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Control of multiscale systems with constraints

3. Geometrodynamics of the evolution of
systems with varying constraints

S. Adamenko1, V. Bolotov2, V. Novikov3

Abstract. With the use of the general variational principle of self-
organization of systems with varying constraints, namely the principle of
dynamical harmonization of systems presented in the first work of the cy-
cle, we advance an approach to the control over the evolution of systems
of many particles. The geometric nature of this principle is analyzed. On
the basis of the de Broglie–Bohm representation of the Schrödinger equa-
tion, we establish a connection of the nonlocality and the coherence of
the systems of many particles with mass entropic forces. The defining
role of a coherent acceleration and a space-time curvature in the control
over the synthesis of new structures in systems with varying constraints
is demonstrated. The basic criteria for electromagnetic fields to initiate
the processes of self-organizing synthesis and for the quantum properties
of a nonlocality on macroscopic scales, which are necessary for the self-
organizing synthesis, are formulated.
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1 Introductions

This work is a sequel of the cycle of works (see [1–2]), where some approach to
the control over the evolution of the systems of many particles on the basis of
the general variational principle of self-organization (the principle of dynamical
harmonization of systems) is presented. The purpose of the cycle is the de-
velopment of foundations of the theory and the technology of the synthesis of
final states of a system of particles with desired structure and energy binding,
which are attained from a given initial state with the help of the initiation of a
natural evolution and the control over an evolutionary trajectory of the system
at the expense of its internal power resources at a minimal use of the energy
of external drivers.l

The purpose of the present work is the determination of criteria of the
initiation of the self-organizing synthesis, classification of needed drivers, and
development of the theory of control over the processes of synthesis on the basis
of using the geometric nature of the evolution in the frame of the variational
principle of dynamical harmonization.

As is known, the variational principles are the most general and brief
means to formulate the laws of the Nature. For example, the equations of
dynamics of a system of particles follow under very general conditions from
the Gauss least-compulsion principle [3], and the equations of Maxwell and
Einstein can be derived from the principle of least action [4].

Our purpose requires us to solve a strongly nonlinear optimization prob-
lem. In this problem, it is necessary, in fact, to optimize the trajectory of
a system and to appropriately modify the conditions of optimization of this
trajectory. Here, we will substantite a possibility of the power-informational
control over the evolution of an ensemble of many particles in a noninertial
reference system.

In the case under consideration, the essential point is a control nonlinearity
related to the fact that the evolution of a system of particles (changes of its
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structure and the energy of constraints) and the space-time metric are mutually
dependent. The theory of evolution of the systems with regard for their internal
and external geometries, which will be developed in the present work, can
be called the geometrodynamics of the evolution of the systems with varying
constraints.

The principle of dynamical harmonization [1, 5] asserts that the self-
organization of a system of particles, being under the action of mass forces
leading to coherent accelerations of all particles of the system, is directed al-
ways to the realization of the transition from the initial state to a state with
maximally free dynamics by means of changes of the structure of the system
and its inertia relative to mass forces.

According to the Gauss least-compulsion principle, we should vary the
accelerations of particles at a fixed velocity lying in a plane tangent to the
trajectory. Hertz noticed that the varied accelerations can be related to inertial
forces (mass forces) and showed for some simple cases that the minimum of the
Gauss compulsion function is equivalent to the minimum of the curvature of
the trajectory of a particle. This look at one of the most general variational
principles of mechanics allowed one to develop the geometric interpretation for
it: the trajectories of particles are geodesic lines in a space.

The idea of the geometrization of the laws of physics was intensively devel-
oped in the last century. The most remarkable example of the geometrization
of physics is Einstein’s general relativity theory, which established the continu-
ous connection of geometry and matter. The fields of gravitation (it is a mass
force) induce coherent accelerations and form a curvature of the space-time,
where the particles are moving freely and are simultaneously the sources of
the curvature of this space-time. In other words [6], “matter tells space how
to curve, and space tells matter how to move.” It is of importance that such
an approach to the field theory allowed one not only to describe the fields of
gravitation, but also to deduce the equations of motion of particles directly
from the field equations [7,8], if the idea of particles as the singular solutions
of the field equations is used.

The idea of particles related to singularities was somewhat earlier intro-
duced by L. de Broglie, who tried to interpret the quantum-mechanical dynam-
ics of particles in the frame of his theory of double solution [10–11] on the basis
of the Madelung hydrodynamic representation [9] for the Schrödinger equation.
In this quantum-mechanical theory, it is proposed to represent the dynamics
of a particle by the sum of two solutions of the Schrödinger wave equation,
namely the smooth and singular ones.

The importance of the notion of nonlocality for the theory of self-organiza-
ltion was indicated in the first work of the cycle [1]. Here, we will refine the
connection of the property of nonlocality of the wave functions determined
from the Schrödinger equation (see [12]) with mass and entropic forces and will
show that this property is also revealed in classical physics as a result of the
geometrization of the physical processes of dynamics and evolution.

In the frame of classical physics, the geometrization of the dynamics of
particles, which is garmonically associated with the property of nonlocality,
was first realized by A. Vlasov. He constructed a nonlocal statistical theory
[13–15] and obtained kinetic equations on the basis of the geometry of a space
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of support elements. “The space of support elements” includes the following
notions:

1) Coordinate space.
2) Tangent space and the tangency order.
3) System of vectors loaning on the tangency point and lying in the tangent

space.
The space of support elements joins the coordinate space (as the space

of the possible values of the centers of mass of particles) and as the space
of the possible values of kinematic parameters of particles, for example, their
velocities, ans also can include the vectors of accelerations of an arbitrarily
large order, which depends on the tangency order.

The validity of the space of support elements consists in the exact for-
mation of a new understanding of a particle, which is characterized by the
continuum of the possible values of coordinates and velocities (and also accel-
erations of any order), as distinct from the classical image of a localized particle
with definite values of coordinates and velocities [14].

2 Schrödinger equation and entropic forces

The most efficient apparatus for the analysis of states of the system undergoing
coherent accelerations is presented by the Schrödinger equation and covariant
kinetic equations.

The Schrödinger equation for the wave function Ψ (~r1, ~r2, . . . , ~rN , t) de-
scribing the ensemble of N particles,

i~
∂Ψ (~r1, ~r2, . . . , ~rN , t)

∂t
=− ~2

2m

N∑
n=1

∇2
nΨ (~r1, ~r2, . . . , ~rN , t) +

+ U (~r1, ~r2, . . . , ~rN ) Ψ (~r1, ~r2, . . . , ~rN , t) , (1.1)

where ∇n =

{
∂

∂xn
~i+

∂

∂yn
~j +

∂

∂zn
~k

}
, and U (~r1, ~r2, . . . , ~rN ) is the potential

of external forces acting on particles, arose from the attempt to solve some
problems of the dynamics of particles on small spatial scales. The linear equa-
tion for complex-valued wave functions, which was obtained as a generalization
of the classical dynamics of particles characterized by real variables, has shown
a very good agreement with experiment. The transition from complex-valued
variables in the Schrödinger equation conversely to real variables in the frame
of the de Broglie–Bohm representation (see [9, 11, 16]),

Ψ (~r1, ~r2, . . . , ~rN , t) =
√
ρ (~r1, ~r2, . . . , ~rN , t)·exp

(
i
J (~r1, ~r2, . . . , ~rN , t)

~

)
, (1.2)

where ρ—probability density, and J—action, allowed one to show that the dif-
ferences between classical and quantum mechanics are reduced to the appear-
ance of an additional potential Uq (~r1, ~r2, . . . , ~rN ) in the system of equations
for real variables. It was called the “quantum” potential (see the details in
Section 2).
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In the present work on the basis of the representation of de Broglie and
Bohm for the wave function of a system of particles with regard for the po-
tential Uq, we will obtain the equations for the entropy and the formulas for
coherent accelerations in electromagnetic fields. We will analyze the solutions
of kinetic equations with regard for quantum statistics for an ensemble of par-
ticles undergoing the coherent acceleration and obtain the solutions of kinetic
covariant equations in noninertial reference systems.

Recently, the more and more attention was paid to the macroscopic ob-
jects possessing some quantum properties (in particular, the properties of co-
herence and nonlocality). In 2001, the Novel Prize in physics was awarded
for the creation and study of the Bose-condensates of atomic complexes [17].
In view of the importance of the notion of a “macroscopic quantum object”
(MQO), which is considered as a set of particles forming a collective system of
macroscopic sizes and possesses the property of nonlocality typical of quantum
objects.

The basic property of the evolution turns out to be the space-time aniso-
ltropy related to the fact that the factor defining the evolution is an accelera-
tion, and the properties of the space in the directions along the acceleration and
perpendicularly to it are obviously different. Such an anisotropy corresponds
to the obtained solutions of covariant equations that have power asymptotics
and define the fast localization of the domain of existence of the system in
the direction of action of a mass force and its fast delocalization in a subspace
orthogonal to the direction of the acceleration.

In this case, the natural geometry of the space-time is the geometry of
the space of support elements (the support elements are the kinematic ele-
ments on the trajectory of a particle), namely the Finsler geometry. Such
a viewpoint combines, in fact, the approaches of L. de Broglie, J.-P. Vigier,
A. Einstein, and A. Vlasov concerning the geometric nonlinear nature of the
physical laws of dynamics and evolution. The role of a support is played by
the four-dimensional space-time. The tangent bundles are the planes of ac-
celerations of all orders and the space of the internal structure of a system,
i.e., the space with coordinates characterizing a structure of constraints in the
system (e.g., such as the fractal dimension or the order parameter, deforma-
tions, etc.). The tangent bundles and the support, which is a space-time with
Riemann geometry, are coupled by the vector of acceleration or the space-time
curvature.l

As for the relationship of a self-organizing system and the space-time, we
note that
• the systems of particles, by undergoing the coherent accelerations during

the evolution, make the space-time, where they are placed, curved;
• in turn, the space-time becoming curved indicates the directions of free

motion for particles and the directions of evolution of the internal struc-
ture of the system.
The obtained solutions of covariant kinetic equations under a fast exten-

sion of the space-time becoming curved are similar to the accelerated cosmo-
logical extension in the general relativity theory (see [18]) with cosmological
constant. As became clear in the 1960s [19–21], such an extension is continu-
ously connected with the physical vacuum, which has the antigravity properties
corresponding to the cosmological term in the Einstein equation.
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The physical vacuum has many significant properties. In particular, it was
established that vacuum is homogeneous on scales from centimeters or meters
up to cosmic scales. On the “ordinary” and subatomic scales, the homogene-
ity of vacuum can be broken with the appearance of experimentally observed
macroscopic effects related to the polarization of vacuum (Casimir effect) and
to the coherent acceleration (dynamical Casimir effect) [22–24]. Near (and in-
side) the systems that undergo phase transitions and coherent accelerations,
the space-time becomes curved (see the Vlasov theory [13–14]), and the light
velocity is changed (see experimental results in [25]).

Here, we consider the possibilities to use the electromagnetic fields and
the fields of entropy gradients for the control over the evolution of a system,
i.e., over the evolution of its constraints. In this case, the space-time curvature
arises, and, hence, the resonances of mass forces producing a inhomogeneity
of the space-time and the physical vacuum can appear. These resonances are
analyzed, and their parameters are determined.

The application of these resonances to the control over the synthesis of
systems with varying constraints can become a promising element of the future
technologies with “guided evolution”.

The natural consequence of the space-time curvature is the difference of
the intrinsic time from the laboratory one. The former depends not on the
velocity of the reference system, but on its acceleration, which leads to a change
in the lifetime of particles [26].

Similar effects were noticed by Vlasov [14] and Kozyrev [27], and the
influence of the growth of crystals on the light velocity was experimentally
discovered as early as 1905 [25].

It is especially interesting that Kozyrev was able, starting from his theory
of time, to fabricate a special gage on the basis of resistors forming a bridge
scheme and to observe the motion of stars at a laboratory on the Earth in real
time (see, e.g., [28]). In our opinion, these effects are related to the appear-
ance of a local space-time curvature determining the ratio of the intrinsic and
laboratory times, as well as the impedance of electrotechnical elements (see,
le.g., [29]).

The close ideas were developed in works by S. Podosenov (see [29]), where
he showed how the constraints in a system determine the Riemann space-time
curvature.

In the present work, we will show that the variational principle of dy-
namical harmonization leads to the geometrization of the physical processes of
evolution and to a generalization of the theory for any fields of mass forces. We
give the experimental results obtained with the use of the Kozyrev detector. We
consider that they demonstrate, under laboratory conditions, the resonances
of electromagnetic radiation with the inhomogeneity related to the space-time
curvature initiated by the action of electromagnetic drivers described below.

The resonances caused by the propagation of longitudinal waves amplify
the fluctuations of vacuum under conditions of the scale invariance and, act-
ing on particles, initiate their complicated motion, which can develop into a
dynamical chaos. As was shown in [30], it is convenient to apply Tikhonov’s
methods of regularization of the states with dynamical chaos to the description
of the dynamics of particles. The scale invariance of vacuum implies that the
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operators of regularization can be given in terms of quantum [31] and fractional
[32] integro-differential operators. The developed model of the interaction with
vacuum describes naturally the openness of the system and the processes of
creation and decay [33].

The equations of the dynamics of particles at their interaction with the
scale-invariant vacuum after the regularization can be modeled with electro-
physical curcuits: operational amplifiers as a model of the operators of reg-
ularization and branched equivalent resonance schemes as a model of fractal
medium. The developed model is especially useful for the optimization of elec-
tromagnetic drivers.

We emphasize once more that a specific feature of the considered tech-
nology of the control over the evolution of systems is the use of the internal
mass-defect energy in order to change a structure of the system, rather than the
energy of external drivers. The low energy of external fields must be spent only
for the control and the initiation of the processes of self-organization with de-
sired structural and energetic directedness. In what follows, we will show that
namely the nonlocal entropic fields determine the main properties of MQO.

2.1 The de Broglie–Bohm representation for the Schrö-
ldinger equation and entropic forces

The main property of MQO (i.e., a quantum system with constraints) consists
in that the wave function describing it cannot be represented as a product of
one-particle wave functions in the form

Ψ (~r1, ~r2, . . . , ~rN , t) = Ψ (~r1, t) Ψ (~r2, t) . . .Ψ (~rN , t) . (2.1)

For this function, the normalizing integral is reduced to product of independent
integrals:∫

V1

Ψ∗ (~r1, t)Ψ (~r1, t) dr1 · . . . ·
∫
VN

Ψ∗ (~rN , t)Ψ (~rN , t) dr1 = 1. (2.2)

Each integral in this expression is separately equal to 1. In other words, the
behavior of each particle in the ensemble is described by the own wave function
independent of the states with other wave functions. Hence, the coupling of
particles in the single ensemble is ensured only due to the potential of external
fields U (~r1, ~r2, . . . , ~rN ) and to the quantum potential Uq (~r1, ~r2, . . . , ~rN ) [34].
This coupling is supported by quanta ensuring the given interaction. The rate
of exchange by quanta does not exceed the light velocity, as distinct from the
entangled states representing MQO, where the information propagates, as will
be shown below, instantly. This can be easily seen from the formula for the
probability to find MQO in a given volume V :∫

V

Ψ(~r1, ~r2, . . . , ~rN , t)
∗
Ψ (~r1, ~r2, . . . , ~rN , t) dr1dr2 · · · drN = 1. (2.3)

In this case, the wave function describing MQO depends on the time, but
the probability to find MQO in the given volume is conserved. This implies
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that any change in the position of any of N particles placed in a volume V
affects instantly the positions of all remaining bound particles.

Thus, the instant rearrangement of the positions of all particles reflects
the presence of strong constraints in MQO and, hence, strong correlations in
it. MQO is a macroscopic formation (most probably, a quasicrystal), which is
described by the quantum Schrödinger equation.

A bound dynamical system tends to instantly become self-organized and
to pass in a state with maximal probability. For the viewpoint of the principle
of dynamical harmonization, the system chooses optimally the direction of a
change of the structure formed by entropic fields. This reasoning can be easily
generalized to the case of a partially bound dynamical quantum system.

With regard for the de Broglie–Bohm representation (1.2), Eq. (1.1) yields

−∂J
∂t

Ψ + i~
1

2ρ

∂ρ

∂t
Ψ =

1

2m

N∑
n=1

(∇nJ)
2
Ψ + U (~r1, ~r2, . . . , ~rN ) Ψ−

− i~
2m

N∑
n=1

∇2
nJ ·Ψ−

i~
2m

N∑
n=1

(
∇nρ
ρ

)
(∇nJ) ·Ψ−

− ~2

2m

N∑
n=1

(
∇2
nρ

2ρ

)
Ψ +

~2

2m

N∑
n=1

(
∇nρ
2ρ

)2

Ψ. (2.4)

We note that the probability density and the action are real functions. We
can separately collect the real and imaginary terms and obtain two nonlinear
equations corresponding to one linear Schrödinger equation:

−∂J
∂t

=
1

2m

N∑
n=1

(∇nJ)
2

+ U (~r1, ~r2, . . . , ~rN ) +

+
~2

2m

N∑
n=1

((
∇nρ
2ρ

)2

− ∇
2
nρ

2ρ

)
, (2.5)

−∂ρ
∂t

=

N∑
n=1

∇n ·
(
ρ∇nJ
m

)
. (2.6)

We now introduce the entropy density of a quantum system in the form

S (~r1, ~r2, . . . , ~rN , t) = − ln |Ψ (~r1, ~r2, . . . , ~rN , t)|2

= − ln (ρ (~r1, ~r2, . . . , ~rN , t)) , (2.7)

Let us transform formulas (2.5) and (2.6), by substituting entropy (2.7) in
them. In this case, we take into account that ρ−1∇ρ = ∇ ln ρ. We have

−∂J
∂t

=
1

2m

N∑
n=1

(∇nJ)
2 − ~2

8m

N∑
n=1

(∇nS)
2
+

+ U (~r1, ~r2, . . . , ~rN ) +
~2

4m

N∑
n=1

∇2
nS. (2.8)
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We note that the modified Hamilton–Jacobi equation (2.8), which passes
into the classical Hamilton-Jacobi equation at the standard limiting transition

as ~ → 0, contains the term
~2

8m

N∑
n=1

(∇nS)
2

= Es. This term is an analog

of the entropic-type kinetic energy Es and is expressed through the gradients
of entropic fields. The physical meaning of a kinetic energy of the entropic
type consists in the binding of a system of particles, which causes a decrease
of their total kinetic energy. The action of the entropic force is directed on
the optimization of the system of constraints in dynamical system, by leading
it to the most probable state. In other words, the system evolves to a new
configurational state with maximal stability. The density gradients of entropic
fields are a quantitative characteristic of the probabilistic laws and forces.

