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1 Introduction

The set of natural numbers N = {0, 1, 2, ...} is a fundamental object in
the mathematics. In certain sense N is the root of all modern mathematics.
Other mathematical structures may be created as a logical development of this
object. The latter motivated L. Kronecker who summarized “God made the
integers, all else is the work of man”. There is famous citation from I. Kant:
“Two things fill the mind: the starry heavens above me and the moral law
within me”. A mathematician may continue: “and natural numbers given to
my mind”.

From the time of Pithagoras philosophers was trying to see hidden mean-
ing of natural numbers and their mystical properties. Considering N as a set
of real things in mathematics we will ask ourself about possible ideas behind
these numbers. The myth of Plato’s Cave served as one of the motivations for
developing his concept of a world of ideas and a world of things. In the dialogue
“State” he gives several examples illustrating this concept. As we know, Plato
considered mathematics as one of the most important building blocks used to
construct his philosophical system. Mathematical theories can serve as simple
and illustrative tools for the existence of a world of ideas and a world of things.
In a number of model situations, we are dealing with objects that appear from
our observations in physics, biology, ecology, etc., yet full understanding of the
mathematical structures of these models requires consideration of more gen-
eral mathematical theories, which under some canonical mapping leads to the
model situations in question.

The first and essentially obvious observation here is the following. A num-
ber n ∈ N we interpret as a number of objects (a population) located in a loca-
tion space X. For simplicity we take X = Rd. The collection of all n-point sub-
sets (or configurations with n elements) form a locally compact space Γ(n)(Rd).
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It is the space (quite huge) of ideas for the number n. Then to N corresponds
the set

Γ0(Rd) = ∪∞n=0Γ(n)(Rd)

of all finite configurations. We can consider additionally the set Γ(Rd) consist-
ing all locally finite configurations. This set may be considered as the space
of ideas which corresponds to natural numbers and additionally to the actual
infinity which is absent in the classical framework on natural numbers.

In such extension of N we arrive in the main question. Namely, most
important mathematical theories related to natural numbers we need to develop
to this new level. It concerns, first of all, the combinatorics that play central
role in many mathematical structures and applications from probability theory
to genetics. In this note we will try to show such possibility trying to be as
much as possible on technically simple ground. To be friendly to more wide
audience, we restrict out explanations to descriptions of main constructions and
formulation of some particular results. For detailed discussions and extended
references we refer to the recent paper [2].

2 Classical combinatorics

The combinatoric is dealing with the set of natural numbers N and rela-
tions between them. As an important object we introduce binomial coefficients:Ç

n

k

å
=
n(n− 1)...(n− k + 1)

k!

defined for n ∈ N and 0 ≤ k ≤ n. Introducing the falling factorial (n)k we can
write Ç

n

k

å
=

(n)k
k!

.

These coefficients may be extended using embedding N ⊂ R to polynomials

Nk(t) :=

Ç
t

k

å
=
t(t− 1)...(t− k + 1)

k!
=

(t)k
k!

, t ∈ R

which are called Newton polynomials. For Newton polynomials hold Chu-
Vandermond relations:

(t+ s)n =

n∑
k=0

Ç
n

k

å
(t)k(s)n−k.

An alternative definition is given by the generation function

eλ(t) := et log(1+λ) =

∞∑
n=0

λn

n!
(t)n =

∞∑
n=)

λnNn(t).

Such transition to continuous variables makes possible to apply in discrete
mathematics methods of analysis. Note that using many particular generation
functions we may create different polynomial systems.
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Transition to continuous variables makes possible to apply in discrete
mathematics methods of analysis. In particular, let us define for functions
f : R→ R difference operators

(D+f)(t) = f(t+ 1)− f(t),

(D−f)(t) = f(t− 1)− f(t).

By a direct computation we obtain

D+(t)n = n (t)n−1,

D−(t)n = −n (t− 1)n−1.

Additionally,
D+eλ(t) = λeλ(t).

In this way we arrive in the framework of difference calculus closely related with
the combinatorics [3]. There are specific questions inside of difference calculus
as, e.g., an analysis of Newton series

∞∑
n=0

anNn(t)

and many others.
For functions a : N→ R we define b : N→ R as

b = Ka, b(n) =

n∑
k=0

Ç
n

k

å
a(k).

This operator K (aka combinatorial transform) is very useful in combinatorics
and its inverse gives so-called inclusion-exclusion formula:

a(n) =

n∑
k=0

Ç
n

k

å
(−1)n−kb(k).

Note that for a : N→ R, a(j) = 0, j 6= k, a(k) = 1

(Ka)(n) =

Ç
n

k

å
= k!Nk(n).

3 Spatial combinatorics

Any n ∈ N we interpret as the size of a population. It is convenient in the
study of population models. There is a natural generalization leading to spatial
ecological models. Now we would like to consider objects located in a given
locally compact space X. For simplicity we will work with the Euclidean space
Rd. For the substitution of N in this situation we can use two possible sets.
Denote Γ(Rd) the set of all locally finite configurations (subsets) from Rd.

