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Abstract. We consider a method for the construction of Markov sta-
tistical dynamics for a class of birth-and-death ecological models in the
continuum. Mesoscopic scaling limits for these dynamics lead to the ki-
netic equations for the density of a population. The resulting evolution
equations are non-local and non-linear ones. We discuss properties of solu-
tions to kinetic equations which strongly depend on characteristics of the
models considered. The survey paper is devoted to giving an overview of
our recent progress on the subject and it is not intended to be a complete
review of the field.

1 Introduction

Dynamics of interacting particle systems appear in several areas of the
complex systems theory. In particular, we observe a growing activity in the
study of Markov dynamics for continuous systems. The latter fact is moti-
vated, in particular, by modern problems of mathematical physics, ecology,
mathematical biology, and genetics, see e.g. [16, 17, 20, 35] and literature cited
therein. Moreover, Markov dynamics are used for the construction of social,
economic and demographic models. Note that Markov processes for conti-
nuous systems are considering in the stochastic analysis as dynamical point
processes [28, 29, 31] and they appear even in the representation theory of big
groups [7, 8].

A mathematical formalization of the problem may be described as the
following. As a phase space of the system we use the space Γ(Rd) of locally
finite configurations in the Euclidean space Rd. An heuristic Markov generator
which describes considered model is given by its expression on a proper set
of functions (observables) over Γ(Rd). With this operator we can relate two
evolution equations. Namely, backward Kolmogorov equation for observables
and Kolmogorov forward equation on probability measures on the phase space
Γ(Rd) (macroscopic states of the system). The latter equation is a.k.a. Fokker–
Planck equation in the mathematical physics terminology. Comparing with
the usual situation in the stochastic analysis, there is an essential technical
difficulty: corresponding Markov process in the configuration space may be
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constructed only in very special particular cases. As a result, a description of
Markov dynamics in terms of random trajectories is absent for most of models
under considerations.

As an alternative approach we use a concept of the statistical dynamics
that substitutes the notion of a Markov stochastic process. A central object
now is an evolution of states of the system that shall be defined by mean of the
Fokker–Planck equation. This evolution equation with respect to probability
measures on Γ(Rd) may be reformulated as a hierarchical chain of equations for
correlation functions of considered measures. Such kind of evolution equations
are well known in the study of Hamiltonian dynamics for classical gases as
BBGKY chains but now they appear as a tool for construction and analysis
of Markov dynamics. As an essential technical step, we consider related pre-
dual evolution chains of equations on the so-called quasi-observables. As it
will be shown in the paper, such hierarchical equations may be analyzed in
the framework of semigroup theory with the use of powerful techniques of
perturbation theory for the semigroup generators etc. Considering the dual
evolution for the constructed semigroup on quasi-observables we introduce then
the dynamics on correlation functions. Such a scheme of constructing the
dynamics comes as a surprise because one cannot expect any perturbation
techniques for the initial Kolmogorov evolution equations. The point is that
states of infinite interacting particle systems are given by measures which are, in
general, mutually orthogonal. As a result, we can not compare their evolutions
or apply a perturbative approach. But under quite general assumptions they
have correlation functions and corresponding dynamics may be considered in a
common Banach space of correlation functions. Proper choice of this Banach
space means, in fact, that we find an admissible class of initial states for which
the statistical dynamics may be constructed. There we see again a crucial
difference comparing with the framework of Markov stochastic processes, where
the evolution is defined for any initial distribution.

Another interesting topic is related to the study of different scalings of
the microscopic systems. Among others, the crucial role from the point of
view of applications is played mesoscopic (Vlasov) description of the mentioned
above microscopic systems. Originally, the notion of the Vlasov scaling was
related to the Hamiltonian dynamics of interacting particle systems. This is a
mean field scaling limit when the influence of weak long-range forces is taken
into account. Rigorously, this limit was studied by W. Braun and K. Hepp
in [5] for the Hamiltonian dynamics, and by R. L. Dobrushin [11] for more
general deterministic dynamical systems. In [15], we proposed a general scheme
for a Vlasov-type scaling of stochastic Markovian dynamics. Our approach is
based on a proper scaling of the evolutions of correlation functions proposed
by H. Spohn in [46] for the Hamiltonian dynamics. The present paper is meant
to provide a comprehensive overview of our recent approaches to the birth and
death stochastic dynamics. In particular, the approach proposed in [15] gives
us a rigorous framework for the study of convergence of the scaled hierarchical
equations to a solution of the limiting Vlasov hierarchy, and for the derivation
of a resulting non-linear evolutional equation for the density of the limiting
system. We consider some special birth-and-death models to show how the
general conditions proposed in the paper may be verified in applications.
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In the last section we study the kinetic (Vlasov) equation which corre-
sponds to the birth-death Bolker–Pacala–Dieckman–Law (BDLP) model [9].
Namely, we consider a non-linear non-local evolution equation with non-local
terms, which are convolutions with probability densities. We demonstrate that
the long-time behavior of the solution depends on the asymptotic of the birth
kernel and the initial condition, where either constant speed of the propagation
or acceleration may be observed. Under additional assumptions, we also prove
existence and uniqueness of traveling waves.