In the modified Hamilton–Jacobi equation (2.8), the last term
~2

4m

N∑
n=1
∇2
nS

corrects the potential energy of the system. The sign of the Laplace operator
in this expression reflects a decrease or increase in the potential energy of the
bound system on the whole. Thus, the direction of the flows of entropy density
gradients determines the final value and the shape of the potential of interaction
between particles.

Thus, it becomes clear that the entropic field is related to the fields of
constraints in any quantum system, in particular, in MQO. Moreover, the in-
troduction of entropic forces makes the separation of quantum and classical
mechanics, which has born always a sufficiently indefinite character, to be con-
ditional. The border between them is eroded, if we consider the dynamics of
classical systems with regard for the evolution of their internal constraints in
the presence of the corresponding entropic fields.

From our viewpoint, it is significant that formula (2.8) contains quantum
terms together with classical ones. The former can be expressed in terms
of the operators of momentum and kinetic energy of particles of the system:

p̂n = −i~∇n, T̂n = − ~2

2m
∇2
n.

Using these operators, we can transform Eq. (2.7) to the form

−∂J
∂t

=
1

2m

N∑
n=1

(∇nJ)
2

+
1

8m

N∑
n=1

(p̂nS)
2
+

+ U (~r1, ~r2, . . . , ~rN )− 1

2

N∑
n=1

T̂nS. (2.9)

Formulas of the type (2.10), which include classical terms and the oper-
ators of physical quantities, describe the macroscopic quantum objects. Thus,
MQOs reveal both classical and quantum properties.

The equation of balance of the entropy follows simply from Eq. (2.6):

∂S

∂t
+

N∑
n=1

(~un · ∇nS)− 1

m

N∑
n=1

∇2
nJ = 0. (2.10)

The knowledge of solutions of the system of nonlinear differential equa-
tions (2.8), (2.10) for the action and the entropy allows us to write the wave
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function, being a solution of the Schrödinger equation, in the form

Ψ (~r1, ~r2, . . . , ~rN , t) = exp (−Z) ,

Z =
S (~r1, ~r2, . . . , ~rN , t)

2k
− iJ (~r1, ~r2, . . . , ~rN , t)

~
.

(2.11)

Here, we write the Boltzmann entropy in the form S = −kB ln ρ, where kB is
the Boltzmann constant. The function Z is a complex-valued function with
nonzero real and imaginary parts.

Let us consider the action of the operators of momentum and kinetic
energy on the entropy:

p̂nS =
1

8m

(
1

Ψ∗
(p̂nΨ∗)− 1

Ψ
(p̂nΨ)

)
. (2.12)

If the eigenvalues of the operator of momentum are real numbers, then
the action of the operator of momentum on the entropy is equal to zero, but it
is possible only in the case where the wave function of the system of particles
can be expanded in a product of wave functions.

The action of the operator of kinetic energy on the entropy is given as
follows:

−1

2

N∑
n=1

T̂nS =

N∑
n=1

En −
N∑
n=1

p2
n

2m
= E − P 2

2m
. (2.13)

In this case, the eigenvalues of the operator of kinetic energy are real. We
denote such an eigenvalue for the n-th particle as En and the total momentum
of particles of the system as P .

It is seen from (2.13) that the action of the operator of kinetic energy

on the entropy of the system is since E =
P 2

2m
. This result is possible only

under the condition that the wave function of the system of particles can be
expanded in a product of one-particle wave functions, which breaks MQO. In
this case, the generalized quantum-classical Hamilton-Jacobi equation passes
into its classical analog.

The performed calculations allow us to assert that the quantum cor-
rections related to the entropic fields appear only in the presence
of long-range correlations in the systems of particles, i.e., if MQO
arises.

By analogy with classical mechanics, it is easy to determine the momenta
that are determined by the mass entropic fields. As is seen from the formula
for the entropic-type kinetic energy, each entropic momentum psn acquired by
the n-th particle is proportional to the entropy gradient.

psn =
~
2
∇nS. (2.14)

The entropic momentum transfers each of the particles of MQO in the position
that corresponds to the maximum of the probability of a state for the given
MQO. Thus, the dominating mass force (general dominating perturbation) [5]
supplies coherently the momentum psn of a directed motion to all elements of
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the ensemble of particles, which meets the condition

∣∣∣∣ N∑
n=1

~psn

∣∣∣∣� PTmax , where

PTmax
is the maximal absolute value of the momentum of the intrinsic heat

motion of any of the elements of the ensemble (MQO, in this case).
The principle of dynamical harmonization [1] implies that the evolution

of a self-organizing system is possible only in the presence of the coherent
acceleration of the entire system, when all particles of the system acquire the
same momentum increment due to the action of the entropic force arising under
the nonzero entropy gradient. In this case, it is necessary that the regular
component of the change in the momenta of particles ∆pS at the expense
of the entropy exceed the chaotic heat component pT ≈ muT . We call this
requirement as the condition of domination of a driver.

It is convenient to introduce the coefficient of domination of a driver αd as
the ratio of the momentum increment of a particle due to the action of a driver
to the heat component of the momentum. Then the condition of domination
of a driver takes the form

αd � 1, αd =
∆p

pT
. (2.15)

The rate of transfer of a momentum to the system of particles allows us to
estimate the mass force Fstr stimulating the system to the coherent acceleration
and the evolution due to a change of the internal structure.

Thus, the analysis of the Schrödinger equation implies that the pertur-
bation of MQO related to the appearance of the entropy gradient (mass force)
at any point of the volume occupied by MQO causes a change of the momen-
tum of each particle of the given object, since even an insignificant external
entropic perturbation acts at once on all particles, which are located at the
points {~r1, ~r2, . . . , ~rN}.

Such properties of the system indicate the existence of a nonlocality of
MQO in the general case. It becomes clear that the physical entropic field (field
of mass forces) is the reason for the appearance of the fields of constraints.

If condition (2.15) is satisfied, and if the system undergoes the action of
an entropic dominating perturbation (i.e., if ∇S > 2PTmax

/~ is satisfied), the
value of “quantum potential” becomes essential for the evolution of the system
irrespective of its scale. In other words, under the action of a dominating
perturbation, even a classical system becomes nonlocal and acquires quantum
properties.

It is seen from Eq. (2.13) that the entropic fields acting on the system of
particles decrease always its kinetic energy. For such systems, we introduce the
definition of the degree of nonideality Θ, which shows a share of the decrease
of constraints of the system:

Θ =
E − Es
E

. (2.16)

Here,

E =
1

2m

N∑
n=1

(∇nJ)
2

=
1

2m

N∑
n=1

p2
n

is the kinetic energy of the system of N particles with the same mass, and
~pn = ∇nJ .
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For Θ = 0, the system is completely bound, has the maximal ideality, and
possesses, as a whole, a field of entropy gradients such that leads to a minimum
of the kinetic energy. Based on this, we can estimate the mean entropy gradient,
due to which the ideality limit and the maximal coherence are attained in the
system, i.e., E ≈ Es or 〈ps〉 ≈ 〈p〉:

〈∇S〉 ≈ 2

~
〈p〉 . (2.17)

For Θ = 1, the fields of entropy gradients are absent, and the system becomes
completely nonideal.

The introduction of the entropic momenta (2.14) leads to a new formula
for entropic forces in quantum mechanics,

~Fs =~̇ps =
~
2
∇Ṡ, (2.18)

where the dot stands for the differentiation with respect to the time. Hence,
the entropic force is proportional to the entropy production gradient σS = Ṡ
(see also [1]) in the system. This formula differs from that obtained by E.
Verlinde [35], who used the equations of equilibrium thermodynamics of closed
systems and obtained

~Fs = T∇S. (2.19)

This formula does not involve the entropy production and, hence, cannot be
applied to the description of nonequilibrium systems.

Knowing the entropic force, it is easy to set the entropic pressure into the
theory:

PK =
(Fs, ~n)

K
, (2.20)

where K is the area on which the entropic force acts, ~n is a unit vector of normal
to the surface with area K. The physical meaning of the entropic pressure
is that it forms structures at all hierarchical levels of the system (clusters,
molecules, atoms, nuclei, etc.) by changing the space-time structure of the
physical vacuum. In the case of a spherical surface with a radius R, the entropic
pressure equals:

PK =
~
2

∇Ṡ
4πR2

. (2.21)

In order to estimate the entropic pressure in the shell with the thickness
d the following formula may apply:

∇Ṡ ≈ 1

d

(
∆S

τ

)
, PK ≈

~
2

∆S

4πR2d

1

τ
, (2.22)

where τ is the time for the formation of a spherical shell structure at all levels
of the hierarchy, ∆S is the entropy change in the spherical shell of radius R
and thickness d.

Taking into account that the entropic pressure has the same value at all
levels of the hierarchy, one can determine the change of energy of constrains
of the nuclear component of the system. For this to be done it is necessary to
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equate the work done by the entropic force on the structuring of a spherical
shell at nuclear level and the change of the energy of constrains:

PKdV = dε, dV = 4πR2dR. (2.23)

Thus, the change of the energy of constrains is proportional to the pro-
duction of entropy:

dε =
~
2
d (σS) , σS = Ṡ. (2.24)

and for the estimation of change of energy of constrains of the system, a relation
may be applied:

∆ε =
~
2

∆S

τ
. (2.25)

This estimate provides a basis to generalize the Heisenberg uncertainty princi-
ple for energy and time in systems with varying constrains (due to the change
of energy of ∆E):

∆t∆E ≈ ~
2

∆S. (2.26)

Now it is clear that the transition to classical mechanics does not occur
while ~→ 0, which is not actually logical for the constant, but through vanish-
ing of entropy gradient cnange in the system. We now estimate the mass forces
and the domination of a driver in the frame of the “shell” theory of evolution
(see [1]). Let the action of a driver on the system of particles have lead to the
separation of a subsystem of particles (shell) with mass number Ash, where the
mass force acts.

The coefficient of domination αdS of the action of an entropic driver on a
single particle can be represented as

αdS =
~ (∇S/Ash)

mp
=

(
~
mp

)
(∆S/Ash)

uT leff

≈ 10

(
~/ (mpuT )

Rsh

)
∆S ≈ 10

(
λ̄D−B
Rsh

)
∆S

Ash
, (2.27)

where λ̄D−B is the de Broglie wavelength corresponding to a heat pulse:

λ̄D−B ≈ ~/pT . (2.28)

To obtain the final result, we need to estimate a change of the entropy
(∆S)b due to the development of physical processes with a change of constraints
in the system. On the initial stage, a subsystem of Ash particles is separated.
In it, the initial shell structure with the coherent part of AshCog particles and,

hence, with the input order parameter ηsh =
AshCog
Ash

is created. Then we take

into account that
• the break or creation of one constraint consumes the erasure energy of

one bit of information εb ≈ T ln 2 (Landauer theorem [36]);
• the number of constraints at the formation of a cluster with with mass

numberAshCog is equal, by the order of magnitude, toNbcog ≈ 0.5(AshCog)
2
;

• the probability of the creation of a cluster with the number of particles
AshCog is proportional to Pcog ≈ 1/

√
AshCog;
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• AshCog ≈ ηshAshZ;
• T (∆S)b = WshCogZ, V ≈const , WshCog is the energy of the formation

of the coherent part of a shell;
• Wsh ≈ PcogNbcogεbZ.

The above relations imply that, at the formation of a structure, the en-
tropy is changed by

(∆S)b ≈
1

T
WshCog ≈

1

T
0.5(AshCog)

2 1√
AshCog

T ln 2

≈ ln 2

2
(AshCog)

3/2 ≈ 0.038(ηshAsh)
3/2
. (2.29)

In this case, the specific change of the entropy per particle is

(∆S)b
Ash

≈ 3.8 10−2η
3/2
sh A

1/2
sh . (2.30)

Substituting this formula in that for the coefficient of domination (2.27), we
obtain

αdS ≈ 0.38

(
λ̄D−B
Rsh

)
η

3/2
sh A

1/2
sh . (2.31)

If the conditions of domination (2.14) are satisfied, the drivers transfer
the nucleus of a shell from the quasiequilibrium state in the inertial reference
system in a strongly nonequilibrium state in the noninertial system formed un-

der the action of mass forces Fstr =
d∆p

dt
. The mass forces cause the coherent

acceleration

acog ≈
1

mp

d

dt
(∆p) ≈ 1

mp

(
αdpT
τeff

)
≈ αd

uT
τeff

(2.32)

and the evolution of a structure of the system (see the principle of dynamical
harmonization [1]).

We note that the basic relations have been obtained from the Schrödinger
equation in the nonrelativistic case without external electromagnetic field.

2.2 Electromagnetic drivers of mass forces

We now show that the electromagnetic fields can be dominating perturbations
for a system of particles. As is well known, the Lagrange function of a system
of particles in electromagnetic fields is transformed ([37]). Without electromag-
netic fields, the momentum of a particle with charge q and mass m is connected

with its velocity ~u by the well-known formula ~p =
m~u√

1− (u/c)
2

. At the mo-

tion in an electromagnetic field with the vector potential ~A (and in the fields

defined by the potential: ~B = rot ~A, ~E ∝ ∂ ~A

∂t
), the total momentum of the

particle changes due to the vector potential. Even if there is no magnetic field
at the point of the space, where a particle is located, the total momentum of
the particle is determined by the formula
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~P =
m~u√

1− (u/c)
2

+ e ~A. (2.33)

Similarly to the connection of the electrostatic potential and the energy,
the vector potential reveals a connection with the momentum. The vector po-
tential supplies the additional electrodynamic momentum to all charged parti-
cles ∆~pEM = e ~A.

The mass force of the electromagnetic origin, Fstr =
d(∆p)A
dt

= q
dA

dt
, is a

force acting on a charge and is given by the derivative of the vector potential
with respect to the time in the standard formula for the electric field intensity
in terms of the four-dimensional gradient of a four-dimensional potential:

~E = −∇ϕ− ∂ ~A

∂t
. (2.34)

We note that the contribution of the rate of variation of the vector potential
• can essentially exceed that of the electrostatic potential gradient for short

pulses;
• can be present in the system even without gradient electric fields and

transverse magnetic fields (rot ~A ≈ 0, and the potential is frequently
called a zero-field potential in this case);

• by determining an alternating electric field ~E if the condition rot ~A ≈ 0
holds, generates no alternating magnetic field, but can ensure the appear-
ance of sources of a vector potential that are concentrated in the regions
with div ~A 6= 0;

• defines the localization of the magnetic field and sources of a vector po-
tential in spatially remore regions;

• can be present in the system in the case where the electrostatic potential
is the same at all points of the system.
There are many means to generate the fields of a vector potential, but such

sources as the toroidal coils on a core with magnetic permeability µ and with
current Iamper flowing on n windings are most convenient. For such drivers,
the amplitude of the vector potential is given by the relation

A ≈ µ0

4π
µn IAmper = 10−7µn IAmper

(in IS units) and ensures the coefficient of domination

αdA =
qA

mpuT
= 10−7µ · n ·

(
q

mp

)
IAmper
uT

. (2.35)

In correspondence with the equations Maxwell, the component of the elec-

tric field intensity ~E = −∂
~A

∂t
exists also in a homogeneous system of particles,

i.e., it can be an electromagnetic mass force acting directly on the charged
component of a system of particles.

We now mention one of the simplest drivers. The collective properties
of a system of particles are usually revealed, first of all, in the hydrodynamic
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behavior of the system. It is clear that if the system is affected by a hydraulic
impact, then, at its high intensity, the particles receive a momentum increment
∆~pm exceeding the thermal momentum. Moreover, a nonlinear wave moving
with supersound velocity appears in the system of particles. It is clear that, in
this case, the condition of domination is satisfied on the front of this nonlinear
wave is satisfied.

We now summarize the above-performed analysis of the Schrödinger equa-
tion: the particles undergo the action of a nonlocal mass force causing a change
in the momentum of particles by a value bounded by the sum of the correspond-
ing contributions of basic drivers (mechanical, electromagnetic, and entropic
ones): |∆p| 6 |∆~pm|+ |∆~pA|+ |∆~pS |.

Here, we consider the following main channels of transfer of a momentum
to particles:
• macroscopic hydrodynamic impact leading to increments of the momenta

of the particles (the impact can be realized, in particular, by longitudinal
acoustic waves in a medium)

∆pm ≈ m∆ush; (2.36)

• direct impact increment of a momentum in the electromagnetic field

(∆p)A ≈ qA (2.37)

(in IS units);
• increment of a momentum in the field of entropy gradients

(∆p)S ≈ ~ (∇S) . (2.38)

It is clear that the action of sources of impulsive excitation on a system
of many particles leads to a nonequilibrium state. As was shown in the works
of A. Vlasov [13–15], the kinetic equation for the collective states of a system
of particles with distribution function f (~r, ~u, t) can be presented in a closed
divergent form in the Finsler space.

Usually even in the case of a strong deviation from the equilibrium, the
system is described within the Prigogine method of locally equilibrium distri-
butions [38] with parameters depending on the spatial coordinates. In this
case, the kinetic theory describes the evolution of both a state of the system
of particles and the distribution of particles in the configurational space. In
this case, the sources are usually positioned on boundary of the region under
consideration and act on different particles of the system differently. The main
parameter of a driver defining the kinetics is the power flow density on the
boundary of the system.

