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Alexei Kondratyev1

Abstract. This paper discusses the interest rate model selection and
implementation process for the Monte Carlo credit risk engines. Special
attention is paid to the real world model calibration and simulation prob-
lems, including development of the robust calibration algorithms for the
illiquid interest rate curves and handling of the negative interest rates
implied by the forward FX rates for many EM currency pairs.

1 Introduction

Interest rates are the most fundamental building blocks of any Monte Carlo
risk engine. All other asset classes and all pricing functions require interest
rate curves as an input for discount factors calculation and PVing of future
cashflows. Therefore, the choice of interest rate model (or models) is an im-
portant task. Once the interest rate model is implemented and embedded into
simulation of all other asset classes it is very difficult to replace it unless the
risk engine has a highly modular architecture, which, though a desirable sys-
tem design requirement, is frequently traded off for the risk engine performance
optimization.

We only look here at the parametric models − the models that can be fully
described by a small number of well defined parameters with precise meaning.
All the models that take the time series of historical returns as an input (in
various shapes and forms) are deliberately excluded from the consideration.
The reason for this is the necessity to simulate the interest rate curves over
very long time intervals, typically up to the 30-year Monte Carlo tenor. Un-
derstanding of potential future scenarios and their driving factors is an integral
part of the prudent risk management: only the parametric models have this
explanatory power.

We consider five different interest rate models, from the most basic 1-
factor models to the now industry standard Libor Market Model. We analyse
their relative advantages and drawbacks and discuss the areas of applicability.
The derivation of all the model equations and their solutions is covered in
Appendix A.
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These models are by far the most widely used in practice and each has its
own strengths and weaknesses. There is no single interest rate model that would
satisfy all the requirements specified by the risk engine users and developers.
Ideally, there should be a pool of implemented and ready to be used models to
meet a variety of requirements.

We present here full methodological specifications for two of them, which
we believe maximizes the risk engine users utility: 1-factor Hull-White and
2-factor HJM.

2 Model selection

2.1 Ho-Lee model

Historically, the Ho-Lee (HL) model [2, 8, 9] was the first no-arbitrage model in
the sense that the model is fully consistent with the current term structure of
interest rates. The model can be formulated as a stochastic differential equation
for the short interest rate (see Appendix A, equations (A.6), (A.7))

dr(t) = θ(t)dt+ σW (t) (2.1)

with
θ(t) = ḟ(0, t) + σ2t ,

where

σ is the volatility of the short interest rate;
f(0, t) is the instantaneous forward rate observed at time zero for the

period of time [t, t+ dt];

ḟ(0, t) is the partial derivative of f(0, t) with respect to t;
W (t) is the Brownian motion under the risk neutral measure.

Note that σ is the absolute volatility, i.e. it is a standard deviation of the
short interest rate and not a standard deviation of the log-returns of the short
interest rate.

The Ho-Lee model is analytically tractable in the sense that there are
analytical expressions for zero coupon bonds (discount factors) of arbitrary
tenor (see Appendix A, equations (A.8), (A.9)).

The model has a high prediction power − it presribes a particular type
of interest rate dynamics and cannot be calibrated to match the arbitrary
volatility structure of the traded instruments such caps and floors.

The Ho-Lee model is also Markovian. In practical terms the Markov
property means that the evolution of the interes rate curve in the future depends
only on the current state and is independent of the path the interest rate curve
followed in the past in order to arrive to the current state. This is a useful
property that allows us to optimize the Monte Carlo simulation algorithm.

From equation (2.1) we see that the interest rates can become negative,
which is a common feature of all Gaussian models. Another drawback is the
fact that the interest rates tend to blow up − due to the σ2t term in the drift of
equation (2.1) (quadratic term in equation (A.6)), the short interest rate r(t)
tends to infinity as t→∞ with probability 1.
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The overall interst rates dynamics is limited to the parallel shifts of the in-
terest rate curve. This a significant limitation if the model is meant to be used
for the risk management of the curve trades. On the other hand, the model is
easy to calibrate and implement and the generated scenarios are quite intuitive.

2.2 Hull-White model

Similar to the Ho-Lee model, the Hull-White (HW) model [2, 9] can be formu-
lated as a model of the short interest rate (see Appendix A, equations (A.12),
(A.14))

dr(t) = κ (θ(t)− r(t)) dt+ σdW (t) (2.2)

with

θ(t) = f(0, t) +
1

κ
ḟ(0, t) +

1

2

σ2

κ2

(
1− e−2κt

)
,

where

σ is the volatility of the short interest rate;
f(0, t) is the instantaneous forward rate observed at time zero for the

period of time [t, t+ dt];

ḟ(0, t) is the partial derivative of f(0, t) with respect to t;
κ is a positive constant;
W (t) is the Brownian motion under the risk neutral measure.

Parameter κ is responsible for the exponential decay of the volatility over time
and is called the rate of mean reversion due to the non-trivial asymptotic
probability distributon of r(t) for large t.

The Hull-White model shares many properties with the Ho-Lee model,
which is not surprising given that both models belong to the same class of
1-factor HJM models. The model is analytically tractable (see Appendix A,
equation (A.15)), Markovian, has high predicting power, fits the current term
structure of interest rates by construction (no-arbitrage), allows negative inter-
est rates and is easy to calibrate and implement.

The biggest difference is that in the Hull-White model the short interest
rate has a mean and a variance that are bounded independently of t. Equation
(A.12) shows that the short interest rate r(t) behaves asymptotically for t� 1
as

r(t) ≈ f(0, t) + σ

∫ t

0

e−κ(t−s)dW (s) +
1

2

σ2

κ2
.

The right hand side of this equation is a Gaussian random variable with mean

μ∞(t) = f(0, t) +
1

2

σ2

κ2

and variance

σ2
∞(t) = σ2E

[(∫ t

0

e−κ(t−s)dW (s)

)2
]
= σ2

∫ t

0

e−2κ(t−s)ds ≈ σ2

2κ

for t � 1. As κ increases, the mean of the short interest rate distribution
gets closer to the spot forward rate and the variance of the short interest rate
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decreases as 1/κ. In other words we observe strong pull towards the forecast
rate f(0, t). This makes the Hull-White model superior to the Ho-Lee model
and explains its enduring popularity. Another useful property of the Hull-
White model is that it can be easily calibrated to swaption prices − a handy
property when the model must be calibrated in the risk-neutral environment
for the CVA calculation purposes.

2.3 Cox-Ingersoll-Ross model

Historically, the Cox-Ingersoll-Ross (CIR) model [5, 9] preceded the no-arbitrage
models, such as the Ho-Lee and the Hull-White models. The CIR model be-
longs to the class of equilibrium models where the term structure of the interest
rates is implied by the dynamics of the short interest rate. This, however, gives
this model enormous explaining power. The model can be formulated as a
model of the short interest rate

dr(t) = κ (θ − r(t)) dt+ σ
√
r(t)dW (t) , (2.3)

where

σ is the volatility coefficient;
κ is a positive constant;
θ is a non-negative constant;
W (t) is the Brownian motion under the risk neutral measure.