The results introduced in this article do not pretend to be novel. The
present survey work provides a thorough summary of our papers [14–16, 18,
19, 21, 22, 24–26] as well as our understanding of fundamental ideas and results
on the subject.

The structure of the paper is following. Section 2 contains a brief summary
of the mathematical description of complex systems. In Section 3 we discuss
general concept of statistical dynamics for Markov evolutions in the continuum
and introduce necessary mathematical structures. Then, in Section 4, this
concept is applied to an important class of Markov dynamics of continuous
systems, namely, to birth-and-death models. Here general conditions for the
existence of a semigroup evolution in a space of quasi-observables are obtained.
Then we construct evolutions of correlation functions as dual objects. It is
shown how to apply general results to the study of particular models of statis-
tical dynamics coming from mathematical physics and ecology. In Section 5 we
discuss the Vlasov-type scaling for birth-and-death stochastic dynamics. Fi-
nally, in Section 6 we study the kinetic (Vlasov) equation for the birth-death
BDLP model.

2 Mathematical description of complex
systems

We proceed to the mathematical realization of complex systems.
Let B(Rd) be the family of all Borel sets in Rd, d ≥ 1; Bb(Rd) denotes the

system of all bounded sets from B(Rd).
The configuration space over space Rd consists of all locally finite subsets

(configurations) of Rd. Namely,

Γ = Γ
(
Rd
)

:=
{
γ ⊂ Rd

∣∣∣ |γΛ| <∞, for all Λ ∈ Bb(Rd)
}
.

Here | · | means the cardinality of a set, and γΛ := γ ∩ Λ. We may identify
each γ ∈ Γ with the non-negative Radon measure

∑
x∈γ δx ∈M(Rd), where δx

is the Dirac measure with unit mass at x,
∑
x∈∅ δx is, by definition, the zero

measure, andM(Rd) denotes the space of all non-negative Radon measures on
B(Rd). This identification allows us to endow Γ with the topology induced by
the vague topology on M(Rd), i.e. the weakest topology on Γ with respect to
which all mappings

Γ 3 γ 7→
∑

x∈γ
f(x) ∈ R

are continuous for any f ∈ C0(Rd), the set of all continuous functions on
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Rd with compact supports. It is worth noting the vague topology may be
metrizable in such a way that Γ becomes a Polish space (see e.g. [33] and
references therein).

Corresponding to the vague topology the Borel σ-algebra B(Γ) appears
the smallest σ-algebra for which all mappings

Γ 3 γ 7→ NΛ(γ) := |γΛ| ∈ N0 := N ∪ {0} (2.1)

are measurable for any Λ ∈ Bb(Rd), see e.g. [3].
Among all measurable functions F : Γ → R̄ := R ∪ {∞} we mark out

the set F0(Γ) consisting of such of them for which |F (γ)| < ∞ at least for
all |γ| < ∞. The important subset of F0(Γ) formed by cylindric functions
on Γ. Any such a function is characterized by a set Λ ∈ Bb(Rd) such that
F (γ) = F (γΛ) for all γ ∈ Γ. The class of cylindric functions we denote by
Fcyl(Γ) ⊂ F0(Γ).

Functions on Γ are usually called observables . This notion is borrowed
from statistical physics and means that typically in course of empirical inves-
tigation we may estimate, check, see only some quantities derived from the
system as a whole rather then look into the system itself.

We denote the class of all probability measures on
(
Γ,B(Γ)

)
by M1(Γ).

Given a distribution µ ∈ M1(Γ) one can consider a collection of random vari-
ables NΛ(·), Λ ∈ Bb(Rd) defined in (2.1). They describe random numbers of
elements inside bounded regions. The natural assumption is that these random
variables should have finite moments. Thus, we consider the class M1

fm(Γ) of
all measures from M1(Γ) such that

∫

Γ

|γΛ|n dµ(γ) <∞, Λ ∈ Bb(Rd), n ∈ N.