Γ(Rd) = {γ ⊂ Rd | |γ ∩K| <∞, any compact K ⊂ Rd}.
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It is the first version of the space in the spatial (continuous) combinatoric
we will use.

Another possibility, is to introduce the set of all finite configurations
Γ0(Rd). Then

Γ0(Rd) = ∪∞n=0Γ(n)(Rd),

where Γ(n)(Rd) denoted the set of all configurations with n elements. We
will see that in the continuous combinatoric the spaces Γ(Rd) and Γ0(Rd) will
play very different roles. It is a specific moment related with transition to the
continuum. In this sense N is splitting in these two spaces of configurations that
makes corresponding combinatorics essentially more reach and sophisticated.

Configuration spaces present beautiful combinations of discrete and con-
tinuous properties. In particular, in these spaces we have interesting differential
geometry, differential operators and diffusion processes etc., see e.g. [1]. From
the other hand side, discreteness of an individual configuration makes possible
to introduce proper analog of the difference calculus.

Note from the beginning, that the analog of the extension N ⊂ R now
naturally play the pair Γ(Rd) ⊂M(Rd) where we have in mind an imbedding
of configurations in the space of discrete Radon measures on Rd and, as a result,
in the space of all Radon mesures on Rd :

Γ(X) 3 γ 7→ γ(dx) =
∑
y∈γ

δy(dx) ∈M(Rd).

Therefore, instead of pair

N ⊂ R

we have

Γ(Rd) ⊂M(Rd).

As a result, the transition to “continuous” variables in the considered situation
leads to functions on M(Rd). In spatial combinatorics many objects will be
measure-valued.

Now we will introduce an analog of the generation function from classical
combinatorics. For a test function from the Schwarz space of test functions
D(Rd) 0 ≤ ξ ∈ D(Rd) consider a function

Eξ(ω) = e<ln(1+ξ),ω> ω ∈ D′(Rd)

that is a function on the space of Schwarz distributions. The power decompo-
sition w.r.t. ξ gives

Eξ(ω) =

∞∑
n=0

1

n!
< ξ⊗n, (ω)n > .

Generalized kernels (ω)n ∈ D′(Rnd) are called infinite dimensional falling facto-
rials on D′(Rd). Define binomial coefficients (Newton polynomials) on D′(Rd)
as Ç

ω

n

å
=

(ω)n
n!

.
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Note that these objects are defined now on the very big space of distributions.
In particular cases we shall restrict them on the space of configuration or Radon
measures.

In particular, infinite dimensional Chu-Vandermond relations on configu-
rations is

(γ1 ∪ γ2)n =

n∑
k=0

Ç
n

k

å
(γ1)k ⊗ (γ2)n−k.

Theorem 1. For ω ∈M(Rd)

(ω)0 = 1,

(ω)1 = ω,

(ω)n(x1, ..., xn) = ω(x1)(ω(x2)− δx1
(x2))...(ω(xn)− δx1

(xn)− ...− δxn−1
(xn)).

In the particular case ω = γ = {xi | i ∈ N}

(γ)n = n!

Ç
γ

n

å
=

∑
{i1....,in}⊂N

δx1 � ...� δxn ,

where δx1
� ...� δxn

denotes symmetric tensor product.
We have

Γ(Rd) 3 γ 7→ γ(dx) ∈M(Rd).

Due to our construction
(γ)n ∈M(Rnd)

is a symmetric Radon masure. Therefore, we arrive in measure valued Newton
polynomials. The latter is the main consequence of continuous combinatoric
transition.

4 Difference geometry for spatial combinatorics

For any x ∈ γ define an elementary Markov death operator (death gradi-
ent)

D−x F (γ) = F (γ \ x)− F (γ)

and the tangent space T−γ (Γ) = L2(Rd, γ). Then for ψ ∈ C0(Rd)

D−ψF (γ) =
∑
x∈γ

ψ(x)(F (γ \ x)− F (γ))

is the directional (difference) derivative.
Similarly, we define for x ∈ Rd

D+
x F (γ) = F (γ ∪ x)− F (γ)

and the tangent space T−γ (Γ) = L2(Rd, dx). Then for ϕ ∈ C0(Rd)

D+
ϕF (γ) =

∫
Rd

ϕ(x)(F (γ ∪ x)− F (γ))dx

is another directional (difference) derivative.
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For ϕ ∈ C0(Rd) define a function

Eϕ(γ) = exp(< γ, log(1 + ϕ) >), γ ∈ Γ.

It is the generation function for the system on falling factorials (Newton poly-
nomials) on Γ:

Eϕ(γ) =

∞∑
n=0

1

n!
< ϕ⊗n, (γ)n > .

Then

D+
ψEϕ(γ) =< ϕψ > Eϕ(γ).

An explicit formula for the falling factorials (as measures on (Rd)n) is

(γ)n =
∑

{x1,...,xn}⊂γ

δx1 � δx2 � · · · � δxn ,

where δx1
� δx2

� · · · � δxn
denotes the symmetric tensor product of measures.