The instantaneous short interest rate volatility is proportional to the square
root of the short interest rate. This guarantees that the interest rates stay non-
negative due to suppressed volatility as the simulated short interest rate tends
to zero. But the model has the problem with the existence of the absorbing
state. For the interest rate process (2.3) to remain positive a Feller condition [6]
must be satisfied

2κθ > σ2 ,

in which case the upward drift in (2.3) is sufficiently large for r(t) to never
exactly reach zero.

The CIR model is Markovian and analytically tractable. However, the
inability to fit the current interest rate curve makes this model less than ideal
for the interest rate scenario simulation. At the same time the CIR model is
a popular choice when it comes to the simulation of default intensities. The
reason for this is that in many cases we have only a few liquid CDS tenors (and
frequently only the 5-year CDS spread is available, if at all) and have to deal
with very steep piece-wise constant default intensity curves. Since the Gaussian
models (HL, HW) would experience significant calibration problems too and
would have generated substantial number of negative rates in high volatility,
low credit spread environment − the CIR model has a competitive advantage
as a simple robust model that does not generate negative rates.
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2.4 Heath-Jarrow-Morton model

The N -factor Heath-Jarrow-Morton (HJM) model [2, 7, 13] has the form (see
Appendix A, equation (A.3))

df(t, T ) =
N∑
i=1

σ̇i(t, T )dWi(t) +

(
N∑
i=1

σ̇i(t, T )

∫ T

t

σ̇i(t, s)ds

)
dt . (2.4)

where

f(t, T ) is the instantaneous forward rate observed at time t for the
period of time [T, T + dT ], t < T ;

σi(t, T ) are components of zero coupon bond volatilities;
σ̇i(t, T ) is derivative of σi(t, T ) with respect to T ;
Wi(t) are independent Brownian motions under the risk neutral mea-

sure.

We interpret σi(t, T ), i = 1, 2, . . . as components of the zero coupon bond
volatilities that represent the first, the second, . . . principal components of
the interest rate curve dynamics. The Pricipal Component Analysis (PCA) is
one of the most popular methods of the HJM model calibration for the risk
factors simulation within the risk engine environment. The PCA would sug-
gest the optimal number of pricipal components we should incorporate into the
model and would also dictate a particular functional form of each σi(t, T ).

Using the HJM equation (2.4) we can write for the short interest rate,
r(t) = f(t, t),

r(t) = f(0, t) +

∫ t

0

N∑
i=1

σ̇i(s, t)dWi(s) +

∫ t

0

(
N∑
i=1

σ̇i(s, t)

∫ t

s

σ̇i(s, u)du

)
ds .

This equation shows that r(t) is an Itô process under the risk neutral measure,
satisfying the stochastic differential equation

dr(t) = μr(t)dt+ σr(t)dZ(t) ,

where

μr(t) = ḟ(0, t) +

N∑
i=1

∫ t

0

(
(σ̇i(s, t))

2 + σ̈i(s, t)

∫ t

s

σ̇i(s, u)du

)
ds

+
N∑
i=1

∫ t

0

σ̈i(s, t)dWi(s) ,

σr(t) =

√√√√ N∑
i=1

(σ̇(t, t))2 ,

dZ(t) =
1

σr(t)

N∑
i=1

σ̇(t, t)dWi(t) .

The last term in expression for μr(t) shows that the drift of the short inter-
est rate is path dependent. This makes this model non-Markovian in general,
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though a craftful selection of the volatility functions σi(t, T ) can make it Marko-
vian in some special cases − typically in the 1-factor model framework as is
the case with the Ho-Lee and the Hull-White models.

Not being Markovian means that the implementation of the multi-factor
HJM in the risk engine Monte Carlo simulation is computationally expensive.
Another challenge is the discretization of the continuous time. The instanta-
neous forward rates are a mathematical abstraction: they cannot be directly
observed in the market and they are not included into the payoffs of traded
derivatives. In real world we only deal with their integrals − the term rates.
The necessity to i) discretize the continuous time and ii) perform numerical
integration adds to the computational complexity. On the positive side, the
calibration through the PCA is straightforward as we shall see in the following
sections.

But the most important advantage of the multi-factor HJM model is the
variety of scenarios it is able to generate. The model is quite powerful even in
the 2-factor setup, where the simulated changes to the steepness of the interest
rate curve capture the bulk of the curve trades risk.

2.5 Libor market model

The N -factor Libor Market Model (LMM) [1, 2, 13] has the form (see Ap-
pendix A, equation (A.23))

dFn(t)

Fn(t)
=

N∑
i=1

σ̃i
n(t)dWi(t)

+
N∑
i=1

σ̃i
n(t)

(
n∑

m=2

σ̃i
m(t)

(
Fm(t)ΔTm

1 + Fm(t)ΔTm

))
dt , (2.5)

where

Fn(t) is the forward term rate observed at time t for the period of
time [Tn, Tn+1], t ≤ Tn < Tn+1;

ΔTn is the time interval between the two consecutive forward tenors,
ΔTn ≡ Tn+1 − Tn;

σ̃i
n(t) are components of the vector of forward term rate volatilities;

Wi(t) are independent Brownian motions under the T2-forward mea-
sure.

The LMM resolves all major issues with the HJM model, such as the need to
simulate the unobservable instantaneous forward rates, potentially explosive
growth of the interest rates, and the problem of discretization of continuos
time. In particular, one can observe that the LMM drift in (2.5) resembles a
discretization of the HJM drift in (2.4) where the integral over continuous time

σ̇i(t, T )

∫ T

t

σ̇i(t, s)ds

is approximated by a discrete sum

σ̃i
n(t)

n∑
m=2

σ̃i
m(t)

(
Fm(t)ΔTm

1 + Fm(t)ΔTm

)
.
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The modelling of the finite number of directly observable forward term rates
is a big advantage of the LMM. On the other hand side, if we want to model
M Libor rates the model requires the knowledge of M ×N volatilities. These
volatilities can be easily derived from, e.g., caplet volatilities but what should
we do with the interest rate curves that do not have a liquid option market?
In this respect the LMM compares unfavourably to the HJM model where
volatilities can be specified as functions of a handful of parameters. This makes
the HJM model easier to calibrate in many cases and gives it higher explaining
power.

Similar to the HJM model, the LMM is non-Markovian. This is a com-
mon feature of the models with log-normal distributions of state variables. As
a result the implementation of the LMM in the risk engine Monte Carlo envi-
ronment is a non-trivial task due to both computational complexity and the
large number of model parameters that need to be properly calibrated, or at
least initialised in a consistent manner.