Example 2.1. Let σ be a non-atomic Radon measure on
(
Rd,B(Rd)

)
. Then

the Poisson measure πσ with intensity measure σ is defined on B(Γ) by

πσ
(
{γ ∈ Γ

∣∣NΛ(γ) = |γΛ| = n}
)

=

(
σ(Λ)

)n

n!
exp
{
−σ(Λ)

}
, Λ ∈ Bb(Rd), n ∈ N0.

In the case of the Lebesgue measure σ(dx) = dx one can say about the ho-
mogeneous Poisson distribution (measure) π := πdx with constant intensity 1.

The space of (finite) configuration which belong to a bounded domain
Λ ∈ Bb(Rd) will be denoted by Γ(Λ). The σ-algebra B(Γ(Λ)) may be generated
by family of mappings Γ(Λ) 3 γ 7→ NΛ′(γ) ∈ N0, Λ′ ∈ Bb(Rd), Λ′ ⊂ Λ.
A measure µ ∈ M1

fm(Γ) is called locally absolutely continuous with respect
to the Poisson measure π if for any Λ ∈ Bb(Rd) the projection of µ onto
Γ(Λ) is absolutely continuous with respect to (w.r.t.) the projection of π onto
Γ(Λ). More precisely, if we consider the projection mapping pΛ : Γ → Γ(Λ),
pΛ(γ) := γΛ then µΛ := µ ◦ p−1

Λ is absolutely continuous w.r.t. πΛ := π ◦ p−1
Λ .

By e.g. [32], for any µ ∈ M1
fm(Γ) which is locally absolutely continuous

w.r.t the Poisson measure, there exists the family of (symmetric) correlation

functions k
(n)
µ : (Rd)n → R+ := [0,∞) which defined as follows. For any

symmetric function f (n) : (Rd)n → R with finite support the following equality
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holds

∫

Γ

∑

{x1,...,xn}⊂γ
f (n)(x1, . . . , xn) dµ(γ)

=
1

n!

∫

(Rd)n
f (n)(x1, . . . , xn)k(n)

µ (x1, . . . , xn) dx1 . . . dxn (2.2)

for n ∈ N, and k
(0)
µ := 1.

The meaning of this notion is the following: the correlation function

k
(n)
µ (x1, . . . , xn) describes the non-normalized density of probability to have

points of our systems in the positions x1, . . . , xn.
The symmetric function of n variables from Rd can be considered as functi-

ons on n-point subsets from Rd. We proceed now to the exact constructions.
The space of n-point configurations in Y ∈ B(Rd) is defined by

Γ(n)(Y ) :=
{
η ⊂ Y

∣∣ |η| = n
}
, n ∈ N.

We put Γ(0)(Y ) := {∅}. As a set, Γ(n)(Y ) may be identified with the symme-
trization of

›Y n =
{

(x1, . . . , xn) ∈ Y n
∣∣ xk 6= xl if k 6= l

}
.

Hence, one can introduce the corresponding Borel σ-algebra, which we denote
by B

(
Γ(n)(Y )

)
. The space of finite configurations in Y ∈ B(Rd) is defined as

Γ0(Y ) :=
⊔

n∈N0

Γ(n)(Y ).

This space is equipped with the topology of the disjoint union. Let B
(
Γ0(Y )

)

denote the corresponding Borel σ-algebra. In the case of Y = Rd we will omit
the index Y in the previously defined notations. Namely,

Γ0 := Γ0(Rd), Γ(n) := Γ(n)(Rd), n ∈ N0.

The restriction of the Lebesgue product measure (dx)n to
(
Γ(n),B(Γ(n))

)

we denote by m(n). We set m(0) := δ{∅}. The Lebesgue–Poisson measure λ on
Γ0 is defined by

λ :=
∞∑

n=0

1

n!
m(n). (2.3)

For any Λ ∈ Bb(Rd) the restriction of λ to Γ0(Λ) = Γ(Λ) will be also denoted
by λ.

Remark 2.1. The space
(
Γ,B(Γ)

)
is the projective limit of the family of measu-

rable spaces
{(

Γ(Λ),B(Γ(Λ))
)}

Λ∈Bb(Rd)
. The Poisson measure π on

(
Γ,B(Γ)

)

from Example 2.1 may be defined as the projective limit of the family of
measures {πΛ}Λ∈Bb(Rd), where πΛ := e−m(Λ)λ is a probability measure on(
Γ(Λ),B(Γ(Λ))

)
and m(Λ) is the Lebesgue measure of Λ ∈ Bb(Rd) (see e.g. [3]

for details).
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Functions on Γ0 will be called quasi-observables . Any B(Γ0)-measurable
function G on Γ0 is, in fact, defined by a sequence of functions

{
G(n)

}
n∈N0

where G(n) is a B(Γ(n))-measurable function on Γ(n). We preserve the same
notation for the function G(n) considered as a symmetric function on (Rd)n.
Note that G(0) ∈ R.