In the cases where a driver initiates the action of a mass force on the
system, it renders, by definition, the practically identical action on all particles
irrespective of their location in the system. In other words ρ particles in unit
volume receive the same momentum increment ∆~p for the time ∆t. Therefore,
the parameter defining the openness of the system is, naturally, the bulk density
of a power absorbed in the system, PA = νeffρW .
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In the case of the action of a nonstationary vector potential, the relations
E ≈ νeffA and ρW ≈ (νeffA)

2
are satisfied, and we have

PA ≈ νeff |EA|2 ≈ ν3
effA

2
eff ≈

A2
eff

τ3
eff

. (2.39)

It is seen that the force action efficiency increases as the third power of
the frequency with the corresponding decrease in the impact duration.

We now construct a dimensionless parameter characterizing the degree
of “impactness” of an action. To this end, we estimate the dissipation power

Pdis and consider the dimensionless ratio Qimp =
PA
Pdis

(impact factor or the

coefficient of impactness) of the power density of the driver to the dissipation

power density Pdis ≈
ρT

τdis
. In view of (2.32), the parameter of impactness

Qimp =
A2

ρT

τdis
τ3
f

≈
(
τdis
τf

)
·
(
RWZ

re

)
·
(
βT

a

adis

)2

, (2.40)

where re =
e2

mec2
is the classical radius of an electron, and RWZ is the radius

of a Wigner–Seitz cell.
The distinctive property of the parameter of impactness is its reciprocal

dependence on the cube of the characteristic duration of an impact action.
For the system of particles, the bulk density of a consumed power char-

acterized by the parameter of impactness is the nonequilibrium source in the
kinetic equation for the distribution function of particles, which is the equa-
tion of continuity in the space with coordinates (~r, ~u) for the effective medium
represented by the probability distribution:

∂f (~r, ~u, t)

∂t
+ div~r (~u f (~r, ~u, t)) + div~u

(〈
~̇u
〉
f (~r, ~u, t)

)
= Ψ (r, p) . (2.41)

Here,
〈
~̇u
〉

=

∫
d~̇u ~̇u f

(
~r, ~u, ~̇u, t

)
f (~r, ~u, t)

is the acceleration averaged over the whole

ensemble of particles, and the distribution function is defined in the space of
support elements, the Finsler space. It will be described below. We will show
that the properties of the space, where the distribution functions are defined,
are of great importance and allow one to naturally describe the self-organization
of the systems of particles even without explicit presence of forces of the fun-
damental nature.

Consider a system of particles under the action of a dominating perturba-
tion of mass forces without any dependence on the coordinates: Ψ (r, p) ≡ Ψ (p).

It is clear that if all positions of particles in the system are equivalent
for the action of a mass force, and if the condition of domination is satisfied,
then the good zero approximation is a nonequilibrium system with spatially
and statistically homogeneous properties, so that its principal evolution runs
in the energetic conponent of the phase space.

The source or sink of energy Ψ(p) ≈ Qimpφ(p) (mass force), which is
homogeneous in the wholespace, is characterized (by the Heisenberg uncertainty
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relation) by a strong localization in the momentum space. So, we may consider
a linear combination of k delta-functions as sources and sinks concentrated near
certain points of the momentum space pk.

For the isotropic part of the distribution function, it is convenient to pass
from momenta to energies with the use of the dispersion law ε = ε (p) and to
present the kinetic equation in the form [39–40]

∂f (ε, t)

∂t
+

1

g (ε)

∂

∂ε
(Π (ε, {f})) =

∑
k

(Qimp)k
1

g (ε)
δ (ε− εk) , (2.42)

where we used the density of states g (ε) and the flow of particles in the phase
space Π (ε, {f}). In the Vlasov equation (2.45), the flow in the phase space
corresponded to classical statistics:

Π (u, {f}) =
〈
~̇u
〉
f (~r, ~u, t) . (2.43)

Let the particles of a substance be fermions. Taking the properties of quan-
tum statistics into account, we will use, first of all, the fact that the mean
acceleration of fermions

〈
~̇u
〉

1) is proportional to the number of free sites for the evolution in the energy
space, i.e., to the quantity (1− f (~r, ~u, t));

2) is caused by mass forces and is determined, as is seen from the analysis
of the Schrödinger equation, by the entropy S ({f}) ≈ ln (f).

In view of this, we restrict ourselves in the expansion of the acceleration
〈
~̇u
〉

by terms up to the first derivative
∂S

∂ε
. Then the flow in the kinetic equation

for fermions takes the form

Π (ε, {f}) = ā0 (ε)

(
Tefff

∂S ({f})
∂ε

+ (1− f) f

)
. (2.44)

In the regions between sources and sinks, Eq. (2.42) ensures the constancy of
the flows with the corresponding sign. For the zero coefficient of impactness,
the solution is the Fermi–Dirac function

f (ε) =
1

1 + exp

(
−εF − ε

Teff

) .
If the impactness is nonzero, the distribution function generalizes the equilib-
rium distribution:

fq (ε) =
1

1 + expq

(
−εF − ε

Teff

) , (2.45)

where the parameter of nonequilibrium q is determined by the parameter of
impactness, and the exponential function is replaced by the functions [36] with
power asymptotics,

expq (−x) =

(
1 +

q − 1

q
(−x)

) q

q − 1
, q =

√
1 + αI(Qimp)k. (2.46)
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The quantity αI in the formula for the parameter q is determined by the in-
formation transfer rate along a communication channel between the scales and
can be evaluated by the Shannon–Hartley theorem:

αI ≈
∆ω

ωeff
log2 (1 +Qimp) ≈

ξ (t)

Q
log2 (1 +Qimp) . (2.47)

Here, ∆ω is the transmission band of a communication channel, ωeff is the
effective frequency representing the action of a driver (frequency of electro-
magnetic signals, inverse duration of the front of pulses of the electromagnetic
field, etc.), Q is the quality of the oscillatory system, and the function ξ (t)
represents a possible modulation of information.

Using the distribution function of particles (2.40), we can write the dis-
tribution functions fbq (ε) over energies for holes (antiparticles):

fbq (ε) = 1− fq (ε) =

expq

(
−εF − ε

Teff

)
1 + expq

(
−εF − ε

Teff

) . (2.48)

This formula can be used for the determination of the levels of fluctuations
and excitation of the vacuum state of particles, for example, electrons and
positrons.

Having defined the main parameters of drivers, we pass to the analysis of
the general evolution of systems with constraints and to the clarification of its
nature and mechanisms.

3 Geometrodynamics of systems with varying
constraints

The main element of kinetic theory, namely the distribution function of parti-
cles, is practically the same as the probability density distribution (the squared
modulus of the wave function), which is determined by solving the Schrödinger
equation. However, there exists a difference between kinetics and quantum
mechanics. It consists in that the Schrödinger equation and other equations
of quantum mechanics contain nonlocal terms (which is confirmed in numer-
ous experiments),whereas the ordinary approaches to kinetics based on classical
dynamics involve no nonlocality.

The absence of a possibility to describe the nonlocal effects observed ex-
perimentally is the main shortcoming of practically all approaches to kinetics.
A generalization of kinetics to nonlocal processes would erase these differences
between classical and quantum descriptions of systems.

This purpose was attained, in the basic part, by A. Vlasov on the way of
the geometrization of kinetics in the nonlocal mechanics developed by him. An
analogous approach is used in our theory of evolution.

3.1 Space-time with Finsler geometry

The geometric interpretation of mass force action on objects of any nature is
that the mass force creates a structure of space-time wherein the further evo-
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lution of the system occurs. Naturally, there is a need to consider the physical
processes in Riemann spaces, the fiber spaces with different bases, Cartan and
Finsler spaces, etc.

The geometries of Euclid and Riemann, which are usually applied to
physics, concern only local properties. To describe the nonlocality of a sys-
tem, A. Vlasov used the geometry of support elements (the geometry of a
stratified space) [14–15], whose advantage consists in that the kinematic char-
acteristics of the dynamics of particles become inherent internal characteristics
of the system and are not imposed from outside. Any particle is characterized
nonlocally, i.e., by the whole spectrum by the own geometric and kinematic
properties for every time moment t: ~r, ~u, ~̇u, ~̈u,

...
~u , . . .

The differentials of the independent coordinates, x0 = ct, x1, x2, x3, are
infinitely small intervals basing on a current point M in the four-dimensional
Riemann space-time, i.e., in the space-time with metric properties that are
determined by the metric, namely the elementary interval written in terms of
the differentials of coordinates of the space:

ds2 = gikdx
idxk, i = 0, 1, 2, 3, k = 0, 1, 2, 3. (3.1)

Sometimes, it is convenient to separate the spatial coordinates, the time
coordinate, and the spatial interval with the corresponding metric:

ds2 = gαβdx
αdxβ + 2g0αdx

0dxα + g00(dx0)
2
,

dl2 = γαβdx
αdxβ ,

γαβ = −gαβ +
g0αg0β

g00
.

The differentials lie on different surfaces and, therefore, are independent
vectors. The point of the space-time and the collection of differentials of dif-
ferent orders (support elements) form a space with larger dimension, namely
the Finsler space (the space of support elements). The kinematic quantities
are expressed in terms of the corresponding differentials:

u0 =
dx0

dτ
= c

dt

dτ
, uα =

dxα

dτ
,

u̇α =
d2xα

dτ2
, üα =

d3xα

dτ3
, . . . , α = 1, 2, 3.

(3.2)

Here, τ is the intrinsic time of particles, which is invariant relative to changes
of the reference system and the laboratory time t. If the reference system
is changed in the space-time, the values of coordinates are connected by the
relations with nonzero Jacobian:

xα
′

= ϕα
′ (
x0, x1, x2, x3

)
, det

∣∣∣∣∣∂xα
′

∂xβ

∣∣∣∣∣ 6= 0. (3.3)

Seven degrees of freedom in the Finsler space are physically obvious: they are
four coordinates of the four-dimensional space-time, x0, x1, x2, x3, and three

velocities in the coordinate space, u1 =
dx1

dτ
, u2 =

dx2

dτ
, u3 =

dx3

dτ
. The def-

inition of 4-dimensional velocity includes a new element, the intrinsic time.
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Moreover, the eighth degree of freedom with dimension of velocity, u0 = c
dt

dτ
,

appears.
Since the eighth degree of freedom u0 is directly related to the flow of the

physical time inside the ensemble of interacting particles, it is natural to assume
the connection of this eighth degree of freedom with the physical properties of
irreversibility of the system, degree of its “openness,” and flows of the entropy
in the system of particles. This point will be clarified in the subsequent study
of the connection between the geometry and the processes of evolution.

The curvature of the stratified space-time is defined by the coherent ac-
celeration of the system (and, hence, by mass forces). The category of motion
of particles is included in the space of support elements on the same primary
level as the category of space-time. Moreover, the forces are considered as a
factor forming the properties of the space-time and the possible motions, which
are already connected continuously with the image of a particle.

The ordinary phase space differs from the space of support elements in
the following. The velocities in the phase space occupy the whole region in a
vicinity of the corresponding point of the coordinate space, whereas the veloc-
ities in the space of support elements are in the plane tangent to the world
lines passing through the given point of the space-time and are obtained by the
differentiation along the world lines of particles.

This results in that the velocities in the Finsler space of support elements,
as distinct from the Riemann space, are transformed always by a linear law,
even for the arbitrary nonlinear transformations of coordinates (3.3).

In other words, the 8-dimensional Finsler space with coordinates
(
x0, x1, x2,

x3, u0, u1, u2, u3
)

is characterized by the transformations

xα
′

= ϕα
′ (
x0, x1, x2, x3

)
, uα

′
= uα

∂xα
′

∂xα
. (3.4)

Elements aα = aα (xσ, uσ) form a contravariant vector, if they are trans-
formed as the vector of velocities uα(see (3.4))

aα
′

= aα
∂xα

′

∂xα
, (3.5)

and aβ = aβ (xσ, uσ) form a covariant vector, if they are transformed with the
help of the relations

aβ′ = aβ
∂xβ

∂xβ′
. (3.6)

According to the Hausdorff theorem of the metrics of topological spaces,
the general metric of the space d̃s2 = ds2 + ds2

u can be set by a sum of the
independent metrics of the space-time ds2 and the metric of the tangent bundle,
i.e., that of the space of velocities ds2

u = qikdu
iduk.

In this case, the metric of the space-time part can be of two basically
different types:

1) metric tensor of the space-time depends only on coordinates and the time:
gik = gik

(
xl
)
;

2) metric tensor of the space-time depends on velocities (and, possibly, ac-

celerations) implicitly, as on parameters: gik = gik
(
xl,
{
~u, ~̇u, ~̈u,

...
~u , . . .

})
.
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In the first (isotropic) case corresponding to a weak deviation of the collec-
tive system from the equilibrium without rearrangement of the internal struc-
ture, the metric depends only on coordinates.

In the second case, we have an anisotropic scenario corresponding to the
collective system with self-organizing internal structure. The dependence of
the metric coefficients on velocities (and/or accelerations) leads to a specific
anisotropy of the space-time: in any infinitely small region, the space-time
is anisotropic, and its properties depend on the direction of motion and the
acceleration of particles.

Namely the anisotropy of the space-time, which arises obviously at the
coherent acceleration of the system, is the main reason for the formation of
macroscopic quantum (coherent, nonlocal) objects of the shell type.

The particles of a shell, which are organized in a collective state, i.e.,
MQO, form a noninertial reference system. The acceleration of this collective
reference system is reflected in the space-time curvature resulting in the differ-
ence between the intrinsic and laboratory times, which can cause, as will be
shown below, the explosive change of space-time scales.

3.2 Geodesic lines in an evolving system

Under the action of mass forces on a system of particles, the particles are iden-
tically accelerated and form a noninertial system. In a vicinity of the arbitrary
point of the space-time, the dynamics of the system is set by covariant ac-
celerations and, hence, by covariant derivatives of the velocity. In turn, the
covariant derivatives of the velocity are given by the tensor of accelerations.
As follows from the Gauss principle and the principle of dynamical harmoniza-
tion, the constraints in the system are changed with the help of a variation of
accelerations. Therefore, the constraints between kinematic quantities and the
limitations imposed on them are determined by coherent accelerations. It is
clear that, in this case, one of the significant quantities is the covariant velocity
differential Dβu

α, whose value is set by the tensor of accelerations aαβ (xσ, uσ)
and is determined by the structure of constraints:

Dβu
α =

∂uα

∂xβ
+ Cαβγu

γ = aαβ (xσ, uσ) . (3.7)

Here, Cαβγ are the generalized coefficients of connectedness, which coincide with

the Chistoffel symbols Γαβγ =
1

2
gασ

(
∂gβσ
∂xγ

+
∂gσγ
∂xβ

− ∂gβγ
∂xσ

)
in the simplest

case where aαβ (xσ, uσ) = 0 and can be expressed in terms of the space-time
metric. Let us now calculate the covariant acceleration by using the covariant
velocity differential:

Duα

dτ
=

(Dβu
α) dxβ

dτ
= aαβ

dxβ

dτ
. (3.8)

If aαβ
dxβ

dτ
6= 0, then there exists a nonzero external covariant acceleration,

and the system undergoes the action of external forces. But the situation

where aαβ
dxβ

dτ
= 0 can be also realized; i.e., the covariant acceleration of the
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system is zero, and no external forces affect the system. However, the coherent
acceleration can be present, nevertheless, inside the system, the constraints,
aαβ (xσ, uσ) 6= 0, can hold, and the influence of the motion of particles on the
space-time metric can be revealed in a change of both spatial and temporal
scales.

Let us set the tensor of accelerations in the simplest form:

aαβ = a

(
δαβ −

uαuβ
c2

)
, uαuα = c2, a = const. (3.9)

In this case, the force action on the system is absent. Indeed, for tensor (3.9),
we have

aαβ
dxβ

dτ
= a

(
δαβ −

uαuβ
c2

)
dxβ

dτ
= a

(
δαβ −

uαuβ
c2

)
uβ

= a

(
uα − uαuβu

β

c2

)
= 0. (3.10)

Relations (3.7) are 16 equations for four unknowns uα; i.e., these equations
have no solutions in the general case with arbitrary generalized coefficients
of connectedness Cαβγ . The condition of existence of solutions of Eqs. (3.7)
imposes certain limitations on the quantities Cαβγ or Γαβγ and, hence, on the
metric.

The dynamics of particles occurs along the geodesic lines in the Finsler
space, whose geometry varies in the general case in correspondence with the
running evolution of the internal structure of particles and the system on the
whole according to the equations

d2xi

dt2
+ Cijk

dxj

dt

dxk

dt
+ F i = 0. (3.11)

E. Cartan and J. Schouten showed that, by the differential equations (3.11),
it is possible to restore the geometry, i.e., the metric. Conditions (3.8) are
consistent with a nonstationary metric:

ds2 =
(
dx0
)2 − σ2

(
x0
)
gαβ

(
x1, x2, x3

)
dxαdxβ , α, β = 1, 2, 3,

σ
(
x0
)

= expq

(
x0

cτeff

)
,

(3.12)

where gαβ
(
x1, x2, x3

)
is the spatial part of the Riemann metric. In this metric,

κ10,10 =
a2
cog

c4
expq

(
x0

cτeff

)
, κ = 2

a2
cog

c4
(3.13)

are the main independent component of the curvature tensor and the scalar
curvature of the space-time, which depend on the parameter q closely connected
with the order parameter and the coefficient of impactness of a driver.

As was shown in Section 2, the controlled change of the entropy of the
system can be an efficient driver. In other words, it can induce a coherent
acceleration of the system and, hence, the space-time curvature. The strongest
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changes of the entropy initiate the explosive processes of growth or decay of
structures. Let us consider an important example of the explosive clusterization
in the system of monomers (see [1,5]) and calculate the entropic forces and the
space-time curvature created by the process of clusterization.