2.6 Which model to choose

The following table summarises the top 10 most important properties of the
interest rate models discussed here:

Model characteristic HL HW CIR HJM LMM

Rich curve dynamics (multi-factor) No No No Yes Yes

Analytically tractable Yes Yes Yes No No

Fits the current curve (no-arb) Yes Yes No Yes Yes

High prediction power Yes Yes Yes Yes No

Easy to calibrate Yes Yes Yes Yes No

Easy to implement Yes Yes Yes No No

Markov property Yes Yes Yes No No

Existence of absorbing state No No Yes No No

Can simulate negative rates Yes Yes No Yes No

Simulated rates can blow up Yes No No Yes No

This table can be used to facilitate the decision making process of model se-
lection. By assigning weights to the various model characteristics, such as
simplicity (easy to calibrate, easy to implement), the richness of the simulated
scenarios (1-factor vs. multi-factor), etc, it is possible to rank them according
to the idividual preferences.

For example, a risk engine developer who is concerned with the risk man-
agement of relatively small directional counterparty portfolios comprised of
vanilla derivatives may have the following weights for model characteristics on
scale from 1 to 20, where 20 is the most and 1 is the least desirable model
feature:
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Model characteristic Weight for ”Yes” Weight for ”No”

Rich curve dynamics (multi-factor) 2 0

Analytically tractable 10 0

Fits the current curve (no-arb) 12 0

High prediction power 8 0

Easy to calibrate 20 0

Easy to implement 15 0

Markov property 1 0

Existence of absorbing state 0 6

Can simulate negative rates 0 4

Simulated rates can blow up 0 3

As a result, the 1-factor models appear to be well ahead of the multi-factor
HJM and LMM with Hull-White model having the highest score − this model
is loved for a reason!

Model characteristic HL HW CIR HJM LMM

Rich curve dynamics (multi-factor) 0 0 0 2 2

Analytically tractable 10 10 10 0 0

Fits the current curve (no-arb) 12 12 0 12 12

High prediction power 8 8 8 8 0

Easy to calibrate 20 20 20 20 0

Easy to implement 15 15 15 0 0

Markov property 1 1 1 0 0

Existence of absorbing state 6 6 0 6 6

Can simulate negative rates 0 0 4 0 4

Simulated rates can blow up 0 3 3 0 3

Total score 72 75 61 48 27

Note that the very desirable Markov property has received the lowest weight
due to the fact that its value is already taken into account by the highest weight
assigned to the ease of implementation. Also, the weight distribution is non-
linear that reflects significant differences in the relative importance of various
model features.

Alternatively, a risk engine developer who is more concerned with the
quality of future market scenarios and is not afraid of the associated develop-
ment, calibration and maintenance costs may have a different set of preferences:
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Model characteristic Weight for ”Yes” Weight for ”No”

Rich curve dynamics (multi-factor) 20 0

Analytically tractable 2 0

Fits the current curve (no-arb) 15 0

High prediction power 12 0

Easy to calibrate 8 0

Easy to implement 6 0

Markov property 1 0

Existence of absorbing state 0 10

Can simulate negative rates 0 4

Simulated rates can blow up 0 3

In this case the multi-factor models catch up with the 1-factor models and HJM
comes ahead of LMM:

Model characteristic HL HW CIR HJM LMM

Rich curve dynamics (multi-factor) 0 0 0 20 20

Analytically tractable 2 2 2 0 0

Fits the current curve (no-arb) 15 15 0 15 15

High prediction power 12 12 12 12 0

Easy to calibrate 8 8 8 8 0

Easy to implement 6 6 6 0 0

Markov property 1 1 1 0 0

Existence of absorbing state 10 10 0 10 10

Can simulate negative rates 0 0 4 0 4

Simulated rates can blow up 0 3 3 0 3

Total score 54 57 36 65 52

It is important to stress that we are looking at the interest rate models from the
risk factors simulation point of view rather than trying to evaluate them from
the ineterst rate derivatives pricing perspective. The model rankings presented
here illustrate the difficulties a risk engine developer is facing while selecting an
interest rate model for the Monte Carlo risk engine. A sophisticated model able
to give an accurate (non-arbitragable) price of an exotic interest rate derivative
may perform poorly when is calibrated to the ineterst rate curve in the illiquid
market.
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3 Implementation of 1-factor Hull-White
model

In the most general case, the Hull-White model specifies the following stochastic
process for the short interest rate (see equations (A.14) and (2.2))

dr(t) = κ

(
θ(t)− r(t)− 1

κ
ρ(t)σσx(t)

)
dt+ σdW (t) (3.1)

with

θ(t) = f(0, t) +
1

κ
ḟ(0, t) +

1

2

σ2

κ2

(
1− e−2κt

)
,

where

σ is the volatility of the short interest rate;
f(0, t) is the instantaneous forward rate observed at time zero for the

period of time [t, t+ dt];

ḟ(0, t) is the partial derivative of f(0, t) with respect to t;
κ is the rate of mean reversion (κ > 0);
W (t) is the Brownian motion under the risk neutral measure;
σx(t) is the instantaneous volatility of the spot FX rate (FX rate is

defined as the number of base currency units per one unit of
the interest rate curve currency; for the base currency interest
rate curves σx(t) ≡ 0);

ρ(t) is the instantaneous correlation between the spot FX rate pro-
cess and the Brownian motion that drives the short interest
rate process.

The drift term
−ρ(t)σσx(t)

is a quanto adjustment for the interest rates simulated in the non-base curren-
cies.

3.1 Simulation scheme

As a rule, the best simulation results are achieved when we simulate a solu-
tion to the stochastic differential equation instead of the risk factor increments
specified directly by the equation itself [14]. This is especially true when we
simulate risk factors over long period of time with large Monte Carlo time steps
that inevitably introduce significant discretization errors. Therefore, our first
task is to find a solution to equation (3.1). It follows from (A.12) that the
solution of this equation has the following form

r(t) = f(0, t) +
1

2

σ2

κ2

(
1− e−κt

)2 − σ

∫ t

0

e−κ(t−s)ρ(s)σx(s)ds

+ σ

∫ t

0

e−κ(t−s)dW (s) .

The Monte Carlo simulation is performed on the discrete set of tenor points.
Our aim is to specify the dynamics of the short interest rates between any two
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consecutive Monte Carlo tenors. Let tn and tn+1 be two consecutive Monte
Carlo tenors and let us denote Δtn+1 = tn+1 − tn. Then we can write

r(tn) = f(0, tn) +
1

2

σ2

κ2

(
1− e−κtn

)2 − σ

∫ tn

0

e−κ(tn−s)ρ(s)σx(s)ds

+ σ

∫ tn

0

e−κ(tn−s)dW (s) (3.2)

and

r(tn+1) = f(0, tn+1) +
1

2

σ2

κ2

(
1− e−κtn+1

)2
− σ

∫ tn+1

0

e−κ(tn+1−s)ρ(s)σx(s)ds

+ σ

∫ tn+1

0

e−κ(tn+1−s)dW (s) . (3.3)

From (3.2) and (3.3) we obtain expression for r(tn+1) as a function of r(tn)
and the standard Normal random variable ε that drives the short interest rate
increment on time interval [tn, tn+1]

r(tn+1) = f(0, tn+1) + (r(tn)− f(0, tn))e
−κΔtn+1

+
(
1− e−κΔtn+1

)(1

2

σ2

κ2

(
1− e−κ(tn+tn+1)

)
− 1

κ
ρ(tn)σσx(tn)

)
+ σ

√
1− e−2κΔtn+1

2κ
ε , (3.4)

where we assumed that ρ and σx are piece-wise constant functions of time on
the Monte Carlo intervals: ρ(t) = ρ(tn), σx(t) = σx(tn), t ∈ [tn, tn+1]. The
zero interest rate curve (or, equivalently, discount factors) can be built from the
simulated short interest rate (3.4) and expression (A.15) for the zero coupon
bonds.