A set M ∈ B(Γ0) is called bounded if there exists Λ ∈ Bb(Rd) and N ∈ N
such that

M ⊂
N⊔

n=0

Γ(n)(Λ).

The set of bounded measurable functions on Γ0 with bounded support we
denote by Bbs(Γ0), i.e., G ∈ Bbs(Γ0) iff G �Γ0\M= 0 for some bounded M ∈
B(Γ0). For any G ∈ Bbs(Γ0) the functions G(n) have finite supports in (Rd)n
and may be substituted into (2.2). But, additionally, the sequence of G(n)

vanishes for big n. Therefore, one can sum up equalities (2.2) over n ∈ N0.
This requires the following definition.

Let G ∈ Bbs(Γ0), then we define the function KG : Γ→ R by

(KG)(γ) :=
∑

ηbγ
G(η)

= G(0) +
∞∑

n=1

∑

{x1,...,xn}⊂γ
G(n)(x1, . . . , xn), γ ∈ Γ, (2.4)

see e.g. [32, 37, 38]. The summation in (2.4) is taken over all finite subconfi-
gurations η ∈ Γ0 of the (infinite) configuration γ ∈ Γ; we denote this by the
symbol, η b γ. The mapping K is linear, positivity preserving, and invertible,
with

(K−1F )(η) :=
∑

ξ⊂η
(−1)|η\ξ|F (ξ), η ∈ Γ0. (2.5)

By [32], for any G ∈ Bbs(Γ0), we have KG ∈ Fcyl(Γ), moreover, there exists
C = C(G) > 0, Λ = Λ(G) ∈ Bb(Rd), and N = N(G) ∈ N such that

|KG(γ)| ≤ C
(
1 + |γΛ|

)N
, γ ∈ Γ.

The expression (2.4) can be extended to the class of all nonnegative measurable
G : Γ0 → R+, in this case, evidently, KG ∈ F0(Γ). Stress that the left hand
side (l.h.s.) of (2.5) has a meaning for any F ∈ F0(Γ), moreover, in this case
(KK−1F )(γ) = F (γ) for any γ ∈ Γ0.

For G as above we may sum up (2.2) over n and rewrite the result in a
compact form:

∫

Γ

(KG)(γ) dµ(γ) =

∫

Γ0

G(η)kµ(η) dλ(η). (2.6)

As was shown in [32], the equality (2.4) may be extended on all functions G
such that the l.h.s. of (2.6) is finite. In this case (2.4) holds for µ-a.a. γ ∈ Γ
and (2.6) holds, too.
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3 Statistical descriptions of Markov evolutions

Spatial Markov processes in Rd may be described as stochastic evolutions
of configurations γ ⊂ Rd. In course of such evolutions points of configurations
may disappear (die), move (continuously or with jumps from one position to
another), or new particles may appear in a configuration (that is birth). The
rates of these random events may depend on whole configuration that reflect
an interaction between elements of the system.

The construction of a spatial Markov process in the continuum is a highly
difficult question which is not solved in a full generality at present, see e.g.
the review [44] and more detail references about birth-and-death processes in
Section 3. Meanwhile, for discrete systems the corresponding processes have
been constructed under quite general assumptions, see e.g. [39]. One of the
main difficulties for continuous systems includes the necessity to control number
of elements in a bounded region. Note that the construction of spatial processes
on bounded sets from Rd is typically well understood, see e.g. [23].

The existing Markov process Γ 3 γ 7→ Xγ
t ∈ Γ, t > 0 provides solution to

the backward Kolmogorov equation for bounded continuous functions:

d

dt
Ft = LFt,

where L is the Markov generator of the process Xt. The question about exis-
tence for a Markov process with a generator L is still open. On the other hand,
the evolution of a state in the course of a stochastic dynamics is an important
question in its own right. A mathematical formulation of this question may
be realized through the forward Kolmogorov equation for probability measures
(states) on the configuration space Γ. Namely, we consider the pairing between
functions and measures on Γ given by

〈F, µ〉 :=

∫

Γ

F (γ) dµ(γ). (3.1)

Then we consider the initial value problem

d

dt
〈F, µt〉 = 〈LF, µt〉, t > 0, µt

∣∣
t=0

= µ0, (3.2)

where F is an arbitrary function from a proper set, e.g. F ∈ K
(
Bbs(Γ0)

)
⊂

Fcyl(Γ). In fact, the solution to (3.2) describes the time evolution of distributi-
ons instead of the evolution of initial points in the Markov process. We rewrite
(3.2) in the heuristic form

d

dt
µt = L∗µt, (3.3)

where L∗ is the (informally) adjoint operator of L with respect to the pairing
(3.1).