The system of particles aggregating as a result of binary contacts is a
set of clusters of various sizes. The distribution of clusters over sizes, i.e., the
concentration of clusters with size k (clusters consisting of k monomers) as a
function of the time is described by the system of reactions Ak0 +Ak0 → A2k0,
Ak0 +A2k0 → A3k0. . . .

In this case, the equation for the concentrations Ck of clusters including k
monomers can be written in the form of the Smoluchowski coagulation equation
[41]. This equation involves the competition of two processes: the sticking of
a cluster with monomers, i.e., the increase of the size of a cluster, and the
breaking of clusters, i.e., the growth of the number of clusters with low masses.
For the probability Kij of the sticking of clusters with sizes i and j, we take the
approximation such that this probability is proportional to the product of the
surface areas of the input clusters: Kij ∝ (ij)2/3. According to the solution
of the Smoluchowski equation, the time dependence of the mean size s (t) of a
cluster manifests the explosive behavior:

s (t) =
s0(

1− t

tc

)1/6
. (3.14)

Here, tc is the time moment of the phase transition into the state of a global
cluster. By the order of magnitude, this time is equal to several collision times.
The explosive growth (3.14) of a cluster is directly related to the change of the
number of constraints in the system and, hence, to the change of the entropy.
The particles, which are organized into the collective state (i.e., MQO), form
the own reference system. The acceleration of this collective reference system
arosen due to the action of a mass force is reflected in the space-time curvature
and, in particular, in the difference between the intrinsic and laboratory times.
In this case, the local time and its intervals differ from the corresponding values
in the laboratory reference system in agreement with metric (3.12):

τ/t0 = ln

(
1 + (1− q)

(
x0

c t0

)) 1

1− q
= ln

(
expq

(
x0

c t0

))
. (3.15)

The parameter q is connected with the order parameter η with the help of
relations obtained in [1]. It follows from formula (3.15) that the laboratory and
intrinsic times coincide for the nonequilibrium parameter equal to 1. As the
degree of nonequilibrium and the deviation of the parameter q from 1 increase,
the intrinsic time rapidly decelerates or accelerates as compared with the labo-
ratory one, by depending on the sign of the acceleration of the nonequilibrium
reference system (NRS) (and, respectively, on the direction of the deviation of
q from 1).

Dependence (3.15) of the ratio of the intrinsic time to the laboratory one
on the laboratory time for various values of the parameter of nonequilibrium q
is presented in Fig. 3.1.
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Fig. 3.1. Ratio of the intrinsic time to the laboratory one versus the laboratory time
for values of the parameter q = 1.001, 1.01, 1.1, 1.30, 1.90. Curves correspond to
values increasing from top to bottom. For q=1, the laboratory and intrinsic times

coincide, and their ratio is equal to 1.

The variation of the intrinsic time as compared with the laboratory one
leads, in turn, to a decrease of the light velocity in the region occupied by the

growing cluster. The decrease of the light velocity c =
c0√
n

manifests itself as

the effect of increasing the refractive index

n =
1(

ln

(
expq

(
x0

c t0

)))2

near the growing cluster. It is worth noting that the described effect of in-
creasing the refractive index and decreasing the light velocity in a vicinity of
growing crystals was discovered, in fact, experimentally as earlier as 1902 and
was described in work [25].

We note that the geodesic world lines of particles, along which the par-
ticles move in correspondence with the principle of dynamical harmonization,
are, in fact, the characteristics of a kinetic equation of the Vlasov type. This
allows us to write the very kinetic equations and to realize the connection be-
tween the dynamical and statistical descriptions of the evolution of systems
with varying constraints. Below, we will analyze the solutions of covariant ki-
netic equations, which allow one to answer the majority of questions posed by
the “shell” model of self-organization (see [1]) and to obtain the equations of
dynamical harmonization for it.

3.3 Covariant kinetic equations for particles and their so-
lutions

In order to describe the many-particle interactions, the mean accelerations of

particles
〈
~̇u
〉

=
1

m
~FB in the Vlasov equation (2.36) are usually determined by

self-consistent electromagnetic fields. As follows from Section 2, the analysis
of the evolution of MQO should consider not only the fields of fundamental
interactions, but also the entropic forces, which modify, in fact, the Vlasov
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equation, supplementing it by the collision integral in the divergent form:

∂f (~r, ~u, t)

∂t
+ div~r (~u f (~r, ~u, t)) + div~u

(〈
~̇u
〉
f (~r, ~u, t)

)
= div~u

(
~jS

)
;

~jS =

(
− 1

m
∇r (ωeffSq)

)
f (~r, ~u, t) ;〈

~̇u
〉

=
1

m
~FB , ωeff ≈

2π

τeff
.

(3.16)

The action of a mass entropic force on the system of particles and the
continuously related acceleration compel the system to reconstruct its internal
structure and, thus, to evolve in a tangent bundle of the space-time according
to the variational principle of dynamical harmonization.

A change of the structure causes variations of the distribution functions
of particles of the system, which are related to the processes of localization or
delocalization and, in turn, affect the dynamics of particles through the entropic
forces. The interrelation of the evolution of a system in the corresponding layer
and the four-dimensional basis of the Finsler space-time is realized through the
accelerations and the distribution functions.

The kinetic equation (3.16) for the particles composing MQO can be rep-
resented in the 8-dimensional space of support elements in the covariant form

_

Divr (~u f) + divu

(〈 _

D~u

dτ

〉
f

)
= 0. (3.17)

Since

_

Divr (~u f) = uα
_

Dαf + f
_

Dαu
α,

divu

(〈 _

D~u

dτ

〉
f

)
=

∂

∂uα

(〈 _

D~u

dτ

〉α
f

)
,

_

Dαf =
∂f

∂xα
− Γσαγu

γ ∂f

∂uσ
,

Γσαγ =
1

2
gµσ

(
∂gµα
∂xγ

+
∂gµγ
∂xα

− ∂gαγ
∂xµ

)
,

we can write (3.53) by components:

uα
∂f

∂xα
− Γσαγu

γ ∂f

∂uσ
+

∂

∂uα

(〈 _

D~u

dτ

〉α
f + Ps

)
= 0. (3.18)

Let us analyze the solutions of the kinetic equation in a significant partial
case where the explicit contribution of the divergence div~u (.) to the kinetic
quations can be neglected. Then the covariant equation of quasistationary
states takes the form

uα
∂f

∂xα
− Γσαγu

γ ∂f

∂uσ
= 0. (3.19)
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This approximation is valid in two cases:
• if the external forces are completely absent, and the flow in the phase

space, PS = 0 (this case corresponds to the full equilibrium of the system);
• if the external forces do not act directly in the system, but the flows of

energy, particles, or the entropy are constant in the phase space, PS =
const (this case corresponds to a strong deviation from the equilibrium).
In the nonequilibrium case, the kinetic equations for systems with varying

constraints have quasipower and power solutions [39–40]. In this case, the
exponent of a solution depends on the flows created in the system [40], the
external forces inside the dynamical system of particles can be neglected, and
the whole action of mass forces is determined by the entropy flows that are
generated on the boundary of an MQO-shell and disappear in the orthogonal
direction, where the delocalization and the growth of a structure in the system
occur.

Consider the solutions of the kinetic equation (3.19), which are isotropic
in the space of velocities and stationary in the laboratory time, i.e., we assume
that

∂f/∂x0 = 0; ∂gαβ/∂x
0 = 0, g0i = 0, i = 1, 2, 3.

We emphasize that this stationary state does not assume the independence of
the intrinsic time. In the indicated approximation, we have

Γ0
00 = Γ0

ik = 0; Γki0 = 0; Γ0
0i =

1

2g00

∂g00

∂xi
; Γi00 = −1

2
gik

∂g00

∂xk
.

Separating the variables, we present the distribution function in the form

f
(
xα, uα, u0, t

)
= f

(
xα, uα, u0

)
= ρ (xα)ψ

(
u2
)
ψ0

(
u0
)
, (3.20)

(1− q) ξ2 = gαβξ
αξβ , ξα =

uα√
− (1− q) goou0

, u2 = uαu
α. (3.21)

Substituting (3.21) in (3.20) and (3.19) and separating the variables, we
obtain the system of equations, which is exactly solvable:

ρ
(
xi
)

= ρ0 expq

(
−U (x)

w (q)

)
, ψ0

(
u0
)

= ψ0 (0)
1

u0

qcr
qcr − 1

,

ψ
(
ξ2
)

=
(
expq

(
−ξ2

) )q
.

(3.22)

The obtained solutions reflect the fact that, in the absence of the entropy
flow (i.e., for q = 1), the homogeneous equilibrium case is realized, since the
distribution function ψ

(
ξ2
)

over velocities (or energies) transits in the Maxwell

distribution function, the distribution function ρ
(
xi
)

becomes the Boltzmann

distribution, and the function ψ0

(
u0
)

is constant, so that there is no difference
between the local and laboratory times. If the entropy flows are present in
the system (q 6= 1), the exponential distribution functions over energies and
coordinates become the quasipower ones.
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3.4 Anisotropy of states in a noninertial dynamical sys-
tem

The action of the entropic fields of mass forces initiating the coherent accel-
eration of particles transforms the whole system into a noninertial reference
system (NRS). The inertial reference systems (IRS) are associated with the
absence of flows and coherent accelerations in the reference system, i.e., with
equilibrium systems without evolution. On the contrary, namely the action of
mass forces on IRS and its transformation in NRS with some coherent accel-
eration and flows in it compel the particles to the evolution, i.e., to a change
of the internal structure of constraints between particles, energy of constraints,
and mass defect of the system.

In the general case, the system (like a spheroid), which is isotropic at
the initial time moment and has a spatial distribution of particles with char-
acteristic scale l0 in the inertial system, evolves in the noninertial system in a
deformed anisotropic state with the number of external space scales more than
1 and becomes similar to an ellipsoid-“pancake”. In a sufficiently general case,
we may distinguish two basically different orthogonal directions:
• along the direction of the acceleration;
• in the plane orthogonal to the acceleration.

By controlling the anisotropy of the wave function of a quantum system, it
is possible to control the localization of the system and, hence, the probabilities
of the processes of evolution related to the overcoming of energy barriers. This
is obvious even at the analysis of pure states.

The Heisenberg uncertainty relation for one degree of freedom takes the

form ∆x∆px >
~
2

. In the complete phase space (e.g., for three degrees of

freedom), this relation determines the size of its minimal cell:

∆Ωph >
~3

8
. (3.23)

In the simplest case, we will take the anisotropy of the evolution into
account, by introducing two scales as macroscopic geometric characteristics of
the system instead of its single radius:
• l− < l0, in the direction of the “flattening” of the system;
• l+ > l0, in the orthogonal directions, along which the “flattening” hap-

pens.
The less scale l− can be called a scale of spatial coherence of the system, which
characterizes the “pancake” thickness. The larger scale l+ is a characteristic
scale of the interaction, which characterizes the maximal length of correlations
in the system.

Consider the case of a strong deviation from the local equilibrium. Though
the external forces do not act directly in the system, the entropy flow is constant
in the phase space, and the density distribution in the bounded system and the
erosion of the boundary happen in agreement with a distribution function of
the type (3.22), rather than with equilibrium distribution functions.

The density distribution in the system with mass number A that consists
of monomers with mass number and characteristic size lstr is described at a
distance ∆r from the center by the squares of the corresponding wave functions
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with characteristic scale l0 (η) = lstr

(
A

Astr

)η + 1

3 + η
:

• exp

(
−
(∆r

l0

)2)
, for the equilibrium noncoherent part of the system;

• expq

(
−
( ∆r

l0 (q)

)2)
, for the coherent part of the system with regard for

the action of entropic forces.
Without the entropy flow (for q = 1), a homogeneous equilibrium state

is realized. In this case, the distribution function over velocities (or energies)
transits in the Maxwell distribution. If the entropy flows are present in the
system (q 6= 1), the exponential distribution functions over energies and coor-
dinates becomes quasipower one.

The processes of self-organization essentially depend on the direction of
the entropy flow, since there exist two types of behavior of the distribution
function: localization and delocalization. They correspond to different charac-

ters of the behavior of the function expq

(
−
( ∆r

l0 (q)

)2)
for q 6 1 and q > 1.

The parameter q is determined from (2.41)–(2.42) and is connected with the
order parameter 0 6 η 6 1 by the relations

q (η) =

q− = 1− η, q 6 1

q+ =
1

1− η
, q > 1

. (3.24)

As the order parameter increases, the character of decay of the wave
functions in the space passes from exponential to power (see 3.22). The depen-
dences of the scales on the order parameter in the directions of delocalization
and localization take the form

l+ ≈ l0
1(

1− η

ηmax

)γstr , l− ≈ l0
(

1− η

ηmax

)
,

γstr ≈ 1.83, ηmax = 0.5.

(3.25)

The phase volume is a product of volumes in the coordinate and momen-
tum spaces, and the volume in the coordinate space is a product of volumes in
the coherent direction ∆Ω− and in the direction ∆Ω+ orthogonal to it. Thus,
we have ∆Ωph = (∆Ω+∆Ω−) ∆Ωp.

The volume in the plane orthogonal to the direction l− can be estimated
as ∆Ω+ ≈ πl2+. We consider that the minimal size of a cell l− is attained in

the coherent state: (l−)min ≈
~

2pf
. Since the volume in the momentum space

∆Ωp ≈
4

3
πp3

f , we have

l+ >
1

2π

(
~
pf

)3/2
√

3

8 l−
. (3.26)

These relations are valid, if there are no correlations between coordinates
and momenta. However, if the system of particles turns out in the state with
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coherent acceleration, then, as is seen from the above discussion, the space-time
metric is changed. Hence, the geodesic lines and the dynamics of particles are
changed as well. It is clear that, in this case, due to the anisotropic space-time
curvature (and to the coherent acceleration), the strong correlations appear:

rxp ≈ η2(γstr−1)/3. (3.27)

In the general form, the correlations rxp between momenta and coor-
dinates were considered by Robertson and Schrödinger [42], who wrote the
uncertainty relation in the form

∆x∆px >
~

2
√

1− r2
xp

. (3.28)

Let us return to relation (3.23). With regard for the correlations rxp, we
can transform it into the form similar to (3.26):

l+ > l−
1

2π

√
3

8

 ~
pf l−

1√
1− r2

xp (acog)

3/2

(3.29)

As was shown in [1], this relation at the coherent acceleration of the system
of particles yields the explosive delocalization of a state of the system in the
direction orthogonal to the direction of the acceleration. As the shell thickness
decreases, the energy becomes quantized in the direction perpendicular to the
shell surface. In other words, the dispersion of momenta of particles around
the momenta localizing themselves is decreased. In this case, the dispersion of
coordinates of particles along the surface is sharply increased.

It was shown in [43] that, on the basis of estimates (3.27), it is possible
to develop a model of the overcoming of barriers by an oscillator located in a
nonstationary external field ensuring the growth of correlations.

3.5 Equations of dynamical harmonization of a system
with varying constraints and the geometry of a strat-
ified space-time

The most general representation of the laws of dynamics and evolution of the
systems of particles is given by the variational principle of dynamical harmo-
nization [1], which is a generalization of the Gauss and Hertz principles for
the systems with varying internal structure and binding energy. It assumes
that the self-organization of a system occurs as a result of the variation of the
structure of constraints between its particles (elements) as a response to their
coherent acceleration.

By the Gauss principle, those positions that will be occupied by the points
of the system at the time moment t+ τ in their real motion are distinguished
between all positions admissible by constraints by the minimal value of compul-

sion measure ZG =
N∑
i=1

mis
2
i (here, si (δa) is the length of a vector between the

points representing the true and any possible positions of a point; it depends
only the acceleration variation δa).
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The optimal variations of accelerations, as was shown by Hertz, corre-
spond to the minimal curvature of the trajectories of particles. This means
that the dynamics of particles is realized along the geodesic lines correspond-
ing to definite constraints. The notion of motion includes also a rearrangement
of both the structure of the system and the field of constraints of its structural
elements. While the system moves, its fractal dimension Df and binding en-
ergy B (Df ) [1], which are determined by the packing of monomers composing
the system, are changed.

Changes of the structure and constraints in the system vary obviously the
masses of the system and its components (i.e., the inertia or sensitivity of the
system relative to the external forces acting on it).

As was shown in [1], the evolution of an internal structure of the system
is determined by the principle of dynamical harmonization, which involves the
possibility of a change of constraints in the system: under the action of external,
Fi, and mass, Fstr, forces, the system varies its trajectory and the structure
in order to be consistent with the external medium and external actions, by
minimizing the generalized compulsion function,

Zdh =

N∑
i=1

(mi (Df )wi − (Fi + (Fstr)i))
2
,

mi (Df ) = (mi0 − δmi (Df )) , δmi (Df ) =
Bi (Df )

c2
,

(3.30)

with regard for the variations of all constraints in the system (respectively, with
regard for the variation of the binding energy Bi (Df )).

In other words, the system tends to make the trajectories of its compulsory
motion under the action of mass forces to be maximally close to the trajectories
of the own nonperturbed motion.

Since a change of the internal structure of the system is regularly related
to a change of its mass mi (Df ), the processes accompanied by a change of the
structure are most efficient at the evolution of the system, because they can
serve as both a source of energy and a means of its accumulation for the very
evolution. It is obvious that the control over a system on the basis of the laws
of evolution of its constraints (the principle of dynamical harmonization of the
systems with varying constraints) is the unique efficient way o the realization
of desired transformations in the system due to the use of its internal energy
resources, rather than due to the direct “violence” with the use of only the
external energy.

The tool to initiate the processes of self-organization of a structure of
constraints in the system is a general dominating perturbation specially selected
for the given system and the appropriate coherent acceleration of the ensemble
of particles composing the system.