The simulated short interest rate should be subject to flooring at each
Monte Carlo tenor to avoid simulation of negative interest rates. Strictly speak-
ing, the flooring of the short interest rate does not guarantee that all zero in-
terest rates are positive. However, in the vast majority of cases the number
of Monte Carlo paths that can lead to the negative zero interest rates after
the flooring has been applied is negligibly small and does not have a material
impact on the zero interest rates distributions.

3.2 Calibration

As always, there is a choice to be made between the risk neutral calibration
(e.g. matching the market prices of a range of the traded instruments) and the
historical calibration (e.g. matching the moments of the historical distributions
of the relevant risk factors). The high level of analytical tractability of the Hull-
White model is very helpful in designing the model calibration algorithms in
both cases. Here we present an algorithm that aims to calibrate parameters
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κ and σ by matching the historical volatilities of zero interest rates (yields of
zero coupon bonds).

We start by remembering that the Hull-White model is a special case of
the 1-factor HJM model with the zero coupon bond volatility, σ(t, T ), specified
as

σ̇(t, T ) = σe−κ(T−t) ,

where σ(t, T ) is a volatility of the zero coupon bond at time t with maturity
at time T and σ̇(t, T ) denotes the first derivative with respect to T . Thus, we
have the following expression for the zero coupon bond volatility

σ(t, T ) =

∫ T

t

σ̇(t, s)ds =
σ

κ

(
1− e−κ(T−t)

)
.

The historical zero coupon bond volatility can be estimated directly from the
historical time series of zero interest rates. Let σ(T1) and σ(T2) denote the
historical volatilities of T1- and T2-year zero coupon bonds respectively. Then
we can write a system of two equations for two unknowns

σ(T1) =
σ

κ

(
1− e−κT1

)
,

σ(T2) =
σ

κ

(
1− e−κT2

)
.

Equation for κ is now
σ(T1)

σ(T2)
=

1− e−κT1

1− e−κT2

and can be solved numerically. Once the value of κ is found, the value of σ is
given by expression

σ =
κσ(T2)

1− e−κT2
.

In many cases the best calibration results are achieved for T1 = 1 year and
T2 = 10 years.

4 Implementation of 2-factor HJM model

The 2-factor HJM model we want to use for the interest rate curves simulation
has the following form (see equations (A.3) and (2.4) with N = 2)

df(t, T ) =

2∑
i=1

σ̇i(t, T )dWi(t)

+

2∑
i=1

(
σ̇i(t, T )

∫ T

t

σ̇i(t, s)ds− σ̇i(t, T )σx(t)ρx,i(t)

)
dt , (4.1)

where

f(t, T ) is the instantaneous forward rate observed at time t for the
period of time [T, T + dT ], t < T ;

Wi(t) are the Brownian motions under the base currency risk neutral
measure;
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σx(t) is the instantaneous volatility of the spot FX rate (FX rate is
defined as the number of base currency units per one unit of
the interest rate curve currency; for the base currency interest
rate curves σx(t) ≡ 0);

ρx,i(t) are the instantaneous correlations between the spot FX rate
and the Brownian motions of the corresponding interest rate
diffusion components.

The volatility functions (as suggested, e.g., in [2]) are

σ1(t, T ) = a(T − t) , (4.2)

σ2(t, T ) = b(T − t)
(
1− 2e−κ(T−t)

)
, (4.3)

where a, b and κ are constants. We require κ to be strictly positive while a and
b can take any real values. Parameters a and b are the volatility coefficients
that determine the magnitude of the simulated shocks to the interest rate curve.
Parameter κ is responsible for the shape of the volatility term structure.

The last term in the right hand side of equation (4.1) is the quanto adjust-
ment for the non-base currency interest rate curves. The necessity of having a
quanto adjustment while simulating the non-base currency risk factors under
the base currency risk measure is discussed in [11].

4.1 Simulation scheme

In Section 2.4 we mentioned that σi(t, T ), i = 1, 2 can be interpreted as com-
ponents of the zero coupon bond volatilities that represent the first and the
second principal components of the interest rate curve dynamics. We note that
the volatility function (4.2) has the first derivative

σ̇1(t, T ) = a = const

similar to the volatility specification for the Ho-Lee model. On the other hand,
the volatility function (4.3) has the first derivative with respect to T that
changes sign at some tenor point, implying that the simulated shock would
move the short end and the long end of the curve into opposite directions.
Therefore, the choice of the volatility functions (4.2) and (4.3) is consistent
with the first principal component being responsible for the parallel shift of the
interest rate curve and the second principal component being responsible for
the change in curve’s steepness.

This means that when it comes to the estimation of correlation between
the forward interest rates and all the other risk factors, including FX rates, we
can say that the first pricipal component holds almost all available informa-
tion about the correlation structure. In practical terms it means that W1(t)
in (4.1) should be simulated as a Brownian motion correlated with the corre-
sponding FX rate with correlation ρx,1(t) ≡ ρ(t) while W2(t) in (4.1) should
have ρx,2(t) ≡ 0.

It has been already mentioned that, whenever possible, we should simulate
risk factors as solutions to stochastic differential equations, rather than using
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these equations directly. Thus, we first write equation (4.1) in the integral form

f(t, T ) = f(0, T ) +

2∑
i=1

∫ t

0

σ̇i(s, T )dWi(s)

+
2∑

i=1

∫ t

0

(
σ̇i(s, T )

∫ T

s

σ̇i(s, u)du− σ̇i(s, T )σx(s)ρx,i(s)

)
ds .

