality

F1A
′ + F2A

′ = F1C
′ + F2C

′,

that is,

a1 + b1 =
√
f2 + c2 + c. (2)

Further, by the focal property of the hyperbola we have

F1B − F2B = F1C − F2C,

that is,

a2 − b2 =
√
f2 + c2 − c. (3)

Multiplying the left hand sides and the right hand sides of (2) and (3), one gets

(a1 + b1)(a2 − b2) = f2,

and taking into account the lemma, one concludes that F1F2 is the bisector of
the angle F1 in the triangle A′F1B. In turn, this means that A′ is symmetric
to A with respect to the straight line F1F2, and by symmetry one has

]AF2C = ]A′F2C
′. (4)

O the other hand, the angles ]BF2C and ]A′F2C
′ are vertical, and

therefore, are equal:

]BF2C = ]A′F2C
′. (5)
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Fig. 9: The curvilinear triangle ABC is invisible from the focus F1: all the rays of
light emanated from F1 go round the obstacle ACB in such a way, as if it was absent

at all.

The equations (4) and (5) imply that

]AF2C = ]BF2C,

therefore α = β. The theorem is proved.
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