Because a change of the structure is continuously connected with changes
of the entropy and the information, the principle of dynamical harmonization
describes simultaneously the targeted exchange by information and the entropy
between the system and the environment. This means that the space-time
geometry (curvature) and the evolution of an internal structure of the system of
particles are indivisible. Such a situation is a natural continuation of properties
arising in the dynamical systems with varied constraints between elements of
the system under the optimization of their control.
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In this case,
• the state of the system is set by a vector in the configurational space of

a dynamical system,
• the constraints are set by a matrix of the constraint coefficients,
• the control is realized by the external vector of control, being the vector

of forces acting on the appropriate components of the system.
An analogous situation arises also at the evolution of the system repre-

sented by a collection of monomers:
• the state of such a system is set by the positions of particles in the four-

dimensional space-time and their velocities, which are tangent to the
trajectories of particles at the given point and, hence, belong to a tangent
bundle of the space-time;

• the constraints between monomers are characterized by their energies de-
pending on the structure of the system, which is characterized, in turn, by
the dimension (the dimension of a structure of constraints in the system)
and the entropy (information);

• the evolution of the system occurs in the tangent bundle of the space-time
and is governed by the equations of dynamical harmonization in a non-
inertial reference system with given coherent acceleration. The evolution
forms the entropic forces that define the dynamics of the system of parti-
cles with varying constraints in the space-time. The coordinates in layers
are the accelerations of all orders; additionally, we have a layer with the
fractal dimension of a system of constraints (or with their entropy) as a
coordinate;

• the dynamics of the system of particles occurs in the anisotropic space-
time with a curvature that is determined by the acceleration of the non-
inertial reference system depending on the entropic forces;

• the control is realized by the external vector of control, which sets the
contributions to the appropriate components of coherent accelerations of
the system.
As was shown in the previous section, the action of mass forces on the

system causes the rapid (as compared with a quasiequilibrium case) “flattening”
of the distribution function, which corresponds to the presence of the negative
flows of entropy in the system (or, what is the same, the flow of information
in the system), ensures an increase of the volume, and, by this, modifies the
dynamics of scales. In the general case, as the order parameter increases and
the fractal dimension varies, let the localization scale l− be decreased, and
let the scale l+ be increased as compared with the equilibrium values by the
relations

l− = g− (Df , δ) ; l+ = g+ (Df , δ) . (3.31)

The estimation of these functions was mase above (see (3.25)). In agree-
ment with the principle of dynamical harmonization, the equations of evolution
are determined by a minimum of the dynamical harmonization functional Zdh
at the variation of the accelerations of the scales of localization and delocaliza-
tion of the system (respectively, w− and w+):

Zdh =
1

2
(mw+ − F+)

2
+

1

2
(m w− − F−)

2
,

m = m0 −BA (η, δ) /c2.
(3.32)
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The variation by Gauss assumes the tangent plane to a current point on
the trajectory of a particle to be fixed, and the transition from the dynamics in
the coordinate space to that in the Finsler space is very simple. Then the vari-
ations by Gauss look as those in a tangent plane with second-order tangency
at the fixed plane with first-order tangency. The variations of accelerations
(i.e., of vectors in the corresponding different planes) of all orders are inde-
pendent. Therefore, the variations by Gauss lead to that the relations for the
variations of accelerations are similar to those for the variations of the corre-
sponding coordinates. Hence, the below-presented relations for accelerations do
not incliude the first derivatives of the constraint equations:

w1 =
d2

dt2
l1 = γ11D̈f + γ12δ̈, γ11 =

∂2g1

∂2Df
, γ12 =

∂2g1

∂2δ
;

w2 =
d2

dt2
l2 = γ21D̈f + γ22δ̈, γ21 =

∂2g2

∂Df
2 , γ22 =

∂2g2

∂2δ
.

(3.33)

Here,
index 1 corresponds to the direction of delocalization x+ and the

scale of delocalization l+,
index 2 corresponds to the direction of localization x− and the scale

of localization l−.
Substituting the formulas for the accelerations in Zdh, we obtain the dy-

namical harmonization functional depending on the accelerations of the fractal
dimension and the deformations of scales:

Zdh

(
D̈f , δ̈

)
=

1

2

(
γ11D̈f + γ12δ̈ −

F1 (Df , δ)

m (Df , δ)

)2

+
1

2

(
γ21D̈f + γ22δ̈ −

F2 (Df , δ)

m (Df , δ)

)2

. (3.34)

The condition of minimum of the dynamical harmonization functional
with respect to the accelerations of the fractal dimension and the deformations
of scales,

∂Zdg
(
D̈f , δ̈

)
∂D̈f

= 0,
∂Zdg

(
D̈f , δ̈

)
∂δ̈

= 0,

leads to the system of differential equations determining the evolution of a
dymanical system with varying constraints:

D̈f =
a22G1 − a12G2

a11a22 − a12a21
; δ̈ =

−a21G1 + a11G2

a11a22 − a12a21
, (3.35)

a11 =
(

(γ11)
2

+ (γ21)
2
)
, a12 = (γ11γ12 + γ21γ22) ,

G1 = γ11
F1

m
+ γ21

F2

m
,

a21 = (γ11γ12 + γ21γ22) , a22 =
(

(γ12)
2

+ (γ22)
2
)
,

G2 = γ12
F1

m
+ γ22

F2

m
.

(3.36)
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The obtained equations for the order parameter and a deformation of the
probability density distribution of the system and the very variational principle
of dynamical harmonization, from which the equations are deduced, are the
basis of the theory of self-organization of systems with varying constraints.

In the simple situation where the deformation varies much more slowly
that the internal structure, we may consider the deformation to be given. The
equation describing the evolution of a structure, which has always time to tune
itself to a given deformation, was obtained in [1]. In this case, the order param-
eter and the fractal dimension evolve according to the equation of dynamical
harmonization, which has form of the Lagrange equation describing a change
of the structure of the system with the use of the corresponding Lagrange
function Lstr:

d

dt

(
∂Lstr

∂Ḋf

)
− ∂Lstr

∂Df
= 0,

Lstr = mstr (Df )R0

Ḋ2
f

2
+ sBA (Z,Df )A− Ustr (Df ) .

(3.37)

Here, sBA (Z,Df ) is the specific binding energy of a cluster per nucleon,

mstr (Df ) is the structural inertia of the system, uDf = Ḋf is the rate of

variation of the fractal dimension, and pDf =
∂Lstr

∂Ḋf

= mstr (Df )R0uDf is the

momentum of the system corresponding to its structurization.
Analogously to the Hertz principle, the principle of dynamical harmo-

nization can be represented as the requirement of a minimum of the functional,
being the length of a world line of particles in the Finsler space-time. As a
result, we obtain the following statement of the variational principle of evolu-
tion: the evolution of a system with constraints occurs along geodesic lines in
the Finsler space-time with the curvature tensor corresponding to the evolution
of internal constraints of the system, which are harmonized as a response to
the coherent acceleration caused by the action of mass entropic forces.

4 Electrophysical aspects of the interactions of
particles and radiation with vacuum

First, it is pertinent to present the citation from [44]: “A reasonable staring
point at the consideration of the problem of many bodies would be the ques-
tion about the number of bodies for the problem to be posed.. . . The persons
interesting in the exact solutions can find the answer, by looking at the history.
For the Newton mechanics in the 18-th century, the problem of three bodies
was unsolvable. After the creation (about the year 1910) of general relativity
theory and quantum electrodynamics (about the year 1930), the problems of
two bodies and a single one became unsolvable as well. In the modern quan-
tum field theory, we meet the unsolvable problem without bodies (vacuum).
So that if we are interested in the exact solutions, the zero number of bodies
is too much”.
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We note that the system of particles in a longitudinal electromagnetic
field can form a noninertial reference system under a coherent acceleration,
if the coefficient of domination exceeds 1. In this case, the system becomes
nonequilibrium and open, in particular, for the interaction with vacuum.

The gravitational force acting between all bodies is the most known mass
force. The modern theories of gravitation are based on general relativity the-
ory developed by Einstein in 1915 [45]. The Einstein theory of gravitation is
founded on the following assertions:
• The density and the pressure of a substance make the space-time curved;
• the motion of particles in a curved space-time occurs along the geodesic

curves and reflects the influence of the gravitation on the dynamics of
particles.
The space-time is curved in volumes of the space occupied by matter, but

it becomes also curved in a vicinity of bodies due to the elasticity of the space-
time. The equations for Rik (the tensor of space-time curvature) were obtained
by Einstein firstly in the form, where the source in these equations was only Tik
(the tensor of energy-momentum of matter). Then the equations were modified
by the introduction of an additional source Λgik that is a cosmological term
describing the antigravity:

Rik −
1

2
gikR− Λgik =

8πG

c4
Tik. (4.1)

In the middle of the 1960s, E. Gliner associated the Einstein cosmological
term with vacuum, whose observed energy density ρV is determined by the

cosmological constant Λ (see, e.g., [20–21]): ρV =
Λc4

8πG
. The value of Λ is not

given by theory, and it can take any value that is consistent with experiment.
In the last decades, the cosmological consequences of the introduction of

Λ were experimentally confirmed, and the following assertions are considered
to be proved:
• Vacuum (dark energy) dominates in the Universe; by the energy density,

vacuum exceeds all “ordinary” forms of matter taken together;
• dynamics of the cosmological expansion is guided by the antigravity;
• cosmological expansion accelerates, and the space-time becomes, in this

connection, static.
In the worls by E. Gliner, the processes of accelerated expansion of matter

were first connected with the antigravity of vacuum, and the creation of matter
with quantum fluctuations of vacuum, which are caused by the acceleration.
Vacuum should be considered as a medium occupying all the space uniformly
with good reliability from the cosmological scales down to centimeters.

The equation of state of vacuum, i.e., the connection between the pressure
pV and the energy density ρV ,

pV = −ρV , (4.2)

follows from the theory of quantum fields and the thermodynamical reasoning.
Let us use the thermodynamical identity dWV = TdS − pV dV and represent
the total internal energy of vacuum in the form WV = ρV V . For the adiabatic
processes in the homogeneous vacuum, dS = 0, and dWV = ρV dV . Hence,
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pV = −ρV . By the Friedman theory [46], the gravity is created not only by
the density of a medium, but also by its pressure according to the relation
ρeff = ρ + 3p. For vacuum, the density of its effective gravitational energy
ρG = ρV + 3pV = −2ρV is negative for a positive density. In connection with
the unique equation of state (4.2) (see [21]), vacuum possesses several important
properties that distinguish this medium among all others:

1. This medium cannot serve as a reference system. If there are the reference
systems moving relative one another, then vacuum with the equation of
state (4.2) accompanies every reference system. Hence, the nonacceler-
ated motion and the rest relative to this medium cannot be distinguished.

2. The medium with the equation of state (4.2) is unvariable and eternal.
Its energy is the absolute minimum of the energy contained in the space.

3. The medium with the equation of state (4.2) creates the antigravity.
4. Vacuum creates a force, but it does not undergo (as a macroscopic medium)

any action of external gravitational forces or the own antigravity (because
the densities of the inertial mass ρi = ρ+ p and the gravitational mass of
vacuum ρG = ρi are equal to zero).

5. Vacuum is a medium uniformly filling the space on all scales from cosmo-
logical to small (by the data of modern experiments, down to scales of the
order of centimeters). Experimentally, some manifestations of an inho-
mogeneity of vacuum were observed at the creation of nonhomogeneities
of the medium on scales of the order of one micron and less (Casimir
effects).
By virtue of the above-presented properties, vacuum plays the key role

not only for the gravity, but also for any mass force, by revealing itself only
in the noninertial accelerated reference systems. Therefore, substantiated is
the assumption that the most important role in the interaction with vacuum is
played by the electromagnetic field (vector potential) and the fields of negen-
tropy (information) that transfer momenta to particles through the appropriate
perturbations of the probability density distribution of particles in the space
and create noninertial reference systems.

The violation of the condition of adiabaticity of the equation of state of
vacuum on macroscopic scales of the order of meters or centimeters or less
with the help of electromagnetic and entropic drivers will allow one to control
its properties on these scales and to pose the question about its implication in
energetic processes.

Changes of the entropy and the energy density on the scale of a pertur-
bation of vacuum appear due to the action of mass forces and, hence, changes
of the impactness:

∆S =
∂SV
∂q

δq ≈ αI
∂SV
∂q

δQimp, δρV =

(
TαI

∂SV
∂q

δQimp

)
ρV . (4.3)

4.1 Resonances at the interaction of longitudinal waves
with vacuum

All main properties of vacuum are qualitatively determined from the equation of
state and the uncertainty relation. Namely this relation reflects the peculiarities
of vacuum, since it does not allow the conjugated quantities (e.g., a momentum
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and a coordinate or an energy and e time interval) to have simultaneously some
exactly determined independent values. In this connection, the vacuum state
cannot have the zero value of energy density, though it is defined as the state
with minimal energy. The fluctuations of the vacuum state energy exist always,
and it is impossible to get rid of them.

In a simple one-dimensional model, the fluctuational oscillations of vac-
uum are a collection of ideal oscillators with all frequencies. The energy density
of elastic oscillations of vacuum with any frequency ω is

Wω =

〈
p2
〉
/m

2
+
mω2

〈
x2
〉

2
,

where x is the coordinate, and p = mu is the corresponding momentum at
oscillations of an oscillator with effective mass m. Considering the formula
for the energy, as the arithmetic mean of two terms, we obtain a chain of
inequalities

Wω =

〈
p2
〉
/m

2
+
mω2

〈
x2
〉

2
>
√
ω2 〈p2〉 〈x2〉

= ω
(√
〈p2〉 ·

√
〈x2〉

)
>

~ω
2
, (4.4)

where we use the uncertainty relation: ∆x∆px >
~
2

on the last stage.

It follows from (4.4) that the energy minimum for oscillations of the os-

cillator turns out to be Wmin =
~ω
2

. The total energy density of all oscillations

W0 is equal to the integral contribution of all real frequencies from zero to
infinity and, naturally, is infinite. Let us introduce a large, but finite scale L
along a separate direction. Then the continuous set of frequencies becomes a

discrete infinite sequence ωn = n
πc

L
, and W0 (L) = π

~c
2L

∞∑
n=1

n.

Under the action of mass forces, the adiabiticity of vacuum can be broken,
and an inhomogeneity lR can appears. It will lead obviously to resonances due
to a change of boundary conditions. As a result of the appearance of resonances
between an electromagnetic field and vacuum, the infinite discrete sequence ωn
is separated from the continuum of frequencies. In this case, the total energy
density of vacuum is infinite as before, but it is equal now to the infinite sum

over all discrete frequencies ωn = n
πc

lR
or over all wavelengths λn =

πc

ωn
(with

regard for the resonance conditions λn =
lR
n

):

W0 (lR) = π
~c
2lR

∞∑
n=1

n. (4.5)

Thus, the appearance of the space-time curvature causes a change of the
energy:

∆W = W0 (L)−W0 (lR)
lR
L

=

∞∑
n=1

(
π~c
2lR

n

)
−
∞∑
n=1

(
π~c
2lR

l2R
L2
n

)
. (4.6)
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The subsequent calculations are carried on within a regularizing proce-
dure, which allows us to find the infinite sums with the help of the introduction
of the efficient “cutting” of high harmonics and the use of the relations

∞∑
n=1

Wn → lim
λ→0

∞∑
n=1

exp (−λWn)Wn,

∞∑
n=1

n exp (−xn) =
1

4sh2 (x)
=
x→0

(
1

x2
− 1

12
+

x2

240
+ . . . .

)
.

(4.7)

First, we calculate difference (4.6) with a finite parameter λ. Then, by
passing to the limit, we obtain the formula for the difference of energies in the
one-dimensional case:

∆W ≈ − π

24

~c
lR
. (4.8)

In the three-dimensional case, the similar calculations were first performed by
Casimir [22], who considered two plane surfaces with area Ssurf , which are
placed at the distance d from each other, and obtained th formula

∆W

Ssurf
≈ − π2~c

720d3
(4.9)

and, respectively,

FR/Ssurf ≈ −
π2~c
240d4

(4.10)

for forces acting on the unit area of a plate (Casimir forces).
The longitudinal electromagnetic waves with wavelength λ that realize

the coherent acceleration acog ≈ αd
uT
τeff

≈ 8αd
uT
τ
≈ 8αd

uT
λ/c
≈ 8αd

cuT
λ

of

the separated subsystem of particles induce, in correspondence with (3.13), the
space-time curvature with characteristic scale lR:

lR ≈
c2√
2acog

≈ λ√
2 · 8 · αd0 (A)βT

, αd0 (A) =
∆p

pT
≈ e ·A

pT
. (4.11)

Using the resonance conditions for wavelengths λn =
lR
n

and formula (4.9)

for the space-time curvature scale, we obtain the formula for the resonance
frequencies:

ω0n ≈
1

n

4
√

2π

c
acog ≈

1

n
23/2βTαd

(
2π

τeff

)
≈ 23/2βT

n
αdω0. (4.12)

The coefficient of domination is proportional to the amplitude of the electro-
magnetic field in the medium and must take the growth of the amplitude at
the resonance interaction of the field with the medium into account. At a
resonance, the frequency dependence of the amplitude is as follows:

αd ≈
αd0√(

1− ω2

ω2
0n

)2

+

(
δeff
ω0n

)2
≈ αd0√(

1− ω2

ω2
0n

)2

+
ω2

4ω2
0n

1

Q2

. (4.13)
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Here, δeff is the damping coefficient, ∆ω is the width of a resonance, and

Q ≈ ω0

∆ω
is the quality of a resonance. From whence and (62), we obtain the

formula for frequencies

ω0n ≈
23/2βT
n

αd0√(
1− ω2

ω2
0n

)2

+
ω2

4ω2
0n

1

Q2

ω0

≈ 25/2βT
n

αd0Qω0 ≈
25/2βT
n

αd0Qω0,

which yields

ω0n =

(
cτeff√

2αd0βT δd

)1/3

δd. (4.14)

Hence, we can conclude that, for large values of the coefficient of domination
αd0, the resonance frequency shifts to the lower frequencies.

Curvature and impedance.