Since both σ1(t, T ) and σ2(t, T ) are functions of T − t we have

f(t, T ) = f(0, T ) +

2∑
i=1

∫ t

0

σ̇i(s, T )dWi(s)

+
2∑

i=1

∫ t

0

(σ̇i(s, T )σi(s, T )− σ̇i(s, T )σx(s)ρx,i(s)) ds . (4.4)

Now, substituting (4.2) and (4.3) into (4.4) and assuming zero correlation be-
tweenW2(t) and the corresponding FX rate process, we find the final expression
for f(t, T )

f(t, T ) = f(0, T ) + a

∫ t

0

dW1(s) + a2
∫ t

0

(T − s)ds

+ b

∫ t

0

(
1− 2e−κ(T−s)(1− κ(T − s))

)
dW2(s)

+ b2
∫ t

0

(
1− 2e−κ(T−s)(1− κ(T − s))

)
(T − s)(1− 2e−κ(T−s))ds

− a

∫ t

0

σx(s)ρ(s)ds . (4.5)

The simulation procedure can be split into three steps. The first step is to
calculate all spot instantaneous forward rates from the either linearly or cubic
spline interpolated spot zero interest rate curve, which is typically defined on
a relatively small set of tenors. A zero interest rate, R(t, T ), observed at time
t for the period of time [t, T ] is the yield of a zero coupon bond with maturity
at time T .

The second step is to run the Monte Carlo simulation using the instanta-
neous forward rate process (4.5) while monitoring the simulated instantaneous
forward rates for potential negative numbers. A suitable global flooring can be
applied, e.g. 5 basis points.

The third step is rebuilding of the corresponding zero interest rate curves
that define the simulated interest rate scenarios and can be taken as an in-
put by the pricing functions. The flooring of the instantaneous forward rates
guarantees that the forward term rates and the zero interest rates are strictly
positive.

To perform the first step we have to decide on what a suitable discretiza-
tion scheme can be. The natural restriction on discretization of the forward
curve is the granularity of Monte Carlo tenors: forward rates should be at least
as granular as the Monte Carlo grid.
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The instantaneous forward rate f(t, T ) has the meaning of an interest rate
observed at time t for the period of time [T, T + dT ]. The forward term rate
F (t, T1, T2) has the meaning of an interest rate observed at time t for the time
interval [T1, T2]. Thus, the following discretization of f(t, T ) and F (t, T1, T2)
should be used for the simulation of interest rate curves on a given set of Monte
Carlo tenors:

f(t, T )→ f(ti, Tn)

and

F (t, T1, T2)→ F (ti, Tm, Tn) ,

where

ti is the Monte Carlo tenor;
Tn is the forward curve tenor;
f(ti, Tn) is the interest rate observed at time ti for the time interval

[Tn−1, Tn] with ti ≤ Tn−1 < Tn;
F (ti, Tm, Tn) is the interest rate observed at time ti for the time interval

[Tm, Tn] with ti ≤ Tm < Tn.

The second step follows logically from the chosen discretization scheme. In
order to write expression (4.5) in the discrete form we introduce several new
notations. Let Δtl = tl − tl−1 be the Monte Carlo time step between the
Monte Carlo tenors tl−1 and tl, l = 0, 1, 2, . . . , Lmax and ΔTk = Tk − Tk−1

be the time interval between the two consecutive forward curve tenors Tk−1

and Tk, k = 0, 1, 2, . . . ,Kmax. Further, let ξ(l) be the value of the index of
the forward curve tenor Tξ(l) that corresponds to the Monte Carlo tenor tl:
Tξ(l) = tl. Then the discrete version of the instantaneous forward rate process
has the form

f(ti, Tn) = f(0, Tn) + a

i∑
l=1

√
Δtlε

1
l + a2

i∑
l=1

ξ(l)∑
k=ξ(l−1)+1

(Tn − Tk)ΔTk

+ b

i∑
l=1

(
1− 2e−κ(Tn−tl)(1− κ(Tn − tl))

)√
Δtlε

2
l

+ b2
i∑

l=1

ξ(l)∑
k=ξ(l−1)+1

[(
1− 2e−κ(Tn−Tk)(1− κ(Tn − Tk))

)
× (Tn − Tk)(1− 2e−κ(Tn−Tk))

]
ΔTk

− a

i∑
l=1

σx(tl)ρ(tl)Δtl , (4.6)

where ε1l and ε2l are standard Normal random variables. Since a set of the
Monte Carlo tenors is a subset of the forward curve tenors we have ξ(l) ≥ l. If
the forward curve tenor’s grid coincides with the Monte Carlo simulation grid

we have ξ(l) ≡ l and the sum
∑ξ(l)

k=ξ(l−1)+1 collapses to a single term.

The correlation with other risk factors is achieved through random vari-
ables ε1l and ε2l : ε2l is an independent standard Normal random variable and
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ε1l is a standard Normal random variable correlated with the random variables
that drive the increments of all other risk factors.

The third step, rebuilding of the zero interest rate curve, is a straight-
forward task once all the forward rates have been simulated through (4.6).
Forward term rates are calculated as

F (ti, Tm, Tn) =
1

Tn − Tm

n∑
k=m+1

f(ti, Tk)ΔTk . (4.7)

The zero interest rates, R(ti, Tn), are interest rates observed at time ti for the
period of time [ti, Tn]. They are a subset of the forward term rates given by
(4.7)

R(ti, Tn) = F (ti, ti, Tn) .

4.2 Calibration

The calibration of the 2-factor HJM model specified by equations (4.1)-(4.3) is
based on the Principal Component Analysis (PCA) of the zero coupon rates
dynamics (see, e.g., [2, 15]).

We start with the historical time series of the zero interest rates. The PCA
consists of the decomposing of the interest rate curve deformations into prin-
cipal components, or elementary building blocks such as parallel shift, change
in slope, twist, etc. The principal components can be ordered in terms of their
relative importance, or explaining power. Thus, the first principal component
(parallel shift) is typically able to explain up to 85-90% of the interest rate
curve deformations, the second principal component (change in slope) can ex-
plain 8-9% of the interest rate curve deformations with all the other principal
components (twists, double twists) being responsible for the balance. Because
we want to do the PCA on the interest rate curve deformations we should
carefully select the curve tenors. Ideally, the PCA should be performed on
the interest rate curve specified on 6-10 tenors that include both the short end
(3-month, 6-month tenors) and the long end (10-year, 30-year tenors).

Assume that we have M -year historical time series for N interest rate
curve tenors. If we further assume that there are 250 daily interest rate curve
observations in one year then we have a total of 250×M daily observations. Let
Y1(t), Y2(t), . . . , YN (t), t = 0, 1, 2, . . . , 250 ×M , be different daily observations
of the zero interest rates of N different tenors over the last M years. For a
given observation period Δt measured in days we consider the differences of
successive zero interest rates at each curve tenor

Di,n = Yi((n+ 1)Δt)− Yi(nΔt), i = 1, 2, . . . , N ,

where n ranges over the number of consecutive periods of Δt days in the dataset:
with Δt = 1 day, n = 1, 2, . . . , 250×M ; with Δt = 5 days, n = 1, 2, . . . , 50×M .