The action of difference derivatives on Newton monomials is given by

D+
ψ < ϕ(n), (γ)n >= n

∫
Rd

ψ(x) < ϕ(n)(x, ·), (γ)n−1(·) > dx,

D−ψ < ϕ(n), (γ)n >= −n
∑
x∈γ

ψ(x) < ϕ(n)(x, ·), (γ \ x)n−1(·) > .

5 Stirling kernels

We have polynomial equality

(γ)n =

n∑
k=1

snkγ
⊗k,

where

snk : D′(Rkd)→ D′(Rnd)

is a linear mapping.
On other side

γ⊗n =

n∑
k=0

Snk (γ)k,

where

Snk : D′(Rkd)→ D′(Rnd)

is a linear mapping.
Kernels snk and Snk we will call Stirling kernels of first and second kind

respectively. In the classical combinatorics Stirling coefficients play a very
important role.
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For f (n) ∈ D(Rnd)

< (γ)n, f
(n) >=

n∑
k=0

n!

k!
< γ⊗k(x1, ..., xk),

∑
i1+...ik=n

(−1)n+k

i1...ik
f (n)(x1, ..., x1︸ ︷︷ ︸

i1times

, ..., xk, ..., xk︸ ︷︷ ︸
iktimes

) > .

For the second kind kernels

< γ⊗n, f (n) >=

n∑
k=0

1

k!
< (γ)k(x1, ..., xk),

∑
i1+...ik=n

Ç
n

i1...ik

å
f (n)(x1, ..., x1︸ ︷︷ ︸

i1times

, ..., xk, ..., xk︸ ︷︷ ︸
iktimes

) > .

6 Harmonic analysis on Γ(Rd)

Functions G : Γ0(Rd) → R we call quasi-observables. Note that G re-
stricted on Γ(n)(Rd) is given by a symmetric kernel G(n)(x1, ..., xn) and then

G = (G(n))∞n=0.

Functions F : Γ(Rd) → R we call observables. For a quasi-observable G
define an operator

(KG)(γ) =
∑

η⊂γ,|η|<∞

G(η), γ ∈ Γ(Rd)

that is an observable. To be well defined we need certain assumptions aboutG [4].
For G1, G2 : Γ0(Rd)→ R define

(G1 ? G2)(η) =
∑

η1∪η2∪η3=η

G1(η1 ∪ η2)G2(η2 ∪ η3).

Then
K(G1 ? G2) = KG1KG2.

Let µ ∈M1(Γ(Rd)).

K : Fun(Γ0)→ Fun(Γ),

K∗ :M1(Γ)→M(Γ0),

K∗µ = ρ, ρ = (ρ(n))∞n=0.

The measure ρ is called correlation measure for µ (Fourier transform of µ).
Assume absolute continuity

dρ(n)(x1, ..., xn) =
1

n!
k(n)(x1, ..., xn)dx1...xn.

We call k(n)(x1, ..., xn), n ∈ N correlation functions of the measure µ.
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Transition from measures to CFs is one of the main technical aspects of
the analysis on CS in applications to dynamical problems.

Alternatively define the Bogoliubov functional

Bµ(φ) =

∫
Γ(Rd)

e<γ,log(1+φ>)dµ(γ).

Assuming Bµ is holomorphic in φ ∈ L1(Rd) we obtain

Bµ(φ) =

∞∑
n=0

1

n!

∫
k(n)(x1, ..., xn)φ(x1)...φ(xn)dx1...dxn.

7 From spatial to classical combinatorics

Having developed combinatorial structures in the continuum, we may con-
sider the inverse direction. Namely, how looks like our infinite-dimensional
objects in the one dimensional reduction. Surprisingly, it may give some new
structures even in this classical case.

Let a, b : N→ R. Define a convolution

(a ? b)(n) =
∑

j+k+l=n

a(j + k)b(k + l).

As before

(Ka)(n) =

n∑
k+0

Ç
n

k

å
a(k).

Then
K(a ? b) = Ka ·Kb.

Introduce coherent states

eλ(·) : N→ C, eλ(n) = λn, λ ∈ C.

(Keλ)(n) = (1 + λ)n.

The configuration space Γ(Rd) is the space of microscopic states in the
classical statistical physics of continuous systems. A measure µ ∈ M1(Γ(Rd))
is a macroscopic state of a continuous system in the statistical physics. Coming
back we can interpret (a bit naively) a measure µ ∈ M1(N) as a state of 0D
system.

For example, the Poisson measure for σ > 0 is defined as

πσ(n) = e−σ
σn

n!
.

Several characteristics we can incorporate in such a case from the analysis
on Γ(Rd). Introduce the Bogoliubov functional:

B(λ) =

∫
R+

(1 + λ)xdµ(x).

(1 + λ)x =

∞∑
n=0

λn

n!
(x)n.



42 Yu. Kondratiev

Theorem 2. Let µ ∈ M1(R+). Then µ(N) = 1 iff B(λ) has a holomorphic
extension.

Similarly we can define correlation measures∫
N

(Ka)(x)dµ(x) =

∫
N
a(x)dρµ(x).

ρµ(n) =
1

n!

∫
N

(x)ndµ(x) =

∞∑
m=n

Ç
m

n

å
µ(m).
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