It was mentioned in the previous section that, near a growing crystal and in
the region of phase transitions or in the noninertial reference system in a more
general case, the refractive index (or, in other words, the impedance directly
connected with this physical quantity) is changed in the space. In the works by
Podosenov (see [29]), the influence of constraints in electrophysical systems on
the radiotechnical (electrophysical) elements entering their composition such
as capacities and inductances were analyzed in details.

As was discussed above, vacuum in a noninertial system can be repre-
sented by a countable number of ideal fluctuating oscillators which can be
modeled by circuits including capacities and inductances. These oscillators
depend on the space-time curvature.

For a spherically symmetric motion of a system of charged particles with
constraints, the Riemann space-time metric is determined by the acceleration

a0 =
eE

2m
, where E ≈ −∂A

∂t
is the intensity of a longitudinal electric field on

the surface of a sphere. The metric takes the form

ds2 = exp(ν)
(
dy0
)2 − exp (λ) dr2 − r2

(
dθ2 + sin2 (θ) dφ2

)
, (4.15)

where

exp(ν) =

(
1 +

(κ
2

)1/2

d

)2

, exp

(
λ

2

)
= −r2

(κ
2

)1/2

d

1 +
(κ

2

)1/2

d

. (4.16)

The dependences of capacities and inductances on the space-time curva-
ture κ were studied in [29]. In particular, the capacity C (leff , κ) with charac-
teristic spatial size leff and with characteristic surface area Seff was obtained
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as

C (leff , κ) ≈ C0

(κ
2

)1/2

leff

1− exp
(
−
(κ

2

)1/2

leff

)
≈ C0

(
1 +

(κ
2

)1/2

leff

)
≈ C0

(
1 +

acog
2c2

leff

)
, (4.17)

C0 = εl
Seff

4πleff
.

We now determine a change of the impedance ∆Z (κ) of an oscillatory
circuit with the capacity C and the inductance L at the given frequency ω
near a resonance at a change of the space-time curvature κ. We take into
account that the active part of the impedance tends to zero. Hence, we can
approximately write

∆Z (κ) ≈ 1

2

(
ω
∂L

∂κ
+

1

ωC (κ)

∂C

∂κ

)
∆κ ≈ 1

ωC (κ)

∂C

∂κ
∆κ ≈ leff

ωκ1/2
∆κ. (4.18)

The significance of relations (4.17) even for small values of currents and
voltages consists in that the devices including these electrophysical elements
become basically nonlinear objects such as parametric oscillatory systems. At
the certain choice of the excitation frequencies, such effects as an extension of
the spectrum and the amplification of a signal can be revealed.

On the other hand, a more important circumstance can possibly consist in
that a deviation of the impedance from the values determined by the capacity
and the properties of a dielectric in the frame of linear electrodynamics can
serve a measure of the space-time curvature.

On the basis of his theory of the time as a physical quantity possessing
a density [27], Kozyrev constructed a very exact device (Kozyrev’s gage) to
measure the changes in the time density with the use of a bridge scheme con-
sisting of resistors and a sensitive galvanometer. By essence, the changes of
the time flow in the space-time are inseparably connected with a change of its
curvature. In our experiments, we used a modified scheme of Kozyrev’s gage
with amplifiers instead of a sensitive galvanometer (see Fig. 4.1).

In the experiments carried out by Kozyrev with the use of its gage, one of
the resistors of a balanced bridge served as a detector of the time flow and can be
placed at various points of the region under study. A change of the impedance
of this resistor was at once registered with a galvanometer. Kozyrev’s gages
were used as a tool in astrophysical studies by Kozyrev himself [27] and by
other researchers [28].

In our studies, Kozyrev’s gage was used as a sensitive meter of the space-
time curvature and the appropriate resonance phenomena described above at
the interaction of longitudinal electromagnetic fields with vacuum.

We have carried out the experiments on measuring the space-time curva-
ture with the use of electromagnetic fields. As a source of longitudinal eelctric
fields, we took the toroidal coil with a winding, on which a high-frequency
current was flowing (see Fig. 4.2).
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Fig. 4.1. Kozyrev’s gage with operational amplifiers instead of a galvanometer

Fig. 4.2. Toroidal coil as a source of the variable vector potential and, as a consequence,
of a longitudinal electric field.

As was expected, the maximal values of the rate of variation of the vector
potential were observed on the axis of the toroidal coil.

The amplified signal from the bridge, which was proportional to a change
of the impedance in the studied region where we mounted a detector, was
supplied to a computer through an analog-digital unit. The changes of the
impedance and, hence, the curvature were essentially different at different fre-
quencies of a longitudinal field. The resonance frequencies were clearly distin-
guished.

The switching-on of a generator was naturally accompanied by an increase
of the temperature in the region, where Kozyrev’s gage was located. In Fig. 4.3,
we show the time dependence of the measured voltage on the bridge, as well
as the time dependence of the temperature.

The plots indicate clearly the complete absence of correlations of the tem-
perature and the readings of a gage. At the time moment of the switching-on
of a current in the coil, we observed a sharp change of the impedance. At the
switching-off of the current, the values of signals from a bridge approach the
initial values, whereas the temperature varies significantly slower.

The amplitude of variations of the impedance and, hence, the curvature
demonstrated a strong dependence on the frequency of a current flowing along
the emitter. The resonance behavior of the amplitude as a function of the
frequency is shown in Fig. 4.5.
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Fig. 4.3. Temporal dependence of
a signal from Kozyrev’s detector.
The signal is proportional to a
change of the impedance and the

space-time curvature.

Fig. 4.4. Behavior of the tempera-
ture during the measurement.

Fig. 4.5. Resonance curve for one of the resonances in the region of frequencies of the
order of 29 MHz.

The values of the resonance frequency and the quality of resonances ob-
served in experiments are in good agreement with (4.11) and (4.12).

4.2 Regularized wave equations as a model of vacuum

The physical vacuum, as a medium with specific properties, interacts with
particles located in it. This interaction can accelerate particles or decelerate
them. In the last case, we can say that the particles moving with acceleration
undergo the action of friction due to the fluctuations of vacuum.

As was shown above (Section 2), the system of particles evolves mainly
in NRS, and the efficient driver of mass forces initiating NRS is an electro-
magnetic driver. Below, we will study some peculiarities of the evolution of a
system of charged particles at the interaction with vacuum under the action of

electromagnetic fields with electric field intensity ~E = −∂
~A

∂t
− ∇ϕ. Only the

first term in this formula is responsible for the initiation of mass forces in the
system (see Section 2), since only this term represents the electric field inside
a homogeneous system. We consider the action of the first and second terms

on charged particles as the mass force ~Fm = −e∂
~A

∂t
and the Coulomb force

~Fc = −e∇ϕ, respectively.
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It is known [47] that the account for collisions between charged particles
(electrons) in the approximation with the Landau collision integral allows one
to describe the appearance of the friction force (from the side of ions), which

rapidly decreases with increase in the velocity of electrons ~Ffr ≈ −
me

4π
Le/i

ni
u3
~u

for velocities larger than the thermal one. In this case, it is significant that

the friction force has a maximum over velocities, max Ffr ≈ −0.2
e2

r2
D

, after the

averaging.
For low fields, the condition of domination (2.16) does not hold. Then the

charged particles obey the phenomenological equation of charge transfer or the
equation of motion (τeff is the effective duration of the momentum transfer in
collisions) in terms of ordinary derivatives:

me
d~u

dt
= e ~Ec −

1

τeff
(me~u) . (4.19)

For a quasistationary state of charged particles from the noncoherent part
that are characterized by a constant velocity and satisfy the condition

e ~Ec −
1

τeff
(me~u) ≈ 0,

Eq. (4.19) yields the Ohm law for the current density ~j = ρee~u:

~j = σE ~Ec, σE =
ρee

2τeff
me

. (4.20)

The presence of homogeneous longitudinal fields in a system of charged
particles satisfying condition (2.16) corresponds to the appearance of mass

forces ~Fm. In fact, the condition of domination of the action of an electromag-
netic driver (2.16) corresponds to the presence of an electromagnetic force in

the system particles, which exceeds the critical friction force (~Fm > max ~Ffr).
A part of charged particles (particles forming a coherent subsystem), whose
share is equal to the order parameter η, are unboundedly accelerated. Another
part of particles (1− η) turns out noncoherent, is decelerated by the friction

force ≈ − 1

τeff
(me~u), and obeys the equation with ordinary derivatives (4.19).

In the system, two components appear in the general case: the coher-
ent component with density ρcog and the corresponding velocity ucog and the
noncoherent one with density ρ and velocity u. The ratio of components deter-

mines the order parameter η =
ρcog

ρcog + ρ
, and the velocities of the components

satisfy different equations of motion.
The differential equations with ordinary derivatives (Riemann deriva-

tives), which were used for the description of the processes of transfer, are
based on the fact that the translations in the space-time are characteristic
ttransformations for IRS.

The satisfaction of the condition of domination (2.16) and, hence, the
transition into a state with sharply decreasing resistance correspond to the
appearance of a motion of the coherent part of the system as the whole with
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explosively increasing drift velocity (in other words, to the formation of NRS).
In NRS for the systems in coherent states, the characteristic features are the
presence of many scales and the self-similarity of the processes of evolution,
which is reflected in a complicated (fractal, in the general case) structure of
the space-time. In this case, the use of alternative definitions of the operators
of differentiation, which appear due to the regularization, for the description
of the dynamics of a physical situation seems to be more adequate [30].

As was shown above, the physical vacuum under conditions of the action of
mass forces is characterized by a discrete set of frequencies and, hence, scales
of the time. The coherence appearing in vacuum can possess the properties
of similarity (fractal properties). In this case, the Jackson derivative is the
most natural generalization of the notion of derivative for the description of
the evolution of all quantities with the properties of similarity [31]. Let us
consider the definition of this derivative, which is used, in particular, for the
determination of the rate of processes. The operator of shift is replaced by the
operator of scaling (with the coefficient of similarity qs) passing in the limit
into the ordinary derivative Dt:

Dqsf (t) =
f (qst)− f (t)

qst− t
, Dtf (t) = lim

qs→1
Dqsf (t) . (4.21)

The eigenfunction of the Jackson operator is the scaling generalization of the
exponential function, namely

etqs =

∞∑
k=0

tn

[k]qs !
,

which satisfies the relation Dqse
t
qs = etqs . Here, the Jackson q-number

[n]qs =
qns − 1

qs − 1
= qn−1

s + . . .+ 1.

The coherence of a state of the system (scaling invariance) is revealed,
naturally, in the oscillatory processes. It is easy to verify that the functions
that depend on the scaling parameter qs and are defined by the relations

cosqs (z) =
ei zqs + e−i zqs

2
; sinqs (z) =

ei zqs − e
−i z
qs

2i
, (4.22)

satisfy the relations characteristic of ordinary trigonometric functions and are
the solutions of the equation for a fractal oscillator with Jackson derivatives.
These generalized scaling functions pass into ordinary trigonometric functions
as qs → 1. Respectively, the difference between the former and the latter
increases with the deviation of the scaling parameter from 1.

The deviation of the parameter of similarity qs from 1 reflects a degree of
openness of the system, despite the absence of an explicit dissipative term in
the equation. Now, the openness of the system is characterized by the indices
of differential operators of quantum analysis, rather than the parameters of
dissipation. In open systems, the oscillatory processes are dissipative for the
parameter of similarity qs < 1 or are unstable for qs > 1 (see Appendix 3).
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The parameters of similarity qs, nonequilibrium q, and damping δ are
connected by the relations that can be found from the condition of maximal
coincidence of phase trajectories in the quadratic metric. The result of such an
optimization in the region of values of the parameter of similarity 0.7 < qs < 1.5
give the function (see Appendix 3):

q (qs) =

{
2.023− 1.5608qs + 0.5380q2

s , qs 6 1

1.7005− 0.9234qs + 0.2223q2
s , qs > 1

. (4.23)

Let us consider the influence of the coherence of a state on the processes
of transfer of charged particles in the physical vacuum under the action of
mass forces. More exactly, we will obtain a generalization of the Ohm law,
which will be valid for the coherent states with the coefficient of similarity

qs in homogeneous longitudinal fields ~E = −∂
~A

∂t
created by a nonstationary

vector potential A (t).
It is clear that, with the use of the scaling transformations, the equation

for the velocity of charged particles u in the case under study can be written
in the form

Dqsu = − e

m

(
∂A

∂t

)
. (4.24)

Acting by the integral Jackson operator Îqs ≡ D−1
qs (see Appendix 3) on both

sides of this relation, we obtain u =
e

m
Îqs

(
−∂A
∂t

)
. From whence, we arrive

at the relation between the current density j = eρeu and the vector potential
A (t):

j ≈ ρee
2

mτeff
Îv (−A (t)) . (4.25)

The proposed model of the phenomenon of transfer and oscillatory processes
in fractal media on the basis of the apparatus of quantum derivatives can be a
mathematical foundation for the development of new radiophysical devices us-
ing the specific properties of nonlinearity and irreversibility of the fluctuations
of vacuum in NRS.

We now consider the alternative phenomenological description of the mo-
tion of the coherent part of a system of charged particles without the use of
quantum operators, but with the direct application of the interaction with vac-
uum in NRS. As was shown above, the friction of permanently accelerating
particles satisfying the condition of domination caused by collisions with other
particles can be neglected. However, by virtue of the fact that these charges
move as the whole and form NRS, the force of their interaction with the physical
vacuum turns out to be nonzero.

The situation is similar to the motion of a body in the ideal fluid. The
motion of a body with constant velocity occurs freely, and the body does not
feel the presence of the medium (see the d’Alembert paradox). The motion with
acceleration leads to the appearance of an associated mass and the interaction
with the medium, which is proportional to the acceleration.

The motion of particles in the physical vacuum subordinates the analogous
laws. The motion with acceleration leads to the interaction with vacuum and
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the appearance of forces ~Fvac = δvac
d~u

dt
. In this case, the equation of motion

of the coherent part takes the form

m
d~u

dt
= −e∂

~A

∂t
+ ~Fvac or (m− δvac)

d~u

dt
= −e∂

~A

∂t
, (4.26)

which yields the Ohm law for the coherent part of charged particles:

~j = σA ~A, σA =
ρee

2

(m− δvac)
. (4.27)

It is seen that the obtained Ohm law coincides with the London equa-
tion [48]. On the whole, the model of the interaction of particles with vacuum
under the action of mass forces is similar to the two-fluid model of supercon-
ductivity: in the coherent state, the currents of particles arise in the absence
of the difference of potentials.

The value of mass defect δvac at the interaction of particles with vacuum is
determined by the explosive local expansion of the space-time with a curvature
corresponding to the resonance frequencies (4.10) in metric (3.12).

4.3 Coherent acceleration of the reference system and cri-
teria for the initiation of a collective synthesis

As was shown above, the basic physical quantity that initiates the processes
of synthesis in an ensemble of particles in correspondence with the principle
of dynamical harmonization is the coherent acceleration of this ensemble of
particles.

Let us find the conditions for the acceleration of NRS that will ensure
the intiation of MQO from the strongly nonequilibrium shell—i.e., the condi-
tion for the initiation of a instability leading to the reconstruction of a state of
the system such as the phase transition from the stable neutral substance to a
quasineutral electron-nucleus plasma. For the first time, the conditions for the
appearance of a positive feedback with respect to the density in a plasmoid were
found by A. Vlasov in the frame of his nonlocal kinetic theory [15]: “The bind-
ing energy is released at a decrease of the radius of the formation and turns out
to be sufficient for the support of the processes of ionization. The mechanism of
the processes of ionization consists in the creation of intrinsic inhomogeneous
electrostatic fields, which is a consequence of the oscillatory change of the po-
tential of interaction of ions in the space through an intermediate system”.

As is clear from the above, the efficient model for the description of the
action of mass forces in the system of many particles is given by the Schrödinger
equation and the de Broglie–Bohm representation of it in the form of a system
of equations for real functions. The use of the Dirac equation for an electron in
the Coulomb field of the kernel and its reduction to the Schrödinger equation
allows us to describe the mechanism and the conditions for the self-ionization
of an ion on the basis of the initiation of the processes of collapse of electrons
with regard for relativistic corrections (see [5, 49–50]).

The conditions of stability of a dense substance (e.g., a metal) are mainly
determined by properties of a degenerated electron gas. The ionization equi-
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librium can be changed, by varying the thermodynamical parameters such as
the temperature and the density.

The increase of the degree of ionization of a substance Z due to a de-
crease of the number of electrons shielding the nucleus causes a decrease the
corresponding radius of outer electron shells.

A decrease of the size of these shells due to a change of the Coulomb
repulsion leads to a decrease of the equilibrium distance between ions and,
hence, to a growth of the density as compared with that in the stable state
ρstabZ :

ρstabZ ≈ 3.784Z2.049. (4.28)

The increase of the density of a substance alone can cause the ionization (figu-
ratively, we may say that the pressure “crushes” and breaks the outer electron
shells). However, this process requires very high critical densities,

ρcritionZ ≈ 5. 102Z2, (4.29)

and the appropriate pressures. These critical densities are approximately by
two orders larger than those appearing at the increase of the degree of ionization
by 1. The ratio of densities ρcrion/ρstab as a function of the ion charge Z is
shown in Fig. 4.6.

Thus, the instability in the ordinary state does not arise, since the increase
of the density due to the previous stage of ionization is unsufficient for the
further increase of the ion charge, which ensures the stability of the substance
arrounding us relative to its spontaneous collapse under equilibrium conditions.

There are the external actions on a system, at which this stability is
broken. In connection with that the compression of a substance is hampered
by the repulsion of like charges, all physical situations that ensure a decrease of
the Coulomb repulsion due to the renormalization of the Coulomb interaction
increase the equilibrium density of a substance and can induce the loss of
stability.

Fig. 4.6. Ratio of the density leading to the increase of the ion charge by 1 to the
density orresponding to the current ion charge.