Let C be N ×N empirical covariance matrix

Cij =
1

M̃

M̃∑
n=1

(Di,n −Di)(Dj,n −Dj) ,
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where M̃ = int(M/Δt) is the number of periods and Di is the sample mean

of Di,n, n = 1, 2, . . . , M̃ . The PCA consists of computing the eigenvalues χk

and eigenvectors 	νk = (νk1 , ν
k
2 , . . . , ν

k
N ) of C and ranking them according to the

magnitudes of the eigenvalues. From the standard matrix theory we have

Cij =

N∑
k=1

χkν
k
i ν

k
j .

This is consistent with assuming that zero interest rate differences satisfy

Di,n = Di +

N∑
k=1

√
χkν

k
i εk,n ,

where εk,n are independent standard Normal random variables. The normalized
eigenvectors can be viewed as deformation eigenmodes of the zero interest rate
curve and the eigenvalues describe the amplitude of each mode.

We interpret the HJM equation (4.1) as a parametric representation of
two main principal components: a parallel shift of the whole curve driven by
σ1(t, T ) and a change in slope of the curve driven by σ2(t, T ). Therefore, using
reduced set of eigenvectors and the corresponding eigenvalues we obtain a 2-
dimensional approximation to the statistics of zero interest rate differences

Di,n = Di +

2∑
k=1

√
χkν

k
i εk,n .

Now we have everything we need to calibrate parameters a, b and κ. Note
that the zero coupon bond yield observed at time t for the time interval T − t,
Y (t, T ), has the stochastic differential

dY (t, T ) = d

(
− 1

T − t
lnP (t, T )

)
= − 1

T − t

2∑
k=1

σk(t, T )dWk(t) + drift , (4.8)

where P (t, T ) is the price of the zero coupon bond and W (t) is a Brownian
motion under the risk neutral measure. Let Vk(T ), k = 1, 2 be smooth interpo-
lation functions associated with the principal components. The PCA suggests
that the zero interest rate curve should satisfy the difference equations

ΔY (t, T ) = Y (t+Δt, T )− Y (t, T )

=

2∑
k=1

Vk(T − t)
√
χkεk(t) + mean , (4.9)

where εk(t) are independent standard Normal random variables. The use of
T −t in (4.9) is due to the fact that the PCA was done using relative maturities
and not the fixed maturities as in HJM equation. By matching stochastic terms
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in (4.8) and (4.9) we get an estimator for the volatility structure of zero coupon
bonds

σk(t, T ) = (T − t)Vk(T − t)

√
χk

Δt
, k = 1, 2 . (4.10)

From (4.2), (4.3) and (4.10) we obtain estimators for a, b and κ. Parameter a
can be computed directly as

a =
1

N

N∑
i=1

ν1i

√
χ1

Δt
.

Parameters b and κ can be estimated through the least squares algorithm that
minimizes the following expression

N∑
i=1

(
b(1− 2e−κTi)− ν2i

√
χ2

Δt

)
,

where b ∈ [bmin, bmax] and κ ∈ [κmin, κmax]. The choice of bmin, bmax, κmin and
κmax can be either interest rate curve specific or they can be global system
parameters. The typical values are: bmin = −a, bmax = a, κmin = 0, κmax = 1.

The correlation ρ in (4.5) is usually assumed to be constant. Its value
can be estimated from the historical time series as a correlation between the
zero interest rate of a particular liquid tenor (e.g., 1-year zero interest rate)
and the corresponding spot FX rate. Because the increments of interest rates
in the HJM model are normally distributed and the spot FX rates are usually
simulated through the log-normal process, ρ is a correlation between the his-
torical time series of absolute interest rate returns and relative FX rate returns
(log-returns).

5 Practicalities of interest rates simulation

In practice the risk engine may have to support several interest rate curves
for any given currency, for example 6-month and 1-year swap curves for USD.
These interest rate curves must be simulated in a consistent manner taking
into account high degree of correlations between them. The practical approach
is to select a single primary interest rate curve for each currency and simulate
all other secondary interest rate curves as either ratios or spreads over the
corresponding primary curves.

Typically, the primary curves are constructed from a variety of traded
fixed income instruments and interest rate derivatives. For example, the short
end of the primary interest rate curve can be constructed from the money
market deposits and futures rates, the long end can be constructed from the
yields on the long-term government bonds, and the middle part can be con-
structed from the interest rate swap rates. These curves should be simulated
directly through one of the interest rate models described in this chapter. The
random variables that drive their dynamics (e.g., ε in (3.4) and ε1 in (4.6))
should be correlated with the random variables that are generated to simulate
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all other risk factors in the risk engine. It can be done through the Cholesky
decomposition of the correlation matrix of primary risk factors.

The secondary curves are usually constructed from a single instrument
type. For example, an interest rate curve can be constructed from 6-month
interest rate swaps or it can be build from the FX forward rates. In each such
case the area of applicability of a secondary curve is quite limited. Why do
we need them then? The reason for having several interest rate curves for
the same currency is the fact that different curves can be used for forecasting
(calculation of the forward rates) and discounting. For example, we would not
be able to match the market FX forward prices had we used the 6-month swap
rate curves for discounting (interest rate differential).

Why do we need both spread and ratio secondary curves? The answer to
this question is the greater flexibility we have in modelling the future market
scenarios and in matching the current terms structures of the secondary in-
terest rate curves. Due to the flooring of the simulated primary interest rates
they remain positive on all Monte Carlo paths. When the secondary curve is
constructed by applying ratios to the simulated primary interest rates it is guar-
anteed to remainn positive as well, which is a useful property in many cases.
At the same time we have situations when the secondary interest rates must
be able to take negative values. For example, interest rate curves constructed
from the FX forward rates can be negative. These curves should be simulated
as spreads over the primary interest rate curves to preserve this property.

Following the notations introduced earlier, let F (t, T1, T2) be a forward
term rate observed at time t for the time interval [T1, T2], t ≤ T1 < T2. Let
R(t, T ) ≡ F (t, t, T ) be a zero interest rate observed at time t for the time
interval [t, T ], t < T . Let t0 denotes the Monte Carlo simulation start date
(both primary and secondary zero interest rate curves are known on this date),
t denotes the Monte Carlo tenor (counting from t0) and T denotes the interest
rate curve tenor (counting from t0 + t), i.e. t and T are time intervals, not
dates. Then the spread zero interest rate, Rs, and the ratio zero interest rate,
Rr, can be derived from the simulated primary zero interest rate, Rp, as

Rs(t, t+T ) = Rp(t, t+T )+(Fs(t0, t0+t, t0+t+T )−Fp(t0, t0+t, t0+t+T )) (5.1)

and

Rr(t, t+ T ) = Rp(t, t+ T )
Fr(t0, t0 + t, t0 + t+ T )

Fp(t0, t0 + t, t0 + t+ T )
, (5.2)

where the spread, ratio and primary forward term rates, Fs, Fr and Fp, are
calculated from the corresponding spot zero interest rate curves

F (t0, t0 + t, t0 + t+ T ) =
R(t0, t0 + t+ T )(t+ T )−R(t0, t0 + t)t

T
. (5.3)

The spot zero interest rates R(t0, t0 + t) and R(t0, t0 + t + T ) can in turn be
obtained from the spot zero interest rate curves through the linear or cubic
spline interpolation between the curve tenors.

All rates in formulae (5.1)-(5.3) are continuously compounded rates. The
real curves, however, may have different compounding. It means that in order
to calculate and apply the spreads and ratios we have to i) perform conversions
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from, e.g., annual compounding to continuous compounding for all curves be-
fore the calculation of spreads and ratios and running the Monte Carlo simula-
tion, and ii) perform inverse conversion from continuous compounding to, e.g.,
annual compounding after the Monte Carlo simulation of the primary curves
and the construction of the secondary curves. Transition from the zero rate
with compounding frequency n (n compounding periods per year), r̄, to the
continuously compounded rate, r, is done via the following formulae

r = n ln (1 + r̄/n) , r̄ = n
(
er/n − 1

)
.

The secondary interest rate curves are practically 100% correlated with their
primary curves. This may not be a desired property in all cases. When the
aim is to capture the basis risk between the different curves for the same cur-
rency, there is a temptention to introduce some randomness into the spreads
and ratios. Such attempts should be resisted due to significant calibration is-
sues and the increasing complexity of the simulation process. Treating spreads
and ratios as stochastic processes in their own rights can be justified only in
exceptional cases. A better solution would be to introduce another primary
curve (or curves) for such currencies. Due to the relatively small number of
curves where the basis risk is considered to be a material issue, the overall size
of the correlation matrix of primary risk factors should remain manageable.

A Derivation of IR model equations

The Heath-Jarrow-Morton Model

We start with an assumption that there are N risk factors modelled by N
independent Brownian motions Wi(t), t > 0, i = 1, . . . , N . We assume that zero
coupon bond prices (discount factors) P (t, T ) satisfy, under the risk-neutral
measure, the following equations

dP (t, T )

P (t, T )
=

N∑
i=1

σi(t, T )dWi(t) + μ(t, T )dt . (A.1)

Here t ≤ T , μ(t, T ) is instantaneous drift and σi(t, T ) are the volatility compo-
nents of the zero coupon bond prices.

All zero coupon bonds are traded securities. Since zero coupon bonds do
not pay dividends, the drift of a risk-neutral measure defined by (A.1) must
satisfy

μ(t, T ) = r(t) ,

where r(t) is the short interest rate. This is the instantaneous interest rate
observed at time t for the period of time [t, t+ dt]. Therefore, the risk-neutral
dynamics for zero coupon bonds (discount factors) should have the form

dP (t, T )

P (t, T )
=

N∑
i=1

σi(t, T )dWi(t) + r(t, T )dt .
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Applying Itô lemma to lnP (t, T ), we have

d lnP (t, T ) =

N∑
i=1

σi(t, T )dWi(t) + r(t)dt− 1

2

(
N∑
i=1

σi(t, T )
2

)
dt . (A.2)

Differentiating equation (A.2) with respect to T and taking into account the
definition of the instantaneous forward rates, f(t, T ),

f(t, T ) = lim
Δt→0

1

Δt

⎛⎝ E
[
exp

(
− ∫ T

t
r(s)ds

)]
E
[
exp

(
− ∫ T+Δt

t
r(s)ds

)] − 1

⎞⎠ = −∂ lnP (t, T )

∂T

we obtain

−df(t, T ) =
N∑
i=1

σ̇i(t, T )dWi(t)−
(

N∑
i=1

σ̇i(t, T )σi(t, T )

)
dt ,

where σ̇i(t, T ) represents derivative of function σi(t, T ) with respect to T . The
instantaneous forward rate, f(t, T ), has the meaning of an interest rate observed
at time t for the period of time [T, T + dT ].

Using the fact that−Wi(t) is also a Brownian motion, we obtain stochastic
differential equation that describes the evolution of the forward rate curve under
the risk-neutral measure

df(t, T ) =

N∑
i=1

σ̇i(t, T )dWi(t) +

(
N∑
i=1

σ̇i(t, T )

∫ T

t

σ̇i(t, s)ds

)
dt . (A.3)

Equation (A.3) is known as the Heath-Jarrow-Morton (HJM) equation [2, 7,
13].

The Ho-Lee Model

The Ho-Lee (HL) model is the simplest special case of the generic HJM frame-
work [2, 8, 9]. This is a 1-factor model (N = 1 in equation (A.3)) with a
constant variance of forward rates

σ̇1(t, T ) = σ = const .

Equation (A.3) now becomes

df(t, T ) = σdW (t) +

(
σ

∫ T

t

σds

)
dt . (A.4)

Integrating (A.4) with respect to t we obtain a solution

f(t, T ) = f(0, T ) + σW (t) + σ2

(
Tt− 1

2
t2
)

. (A.5)
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Equation (A.5) is the Ho-Lee model. The model can be reformulated in the
more conventional form as a model of the short interest rate, r(t) = f(t, t),

r(t) = f(0, t) + σW (t) +
1

2
σ2t2 . (A.6)

Differentiating (A.6) with respect to t and denoting θ(t) = ḟ(0, t) + σ2t we
obtain HL equation in its classical textbook form

dr(t) = θ(t)dt+ σW (t) , (A.7)

where

θ(t) = ḟ(0, t) + σ2t .

From (A.5) we can obtain expression for the zero coupon bond price, P (t, T ),

P (t, T ) = e−
∫ T
t

f(t,s)ds

= e
− ∫ T

t

(
f(0,s)+σW (s)+σ2

(
st−

1

2
t2

))
ds

= P (0, T )e−
∫ T
t

σW (s)dse
−
1

2
σ2Tt(T−t)

. (A.8)

From (A.8), (A.6) and remembering that P (0, t) = exp
(
− ∫ t

0
f(0, s)ds

)
we get

P (t, T ) = A(t, T )e−r(t)(T−t) (A.9)

with

lnA(t, T ) = ln
P (0, T )

P (0, t)
+ f(0, t)(T − t)− 1

2
σ2t(T − t)2 .

The Hull-White Model

The Hull-White (HW) model is another special case of the HJM model
[2, 9]. This is a 1-factor HJM model where the volatility function is specified
as

σ̇1(t, T ) = σe−κ(T−t) ,

where κ is a positive constant. HJM equation (A.3) becomes

df(t, T ) = σe−κ(T−t)dW (t) + σ2

(
e−κ(T−t)

∫ T

t

e−κ(s−t)ds

)
dt . (A.10)

Integrating (A.10) with respect to t we obtain

f(t, T ) = f(0, T ) + σ

∫ t

0

e−κ(T−s)dW (s)

− 1

2

σ2

κ2

(
1− e−κ(T−t)

)2
+

1

2

σ2

κ2

(
1− e−κT

)2
. (A.11)
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The Hull-White model (A.11) can be simplified by introducing the state vari-
able

Y (t) = σ

∫ t

0

e−κ(t−s)dW (s) .