The main contribution to the conditions of equilibrium is given by the
energy of degenerate electrons. The system of particles in a thin layer (shell)
becomes nonequilibrium even only due to the geometry, since two basicall dif-
ferent states of motion can be realized:
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• perpendicularly to the thin plasma layer, the motion is bounded and,
hence, has a clearly expressed discrete energetic structure;

• the motion along the layer is not bounded and has, hence, the continuous
values of energy.
In order to initiate the positive feedback leading to the collapse, it is neces-

sary to decrease the critical density approximately by 5.102/3.784 = 132 times
or to delocalize the ion approximately by a factor of 5.1. Such values are avail-
able if the order parameter satisfies the following condition:

η > 0.5

(
1−

( 1

5.1

)1/γR
)
≈ 0.35 or q > 1.54. (4.30)

The satisfaction of the conditions for existence of a positive feedback leads
to the explosive process of ionization and to the appearance of an electron-
nucleus plasma with the density

ρen ≈
10

mp
Z4
l cm−3. (4.31)

At such a density, the mean distance between nucleons Rav and the character-
istic size of nuclei Rnuc in a fluid are, respectively,

Rav =

(
3

4πρen

)1/3

, Rnuc = 1.2 10−13A
1/3
l . (4.32)

Let the pressure in the environment be p0. Then the collapse time of a shell can
be estimated by the Rayleigh relation (the more general Zababakhin relation
can be used as well):

tex ≈ 0.9Rsh

√
ρl
p0
≈ 9. 10−7Rsh

√
ρlg
p0atm

. (4.33)

The behavior of the radius tending to zero is determined by the relation

Rsh = Rsh0

(
1− t

tex

)αm
, αm ≈

(1 + κ)

2
, 0 < κ <∞. (4.34)

Here, ρlg is the density of the environment in gr/cm3, p0atm is the external
pressure in atm, and the shell radius in cm.

For the interaction characteristic of Maxwell molecules and hard spheres,
κ ≈ 4/3 and αm ≈ 7/6. The analysis of solutions of the equations of dynamics
of a shell yields the “scaling” relations between characteristic macroscopic scales
of shells (between radii and thicknesses) and their mean densities at two time
moments:

R2

R1
≈
(
ρ1

ρ2

)3/14

,
d2

d1
≈
(
ρ1

ρ2

)4/7

or
ρ1

ρ2
≈
(
R2

R1

)14/3

,
d2

d1
≈
(
R2

R1

)8/3

.

(4.35)

Thus, the density at the collapse of a shell increases explosively, and the
shell thickness decreases. Their behavior is described by the relations:

ρsh ≈
ρ0(

1− t

tex

)14αm/3
, dsh ≈ dsh0

(
1− t

tex

)8αm/3

. (4.36)
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The density corresponding to an electron-nucleus plasma ρen is attained
at the time ten given by the formula

ten ≈

(
1−

(ρen
ρ0

)− 3

14αm

)
tex, (4.37)

and the acceleration during the collapse increases with time.
The process of collapse of shells occurs under conditions of a dominating

perturbation along the radius from the very beginning of the process (the accel-
eration of a coherent motion is more than the acceleration of the dissipation),
whereas a decrease of the thickness acquires large accelerations only at the end
of the process. At at the end of this stage, the acceleration of electrons is
acog ≈ 1029 cm/sec2, and the space-time curvature attains values of the order
of 1018, which corresponds to the atomic scale less than 10−9 ÷ 10−8cm.

The process of collapse in the electron-nucleus plasma, which is the fall
of electrons in a Wigner–Seitz cell onto its Coulomb center (the nucleus with
charge Z), is accompanied by the subsequent increase of the coherent acceler-
ation up to the limitedly high values of the order of acog ≈ Z2 · 1029cm/sec2.
These accelerations can already ensure the space-time curvature to be more
than 1022, which corresponds to characteristic scales 6 10−11 cm.

The attained scales approaching the nuclear ones correspond to the high
rates of change of the entropy gradient and ensure the flattening of the wave
functions of all particles of the system and the formation of MQO with the
scaling from the macro- down to nuclear scales.

Thus, the self-consistent ionization of a substance due to the loss of sta-
bility caused by the action of mass forces occurs explosively and is accompanied
by a change of the number of constraints in the system. The explosive change
of the entropy in time and space leads to the existence of accelerations of all
orders. The mass force appearing in these processes in a self-consistent way
causes the explosive “flattening” of the wave functions of nuclei. If the effec-
tive size of a nucleus tends to the mean distance between nuclei, then the order
parameter approaches 0.5, and MQO is formed. The formation of MQO initi-
ate the collective synthesis of new structures, whose efficiency depends on the
dynamics of a coherent acceleration and, hence, on the space-time curvature.

5 Conclusions

The present work is a part of the cycle of works [1–2] devoted to the description
of the theory of self-organization of the systems with varying constraints and
the control over the synthesis. It is made in the frame of the development of the
conception of self-organizing synthesis (see [1], [5]) on the basis of the principle
of dynamical harmonization.

In the work, we have presented the geometric approach to the variational
principle of dynamical harmonization, which allows one to solve the problems of
self-organization and control over the directedness of the evolution of various
complicated systems, basing on the single viewpoint from the very general
positions of the theory of dynamical systems with varying constraints.



Control of multiscale systems with constraints. 3. Geometrodynamics 109

The comprehension of the geometric nature of physical laws was started
by Clifford [51] and was developed by Hilbert, Einstein, and Wheeler [52–54].

In his mathematical works concerning the work by Riemann [55], Clifford
wrote as early as 1876: “I consider that

1. Small parts of the space are really analogous to small hills on the surface,
which is plane on the average, namely: the ordinary laws of geometry do
not valid there.

2. The property of curavture or deformation continuously passes from one
part of the space to another one like a wave.

3. Such a change of the space curvature reflects the real phenomenon called
by the motion of matter, which can be the ether or a weighty substance.

4. Only such changes obeying (possibly) the law of continuity occurs in the
physical world”.
Einstein analyzed the gedanken experiment with particles in the field of

mass forces [53] and made conclusion that the light velocity is changed in the
field of gravitational mass forces, and, hence, the space-time curvature appears.
In 1919, the phenomenon predicted by Einstein was discovered experimentally
during Sun’s eclipse.

We note that the single property of the field of gravity, which was used
in the theoretical reasoning [53], was its mass character. The analysis of the
principle of dynamical harmonization and the basic positions of the conception
of self-organizing synthesis [1, 5] allowed us to generalize the idea of general
relativity theory of the curved space-time in the field of gravitational forces to
any mass forces.

The assertion that the mass forces of any nature (satisfying the condition
of domination) decrease the light velocity and curve the space-time is basic
for the geometrization of the theory of evolution and control. It is worth to
mention that a decrease of the light velocity in the region, where the coherent
acceleration is present due to the growth of crystals, was experimentally discov-
ered much earlier (see [25]) than a decrease of the light velocity near massive
gravitating bodies.

In the frame of the theory constructed by us, we have obtained the con-
nection between a change of the space-time curvature in quasihomogeneous
electromagnetic fields and a change of the impedance (see (4.16)), which was
registered in the experiment with the help of Kozyrev’s gage (see [27], [28]) in
the modern version.

The important circumstance for the construction of the geometrodynam-
ics of many-scale systems with varying constraints is the following: the most
important notions joining all the scales are the space-time and the entropy (or
information), and the mass forces of various nature act, as usual, on the own
interval of scales, but ensure the nonlocality of processes.

The comprehension of the geometric nature of nonlocality allowed Vlasov
to construct a nonlocal statistical theory [14–15], which is based on the geom-
etry of support elements — the Finsler geometry [56]. The above-presented
foundations of the geometrodynamics of evolution and control for the systems
with constraints belong to the series of available theories (general relativity
theory and nonlocal statistical theory).

As usual, the control over dynamical systems and the optimal synthesis
of new structures is realized for the system, whose state is set by the vector
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in the Euclid configurational space with a given matrix of the constraint co-
efficients. In this case, the control that is a vector of forces acting on the
appropriate components of the system can be optimized on the basis of the
solution of a variational problem with given functional.

In the many-scale shell model of self-organization, the situation is signifi-
cantly more complicated.

1. Evolution of the systems with varying constraints occurs in the Finsler
space-time. The state of the system is set by the positions of particles
in the anisotropic four-dimensional Riemann space-time (base space) and
by their velocities, which are tangent to the trajectories of particles at a
given point and, hence, belong to the corresponding layer of the tangent
bundle of the space-time. The evolution of the system, i.e., the evolution
of constraints of the system, runs also in the own layer of the space-
time, where the coordinates characterize the structure of the system (such
coordinates are, e.g., the fractal dimension of the system or its entropy);

2. On all stages of the process of synthesis, the evolution of systems obeys
always the general variational principle for the systems with varying con-
straints, namely, the principle of dynamical harmonization. In the ge-
ometric statement, it asserts that the system evolves always along the
geodesic lines in the Finsler space-time with regard for of the constraints
in the system. In this case, the optimization functional is the space-time
metric defining its curvature.

3. The defining role in the efficient control over the evolution is played by
the coherent acceleration (in the general case, the tensor of accelerations)
in the basic Riemann space-time. The current coherent acceleration in
the basic Riemann space-time determines the constraints in a system (see
(3.28)) and the evolution of the system in the tangent bundle (with the
fractal dimension Df as a structural coordinate in the layer) in agreement
with the equations of dynamical harmonization in the Euler–Lagrange
form with the corresponding Lagrange function

Lstr = mstr (Df )R0

Ḋ2
f

2
+ sBA (Z,Df )A− Ustr (Df )

(see (3.39)):

d

dt

(
∂Lstr

∂Ḋf

)
− ∂Lstr

∂Df
= 0.

4. Evolution of the system chabges the metric of the basic space-time (see
(3.12), (3.27), (2.37), and (2.38)):

ds2 =
(
dx0
)2 − σ2

(
x0
)
gαβ

(
x1, x2, x3

)
dxαdxβ ,

σ
(
x0
)

= expq

(
x0

cτeff

)
,

q (η) =

q− = 1− η, q 6 1

q+ =
1

1− η
, q > 1

.

Hence, we may assert that the order parameter η controls the space-time
metric.
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The control is realized by the external vector of controlling mass forces,
which sets the contributions to the appropriate components of coherent acceler-
ations of the system. The examples of mass forces that are the most important
for the self-organization (evolution) are as follows:

1) forces of gravity and inertia;
2) entropic forces related to the entropy production gradient;
3) drift forces in a plasma involving the runaway of electrons in an electric

field;
4) forces arising at the polarization of vacuum, including forces of the Casimir

type.
It is possible to assert that the harmonized (nonforce) control creates the

space-time curvature, which is necessary for that a configuration of the system
and its state will “roll down,” like free ones, into the regions optimal for the
realization of the process with a desired energy directedness.

By using the de Broglie–Bohm reprentation for the Schrödinger equation,
we have shown the connection of nonlocality and coherence for the systems of
many particles with the entropy production and mass forces. We have demon-
strated that the entropic field is integral with the fields of constraints in any
quantum system, in particular in MQO. Moreover, the introduction of entropic
forces induces a nonlocality similar to the quantum one even in macroscopic
systems. We have also analyzed the various means to create mass forces in the
system and have obtained the relations for their calculation.

In a certain meaning, the space-time curvature is a hidden parameter.
Since the separation of variables at the solution of the Schrödinger equation
does not cause the disappearance of correlations between coordinates and mo-
menta rxp (κ) (due to the curvature), the Schrödinger–Robertson uncertainty
relation (3.25)

∆x∆px >
~

2
√

1− r2
xp (κ)

is valid and can be used for the control over many physical processes. For
example, it would be used for the development of methods of a sharp increase
of the transparency of Coulomb barriers and, hence, the probabilities of nuclear
reactions [43].

The conducted studies allowed to generalize the Heisenberg uncertainty
principle for energy and time in systems with variable constrains and thus
with change of energy of constrains ∆E, so that this ratio is directly includes
the entropy change of the system (i.e., a degree of openness (see 2.26))

∆t∆E ≈ ~
2

∆S.

It is now quite clear that the ratio of the classical and quantum properties
of the system is determined not only by the value of the Planck’s constant ~,
but also over the production of entropy in the system.

The developed theory of self-organization of open systems differs from
the traditional nonequilibrium thermodynamics by the role of dissipation in
the processes of evolution. Usually, the irreversibility of processes in a system
is determined by the transition of the energy of a regular motion into the energy



112 S. Adamenko, V. Bolotov, V. Novikov

of a thermal random motion. In the theory with the principle of harmoniza-
tion, the constraints and the structure of a system vary continuously at each
hierarchical level, and the evolution is running without significant transition of
energy into heat. It is obvious since one of the most important requirements
to the external actions initiating the self-organizing evolution is the excess of
the values of momenta of particles, which are formed by the controlling mass
forces, over their thermal momenta in the system.

In the frame of the constructed geometrodynamics of the systems with
varying constraints, the results obtained in works of the cycle substantiate
theoretically all basic positions of the conception of self-organizing synthesis
presented in [5]. Thus, the sequence of the basic processes at the evolution of
the system can be presented as follows:

1. Separation of an ensemble of particles that will be evolved in the future.
2. Coherent acceleration of the ensemble and the formation of NRS as a

result of the action of a dominating perturbation (creation, e.g., by elec-
tromagnetic or entropic mass forces).

3. Explosive self-consistent formation of MQO (usually of the “shell” type)
when the coherent acceleration exceeds the threshold value.

4. The running of the processes of synthesis with energy directedness cor-
responding to the attained coherent acceleration (and, hence, to the at-
tained space-time curvature),

5. Termination of the self-consistent process of evolution and the fixing
(hardening) of products of the synthesis as a result of development of
an instability on the very small scales.

6. Initiation and development of the explosive processes as a result of the
release of the free energy of the synthesis of new structures.
The relations obtained in the theory of self-organization can be applied

to the control over the optimal synthesis of systems with variable constraints
of completely different nature and with different scale levels from nuclei and
the interaction of particles with the physical vacuum to social and biological
systems with complicated organization.

In many cases, a nuclear reaction is impossible because of the Coulomb
repulsion of the nucleus. But the internuclear Coulomb barrier prevents only
in the case when the distance between the nucleis is much greater than their
de Broglie wavelength. If the de Broglie wavelength λDB for the nuleus is
longer than the distance between the core nucleis, then the MQO in quantum
multipart system is being formed, and as it shown in the work, the Coulomb
barriers can effectively be decreased. The possibility of increasing of the de

Broglie wavelength λDB =
2π~
|~p− ~ps|

(up to infinity) for each particle (monomer)

of the ensemble, as seen, is associated with the presence of the entropy pulse
ps in them.

We emphasize once more that the base of the presented theory were main
positions of the self-organizing synthesis of nuclei (see [5]), which allowed us
to develop at once the means to initiate the nucleosynthesis by electron beams
in a plasma diode [57]. The realization of this means allowed us to synthesize
a wide spectrum of nuclei and their isomers (see [5, 2, 58–60]), and the use
of electromagnetic drivers gave possibility to efficiently control the lifetime of
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radioactive nuclei. The experimental results concerning the electromagnetic
control over the synthesis of nuclei and the rates of nuclear processes, as well
as their comparison with the theory of self-organization of the systems with
varying constraints, will be considered in the next article of the cycle.

The developed theory becomes rapidly a foundation for the creation of new
technologies of the control over the synthesis, in particular, over the synthesis
for the production of isomers-accumulators, and for the design of powerful
environmentally safe “on-line” sources of nuclear energy.
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Appendix 1. Thesaurus of the self-organization
of complex systems with varying constraints

Action. The action is the quantity

S =

t2∫
t1

dtL (q, q̇, t) or S =

t2∫
t1

dt

(∑
i

piq̇i −H (q, q̇, t)

)
,

where t — time, q = {q1, . . . , qN}— complete collection of coordinates charac-
terizing the dynamical system (its configurational space), q̇ = {q̇1, . . . , q̇N} —
collection of velocities (derivatives of q with respect to the time), L — Lagrange
function depending on N coordinates, N velocities, and, sometimes, explicitly
on the time. In classical mechanics, the action coincides with the difference of
kinetic and potential energies; H — Hamilton function that is the total energy
of the system depending on N coordinates, N momenta conjugated them, and,
sometimes, explicitly on the time.

Bifurcation point — point of branching of possible ways of the evolution of
a system. In the differential formalism, the solutions of nonlinear differential
equations are branched at such a point.

Blow up:
• Duration of the blow-up — finite time interval, during which the process

is developing with a superhigh rate.
• Blow-up mode — mode possessing a long-term quasistationary stage and

a stage of superfast growth of the processes in open nonlinear systems.
The dynamics of basic quantities in the blow-up mode is described by

an explosive function ≈
(

1− t

τ

)−ν
diverging at the blow-up time mo-

ment τ .

Coherence — from the Latin word “cohaerentia” — internal connection, con-
nectedness. The behavior of elements inside the system that is consistent in
time and space. In physics, it is the consistent running of several oscillatory or
wave processes in time and space. Coherent behavior of elements — base for
the appearance of space-time structures. Coherence is continuously connected
with correlations of the basic quantities in the system.

Coherently correlated states. Coherently correlated states (CCS) are a
complete collection of nonstationary states, in which the process of delocaliza-
tion can be expanded. The equilibrium CCS usually used for the description of
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the systems weakly deviating from equilibrium ones (with small accelerations
and flows). To describe the processes of delocalization with limitedly large ac-
celerations, it is necessary to use the expansions in the eigenstates of systems
that are in strongly nonequilibrium states, namely nonequilibrium CCS.

In quantum mechanics, coherent states are states with minimal disoersion
(states with the probability distribution in the form of a Gauss distribution),
i.e., they are states that are the closest to macroscopic states of the system.

Dimension of a system:
• Dimension of the embedding of a system — minimal number of parame-

ters completely describing a state of the system.
• Fractal dimension — fractional dimension characterizing the self-similarity

and the scaling invariance of systems.

Dissipation — processes of energy dispersion, its transformation in less orga-
nized forms (heat) as a result of dissipative processes such as heat conduction,
diffusion, etc.