Then the second term in the righrt hand side of (A.11) can be expressed through
Y (t) as

σ

∫ t

0

e−κ(T−s)dW (s) = e−κ(T−t)Y (t) ,

and the short interest rate formulation of the HW model has the following form

r(t) = f(0, t) + Y (t) +
1

2

σ2

κ2

(
1− e−κt

)2
. (A.12)

Noting that

∂Y (t)

∂t
=

∂

∂t

(
σ

∫ t

0

e−κ(t−s)dW (s)

)
=

∂

∂t

(
e−κtσ

∫ t

0

eκsdW (s)

)
= −κe−κtσ

∫ t

0

eκsdW (s) + e−κt ∂

∂t

(
σ

∫ t

0

eκsdW (s)

)
= −κ

(
σ

∫ t

0

e−κ(t−s)dW (s)

)
+ e−κtσeκtW (t)

= −κY (t) + σW (t) (A.13)

and substituting Y (t) from (A.12) into (A.13) we obtain the textbook version
of HW equation after differentiation of (A.12) with respect to t

dr(t) = ḟ(0, t)dt+ dY (t) +
σ2

κ
(e−κt − e−2κt)dt

=

(
ḟ(0, t)− κY (t) +

σ2

κ
(e−κt − e−2κt)

)
dt+ σdW (t)

= κ

(
ḟ(0, t)

κ
+ f(0, t)− r(t) +

1

2

σ2

κ2
(1− e−κt)2 +

σ2

κ2
(e−κt − e−2κt)

)
dt

+ σdW (t)

= κ

(
ḟ(0, t)

κ
+ f(0, t) +

1

2

σ2

κ2
(1− e−2κt)− r(t)

)
dt+ σdW (t)

= κ (θ(t)− r(t)) dt+ σdW (t) , (A.14)

where

θ(t) = f(0, t) +
1

κ
ḟ(0, t) +

1

2

σ2

κ2

(
1− e−2κt

)
.

Following the same computational logic as was the case with the Ho-Lee model,
from equations (A.11) and (A.12) we find expression for the zero coupon bond
price, P (t, T ),

P (t, T ) = A(t, T )e−r(t)B(t,T ) (A.15)
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with

lnA(t, T ) = ln
P (0, T )

P (0, t)
+ f(0, t)B(t, T )− 1

4κ3
σ2(e−κT − e−κt)2(e2κt − 1) ,

B(t, T ) =
1− e−κ(T−t)

κ
.

The Libor Market Model

The Libor Market Model (LMM) developed by Brace, Gatarek and Musiela
[3], Jamshidian [10], Miltersen, Sandmann and Sondermann [12] is based on the
HJM framework and can be considered as a ”discretization” of the HJM model.
An excellent LMM description can be found in [1, 2, 13].

Rather than modelling the unobservable theoretical instantaneous for-
ward rates, f(t, T ), LMM models the forward term rates, F (t, Tn, Tn+1), that
have the meaning of interest rates observed at time t for the period of time
[Tn, Tn+1], t ≤ Tn < Tn+1. The starting point is not the log-normal process
for the zero coupon bonds as in (A.1). Instead, the log-normal dynamics is
assumed for the forward rates themselves.

We start by noting that the forward term rate Fn(t) ≡ F (t, Tn, Tn+1) is
a martingale under the Tn+1-forward measure. From the expression for Fn(t)

Fn(t) =
1

ΔTn

(
P (t, Tn)

P (t, Tn+1)
− 1

)
, ΔTn = Tn+1 − Tn , (A.16)

we obtain after applying the Itô lemma [2]

dFn(t) =
1

ΔTn

P (t, Tn)

P (t, Tn+1)
(σ(t, Tn)− σ(t, Tn+1))dW (t) , (A.17)

where W (t) is a Brownian motion under the Tn+1-forward measure and σ(t, T )
is a volatility of a zero coupon bond P (t, T ) as in (A.3). Substituting expression
for P (t, Tn)/P (t, Tn+1) from (A.16) into (A.17) we find

dFn(t)

Fn(t)
=

1 + Fn(t)ΔTn

Fn(t)ΔTn
(σ(t, Tn)− σ(t, Tn+1))dW (t) . (A.18)

Our aim is to model the forward term rates directly. In other words we want to
work with the volatilities of forward term rates rather than with the volatilities
of zero coupon bonds. We can formally write

dFn(t)

Fn(t)
= σ̃n(t)dW (t) , (A.19)

where

σ̃n(t) =
1 + Fn(t)ΔTn

Fn(t)ΔTn
(σ(t, Tn)− σ(t, Tn+1)) (A.20)

is the volatility of the forward term rate Fn(t). We take the forward term rate
volatilities σ̃n(t) as given. From (A.20) we see that there is a recursive rela-
tionship between the zero coupon bond and the forward term rate volatilities

σ(t, Tn+1) = σ(t, Tn)− Fn(t)ΔTn

1 + Fn(t)ΔTn
σ̃n(t) . (A.21)
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Equations (A.18)-(A.20) specify the process for Fn(t) under the Tn+1-forward
measure. We want to derive a process for all n under the same fixed measure.
The most convenient measure is a T2-forward measure under which the F1(t)
forward term rate is a martingale. Let us write

Fn(t) =
1

ΔTn

(
P (t, Tn)

P (t, Tn+1)
− 1

)
=

1

ΔTn

(
[P (t, Tn)/P (t, T2)]

[P (t, Tn+1)/P (t, T2)]
− 1

)
.

After applying the Itô lemma [2] we have

d[P (t, Tn)/P (t, T2)]

[P (t, Tn)/P (t, T2)]
= (σ(t, Tn)− σ(t, T2))dW (t) ,

where W (t) is a Brownian motion under the T2-forward measure. Therefore,
we arrive to the following expression

dFn(t) =
1

ΔTn

P (t, Tn)

P (t, Tn+1)
(σ(t, Tn)− σ(t, Tn+1))dW (t) (A.22)

+
1

ΔTn

P (t, Tn)

P (t, Tn+1)
(σ(t, Tn)− σ(t, Tn+1))(σ(t, T2)− σ(t, Tn+1))dt .

From (A.21) and (A.22) we find

dFn(t) = Fn(t)σ̃n(t)dW (t)

+ Fn(t)

(
n∑

m=2

σ̃n(t)(σ(t, Tm)− σ(t, Tm+1))

)
dt

= Fn(t)σ̃n(t)dW (t)

+ Fn(t)

(
n∑

m=2

σ̃n(t)σ̃m(t)

(
Fm(t)ΔTm

1 + Fm(t)ΔTm

))
dt . (A.23)

Equation (A.23) is the LMM equation for the forward term rates. Similar to
HJM equation (A.3), the forward term rate can be driven by N independent
Brownian motions. In this case σ̃n(t) · dW (t) and σ̃n(t) · σ̃m(t) are scalar prod-
ucts of N -dimensional vectors.
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