Dominating perturbation — mass force creating the coherent acceleration
of particles of a system and, hence, a flow in the phase space. The value
of constant flow in the phase space determines the dominating perturbation
intensity for the system.

Flow in the phase space. Usually, the flow of a physical quantity is the
amount of this quantity transferred in unit time through any area in the space.
For the coherently accelerating systems, whose properties are identical over
the whole volume, the significant parameter is the amount of such a quantity
transferred in unit time through an area in the energetic or momentum space
irrespective of the coordinates. The flow in the phase space (like the coherent
acceleration) is related to the degree of deviation of a state of the system from
the equilibrium one corresponding to the zero flow (or, what is the same, to
the zero coherent acceleration).

Fractal objects — objects possessing the properties of self-similarity or scaling
invariance.

Ill-posed problem — problem, whose solution is unstable with respect to the
initial data or to a perturbation of the operator.

Information. It is intuitively assumed in the Shannon theory that information
has content. Information decreases the total uncertainty and the informational
entropy. The amount of information can be measured. However, Shannon
warned as for the mechanical transfer of notions from its theory to other fields
of science: “The search for ways of applying the theory of information to other
regions of science ios not reduced to the trivial transfer of terms. This search
can be realized in the long-term advancing of new hypotheses and their exper-
imental verification.”

Instability by Lyapunov — instability with respect to the initial data, which
leads to the exponential divergence of earlier close trajectories.

Lyapunov indices — increments of the instability with respect to the initial
data (instability by Lyapunov).
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Mass. Mass defect. Mass is mainly determined by the binding energy of a
system. The mass defect is a change of the mass as a result of the change of
the structure of the system and its constraints. For example:
• Mass of nucleons is determined by the binding energy of quarks;
• Mass of nuclei is determined by the binding energy of nucleons;
• Mass of a “shell” is determined by the binding energy of electrons, nu-

cleons, and nuclei;
• Mass of atoms is determined by the binding energy of nuclei and electrons.

Mass force — force acting identically on all elements of a system and creating,
in this case, the coherent acceleration of the system.

The example is the gravitational force acting on all particles proportion-
ally to their masses. It is usually considered that the mass force is the reason
for the appearance of a flow in the configurational space of the system.

However, in many cases where the mass force acts identically on all ele-
ments of a subsystem (separated from the whole system in some way), such a
subsystem, being homogeneous in the configurational space, accelerates, i.e., a
flow appears in the momentum subspace of the phase space.

The example of such a situation is given by the subsystem of electrons of a
plasma in an electric field, whose intensity is more than some critical value (the
runaway threshold). In this case, the plasma passes in a state with electrons
running away, i.e., all electrons are coherently accelerated, and the electric field
acting on the plasma plays the role of a dominating perturbation, which acts
on the plasma and transfers the subsystem of electrons in a coherent state.

If a flow in the phase space of the system (or coherent acceleration) is not
constant and is in the state with positive feedback, the blow-up mode arises.

Nonlocality — main characteristic of a system, being in the mode of coherent
acceleration (the blow-up mode). In this case, the state of the system cannot
be set by the expansion in a vicinity of the given point in infinitely small values
and, hence, by the acceleration of a single order. The system is characterized by
the accelerations of all orders. The property of nonlocality is characteristic of
the systems in the blow-up mode, systems near a phase transition, and MQO.

Phase portrait — possible states of a system in its phase space; the set of
trajectories of the system in its phase space.

Phase space (space of states) — multidimensional space, whose coordinates
serve as parameters completely describing a state of the system.

Reference systems:
• Inertial reference system — reference system, in which the bodies not

subjected to the action of forces move along straight lines.
• Noninertial reference system — reference system moving with accelera-

tion relative to an inertial reference system.

Regularization. Operator of regularization. To obtain a stable solu-
tion of an ill-posed problem, it is necessary to use some special methods called
the methods of regularization. It is possible to define the spaces, where the
solutions of a problem become proper or, by applying the operators of regular-
ization (the operators of special averaging), to change the operators defining
the problem or to introduce new observable variables.
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Resonance excitation — correspondence of the spatial and temporal struc-
tures of an external action to the internal structures of an open nonlinear
system.

Self-organization — process of spontaneous ordering, formation, and evolu-
tion of structures in open nonlinear systems.

Space-time curvature — physical effect revealing itself in a deviation of
geodesic lines, i.e., in the divergence or convergence of the trajectories of freely
moving bodies launched from close points of the space-time. The space-time
curvature is characterized by the Riemann curvature tensor.

Strange attractor — set in the phase space attracting the trajectories to
itself. A strange attractor has fractal structure.

Structure — set of elements of a system with a set of stable constraints
between elements:
• Dissipative structure — stable state of an open system, which arises as

a result of the dissipation of the energy continuously supplied from out-
side. Prigogine developed the theory of dissipative structures to explain
the behavior of systems, being far from the equilibrium. In this case,
the properties of the system in small regions of the space are described
by locally equilibrium functions with the values of macroscopic parame-
ters strongly different from equilibrium ones. The strong deviation from
the equilibrium in dissipative structures means large spatial gradients of
macroscopic parameters of a locally equilibrium system. In this case, the
moving forces of the evolution are the gradients of physical quantities.

• Nonlocal structure. Structure, which arises as a result of the process
of self-organization, i.e., the evolution of constraints in the system in
its whole spatial volume, and differs from the equilibrium system even
locally. The self-organization of the system is initiated by mass forces
leading to the coherent acceleration (in the absence of significant gradients
of macroscopic parameters inside the system). The reconstruction of
constraints and their energies in nonlocal structures occurs namely due
to the coherent acceleration at the dissipated energy and the gradients
inside the system tending to zero.

Synthesis — process of formation of new structures, i.e., the process of for-
mation of new constraints.

System:
• Open system. System, which exchanges with the environment by energy,

mass, and information.
• Closed system. System, which does not exchange with the environment

by energy, mass, and information. Energy and information in the closed
systems are conserved.

Variational principles of the evolution of a system:
• The Hamilton principle of least action (the variational principle of the

dynamics of closed systems)
• The Gauss principle of least compulsion (the general variational principle

of the dynamics including the dynamics of the systems with constraints).
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By the principle of least compulsion, the system with ideal constraints
chooses the motion with the minimal “compulsion” Z among all motions
admitted by constraints, which start from the given position with given
initial velocities. The free material point with mass m under the action
of a given force Fon itwill have the acceleration equal to F/m. If some
constraints are imposed on the point, then its acceleration under the
action of the same force F will be equal to a different value w. The
deviation of the motion of the point from free motion due to the action of
a constraint will depend on the difference of these accelerations F/m−w.
The quantity Z proportional to the square of this difference is called

“compulsion”. For a single point, Z =
1

2
m(F/m− w)

2

• Hertz least-curvature principle (the variational dynamical principle, which
is the closest to the Gauss principle and the most convenient for the sys-
tems with constraints). From all trajectories admissible by constraints,
the trajectory with the least curvature will be realized. This principle is
also called the principle of straightest path and is closely related to the
principle of least compulsion, because the quantity called the “compul-
sion” is proportional to the square of the curvature. For ideal constraints,
both principles have the same mathematical representation.

• Principle of minimal entropy production (Prigogine principle of evolution
for dissipative systems and structures). In 1947, I. Prigogine introduced
the notions of entropy production and entropy flow, gave the so-called lo-
cal formulation of the second origin of thermodynamics, and proposed the
principle of local equilibrium. He showed that, in the stationary state, the
entropy production rate in a thermodynamical system is minimal (Pri-
gogine theorem), and the entropy production flor irreversible processes in
an open system tends to a minimum (Prigogine criterion).

• Principle of dynamical harmonization (the most general principle of dy-
namical evolution of systems with varying constraints)

Appendix 2. Basic notation

η — order parameter
Df — fractal dimension
q — parameter of nonequilibrium
qs — parameter of similarity
αd — parameter of domination
Qimp — parameter of impactness
τeff — effective duration of the operation of a driver
τdis — effective duration of the dissipation
acog — coherent acceleration
Fm — mass force
Fstr — mass force initiating the formation of a structure
σS — entropy production
J — action
S — entropy
uT , pT — thermal velocity and momentum
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mstr — structure inertia (structure mass)
m — mass
B, sB — binding energy and specific binding energy per nucleon
Lstr — Lagrange function at the formation of a structure
Zdh — dynamical harmonization functional
~A, ϕ — vector and electrostatic potentials
A, Z — mass and charge of a nucleus
l+ — delocalization scale
l− −− — localization scale
δ — deformation
δ (qs) — damping decrement or increment of the instability
Dqs — Jackson operator with the parameter of similarity qs
Q — quality of an oscillatory circuit
κ — space–time curvature
gik — space–time metric
Rik — Riemann curvature tensor

Appendix 3. Main relations for the Jackson
operators (integro-differential operators of
quantum analysis)

The fractal media are characterized by the properties of the similarity of ba-
sic quantities at a variation of the space scales. Therefore, The most natural
generalization of the notion of derivative is the Jackson derivative [4], in which
the scaling operation (with the coefficient of similarity qs) is used for the de-
termination of the rate of a process instead of the operators of shift:

Dqsf (x) =
f (qsx)− f (x)

qsx− x
. (1)

In the limiting case, the Jackson derivative passes to the ordinary one: Df (x) =
lim
qs→1

Dqsf (x).

The question arises: Which functions are the eigenfunctions of the oper-
ators of Jackson q-derivatives? On the basis of the development of the notion
of q-derivatives, the so-called quantum analysis was constructed, in the frame
of which the generalizations of many significant mathematical relations were
found. For example, let us calculate the quantum q-derivative of a power func-
tion:

Dqs x
n =

(qsx)
n − xn

(qs − 1)x
=
qs
n − 1

qs − 1
xn−1 = [n]qsx

n−1, (2)

where [α]qs =
qs
α − 1

qs − 1
is the Jackson q-number, whose limits are lim

qs→1
[α]qs = α

and lim
qs→∞

[α]qs = qα−1
s . It is simple to calculate the derivative of a function

possessing the property of similarity. Let f (qsx) = qαs f (x), then

Dqs f (x) =
(qs

αf (x))− f (x)

(qs − 1)x
=
qs
α − 1

qs − 1

f (x)

x
= [α]qs

f (x)

x
. (3)
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The eigenfunction of the Riemann derivative is the exponential function ex,

which can be expanded in a power series ex =
∞∑
k=0

xk

k!
, where k! is a factorial.

Quantum analysis uses widely the q-generalization of the exponential function
exq , whose power expansion contains the generalization of k!, which is replaced
by [k]qs !:

[k]qs ! =

{
1, k = 0

[k]qs [k − 1]qs . . . .[1]qs , k > 1
. (4)

In other words, the power series for the q-exponential function takes the form

exqs =
∞∑
k=0

xn

[k]qs !
. (5)

It is easy to see that such a definition implies that the function exq is the
eigenfunction of the operator Dq:

Dqe
x
qs = Dqs

( ∞∑
k=0

xk

[k]qs !

)
=

∞∑
k=0

1

[k]qs !
Dqs

(
xk
)

=

∞∑
k=1

[k]qs
[k]qs !

xk−1 =

∞∑
k=1

1

[k − 1]qs !
xk−1 = exqs . (6)

The quantum derivative is a linear operator. Therefore, the q-derivative
of a linear combination of functions can be presented in terms of the derivatives
of separate functions by the ordinary relation. However, the q-derivative of a
product of functions has already some specific features.

Definition (1) yields the relations for the derivatives of a product of func-
tions that differ from ordinary relations by the absence of symmetry. Namely,
two different relations are simultaneously valid for the derivative of a product
of functions:

Dqs (f (x) g (x)) = f (qsx)Dqsg (x) + g (x)Dqsf (x) ,

Dqs (f (x) g (x)) = f (x)Dqsg (x) + g (qsx)Dqsf (x) .
(7)

For the functions possessing the similarity, f (qsx) = qs
αf (x) and g (qsx) =

qs
βg (x), we obtain

Dqs (f (x) g (x)) = f (x)Dqsg (x) + qs
βg (x)Dqsf (x) (8)

= f (x)Dqsg (x) + g (x)Dqsf (x) +
(
qs
β − 1

)
g (x)Dqsf (x) .

Hence, the parameter of similarity qs of the quantum differentiation character-
izes simultaneously the degree of its asymmetry.

In addition, quantum analysis considers the operators, which are inverse
to the derivatives — the operators of q-primitives. The function F (x) is called
the q-primitive for a function f (x), if DqF (x) = f (x), and is denoted by∫
f (x)dqx. It is easy to see that if a function f (x) is set by a power series

f (x) =
∞∑
k=0

akx
k, then

∫
f (x)dqsx =

∞∑
k=0

ak
[k + 1]qs

xk+1 + C. (9)
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Sometimes, it is convenient to use the formal definition of the Jackson
integral for the q-primitive of a function f (x):∫

f (x)dqsx = (1− qs)x
∞∑
k=0

qs
kf
(
qs
kx
)
. (10)

We note that the Jackson q-numbers [x]qs , which are expressed in terms
of the parameter of similarity qs, are closely related to the Tsallis nonextensive
entropy for the states with the parameter of nonequilibrium q:

Sq = −
∑
i

pq
i
lnq(pi) =

1−
∑
i

pqi

q − 1
.

In the definition of entropy, we apply the generalized logarithm

lnqx =
xq−1 − 1

q − 1
,

which satisfies the relation

lnq(xy) = lnq(x) + lnq(y) + (1− q)lnq(x)lnq(y).

The main property of the generalized entropy Sq consists in that it is not
already the extensive function. If the system is divided into two independent
subsystems A and B, then

Sq(A+B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B). (11)

Deviations from the symmetry and the ideality in this relation are deter-
mined, like that in (8), by the deviation of the relevant parameter from 1.

The majority of equilibrium physical parameters of closed ideal systems
are expressed via ordinary exponential functions coinciding with their general-
ized analogs for the coefficient of nonequilibrium q ≈ 1 and the coefficient of
similarity qs ≈ 1. The degree of deviation from the thermodynamic equilibrium
and the ideality is determined by the deviation of the mentioned parameters
from 1. The nonideal states of the system must manifest themselves, naturally,
in the oscillatory processes, which are realized in fractal media.

A model of oscillatory processes in fractal media on the basis of
quantum analysis

To study the peculiarities of oscillatory processes in fractal media, we consider
the generalization of the trigonometric functions on the basis of q-exponential
functions (5). In the frame of quantum analysis, the following new functions
are introduced:

cosq (z) =
ei zq + e−i zq

2
; sinq (z) =

ei zq − e−i zq

2i
. (12)

Using relations (6) for the quantum derivative of a generalized exponential
function, it is easy to obtain that the functions introduced with the help of
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relations (12) satisfy the relations similar to the relations for trigonometric
functions:

Dqcosq (z) = −sinq (z) , Dqsinq (z) = cosq (z) . (13)

These q-functions pass into the ordinary trigonometric functions as q → 1.
However, the deviation of the former from the latter increases with the devia-
tion of the parameter of nonextensity q from 1. In Fig. 1, we present the plots
for the q-trigonometric functions sinq (t) for various parameters of similarity.

Fig. 1. Simplest oscillatory process in a fractal medium. Plots of the functions sin (t)
and sinq (t) are given for the parameters of similarity qs=0.95 and qs=1.05

As is seen from Fig. 1, the oscillatory process described by q-trigonometric
functions has character of a dissipative process. Let us analyze this analogy
in more details. Consider the simplest self-similar oscillatory process, which
is described by the simple equation for a fractal oscillator with the use of the
Jackson derivatives:

Dq (Dqf (x)) + ω2f (x) = 0. (14)

By the direct substitution, it is easy to verify that the general solution of this
equation is the function f (x) = C1sinq (ω x) + C2cosq (ω x). The case shown
in Fig. 1 corresponds to the initial conditions f (0) = 0 and Dqf (0) = 1, for
which f (x) = sinq (ω x).

In practical applications, it is convenient to approximate the Jackson q-
functions, which are represented by infinite series, by their finite algebraic
expressions. It is natural to make it with the use of nonequilibrium quasipower

generalizations of the exponential function, expq (x) = (1 + (1− q)x)

1

1− q ,
which allow us to write the quasipower generalizations of the trigonometric
functions:

qCos (z) =
expq (iz) + expq (−iz)

2
; qSin (z) =

expq (iz)− expq (−iz)
2i

. (15)

We now consider the generalized exponential functions expq (−zk) and e−zkqs
on the interval 0 6 zk 6 4 and define the connection between the parameter
of nonequilibrium q and the parameter of similarity qs from the condition of

minimum for
∑N
k=1

(
expq(−zk)− e−zkqz

)2
. As a result, we obtain

q (qs) =

{
2.023− 1.5608qs + 0.5380q2

s , qs 6 1

1.7005− 0.9234qs + 0.2223q2
s , qs > 1

. (16)
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In Fig. 2 on the left, we show the self-similar oscillatory process f (x) =
sinq (ω x) and its approximation with the generalized exponential functions
expq (−zk), for which the parameter q is determined by relation (16). We indi-
cate a sufficiently high accuracy of the approximation. On the right, we present
the phase portrait of this self-similar oscillation.

Fig. 2. Simplest oscillatory self-similar process, its approximation wlith generalized ex-
ponential functions (on the left), and the corresponding phase trajectory (on the right).

It is seen that the oscillatory process with the coefficient of similarity qs
corresponds approximately to the unstable oscillatory process

g (x) = e−δx sin (ωx+ ∆ϕ)

described by the equation with ordinary derivatives for an oscillator with neg-
ative damping δ:

D1
x

(
D1
xg (x)

)
− δD1

xg (x) + ω2g (x) = 0. (17)

The parameters of similarity and damping are connected by a relation that
will be determined from the condition of the maximal coincidence of the phase
trajectories of a self-similar oscillation and unstable (or decaying) linear oscil-
lations by the method of least squares:

δ (qs) =

{
3.4931(1− qs)0.6473

, qs < 1

−10.8126(qs − 1)
0.7969

, qs > 1
. (18)