In the physical literature, (3.3) is referred to the Fokker–Planck equa-
tion. The Markovian property of L yields that (3.3) might have a solution in
the class of probability measures. However, the mere existence of the corre-
sponding Markov process will not give us much information about properties
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of the solution to (3.3), in particular, about its moments or correlation functi-
ons. To get it, we suppose now that a solution µt ∈ M1

fm(Γ) to (3.2) exists
and remains locally absolutely continuous with respect to the Poisson measure
π for all t > 0 provided µ0 has such a property. Then one can consider the
correlation function kt := kµt , t ≥ 0. If we suppose that

LF ∈ F0(Γ) for all F ∈ Fcyl(Γ), (3.4)

then, one can calculate K−1LF using (2.5), and, by (2.6), we may rewrite
(3.2) as

d

dt
〈〈K−1F, kt〉〉 = 〈〈K−1LF, kt〉〉, t > 0, kt

∣∣
t=0

= k0, (3.5)

for all F ∈ K
(
Bbs(Γ0)

)
⊂ Fcyl(Γ). Here the pairing between functions on Γ0

is given by

〈〈G, k〉〉 :=

∫

Γ0

G(η)k(η) dλ(η). (3.6)

Let us recall that then, by (2.3),

〈〈G, k〉〉 =
∞∑

n=0

1

n!

∫

(Rd)n
G(n)(x1, . . . , xn)k(n)(x1, . . . , xn) dx1 . . . dxn,

Next, if we substitute F = KG, G ∈ Bbs(Γ0) in (3.5), we derive

d

dt
〈〈G, kt〉〉 = 〈〈L̂G, kt〉〉, t > 0, kt

∣∣
t=0

= k0, (3.7)

for all G ∈ Bbs(Γ0). Here the operator

(L̂G)(η) := (K−1LKG)(η), η ∈ Γ0

is defined point-wise for all G ∈ Bbs(Γ0) under conditions (3.4). Consequently,
we are interested in a weak solution to the equation

d

dt
kt = L̂∗kt, t > 0, kt

∣∣
t=0

= k0, (3.8)

where L̂∗ is dual operator to L̂ with respect to the duality (3.6), namely,

∫

Γ0

(L̂G)(η)k(η) dλ(η) =

∫

Γ0

G(η)(L̂∗k)(η) dλ(η). (3.9)

The procedure of deriving the operator L̂ for a given L is fully combinato-
rial meanwhile to obtain the expression for the operator L̂∗ we need an analog
of integration by parts formula.

We recall that any function on Γ0 may be identified with an infinite vector
of symmetric functions of the growing number of variables. In this approach,
the operator L̂∗ in (3.8) will be realized as an infinite matrix

(
L̂∗n,m

)
n,m∈N0

,

where L̂∗n,m is a mapping from the space of symmetric functions of n variables
into the space of symmetric functions of m variables. As a result, instead of
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equation (3.2) for infinite-dimensional objects we obtain an infinite system of

equations for functions k
(n)
t each of them is a function of a finite number of

variables, namely

d

dt
k

(m)
t (x1, . . . , xm) =

∑

n∈N0

(
L̂∗n,mk

(n)
t

)
(x1, . . . , xm), t > 0, m ∈ N0,

k
(m)
t (x1, . . . , xm)

∣∣
t=0

= k
(m)
0 (x1, . . . , xm).

(3.10)

Of course, in general, for a fixed n, any equation from (3.10) itself is not

closed and includes functions k
(m)
t of other orders m 6= n, nevertheless, the

system (3.10) is a closed linear system. The chain evolution equations for k
(n)
t

consists the so-called hierarchy which is an analog of the BBGKY hierarchy for
Hamiltonian systems, see e.g. [12].

In the present paper the restrict our attention to the so-called sub-Poisso-
nian correlation functions. Namely, for a given C > 0 we consider the following
Banach space

KC :=
{
k : Γ0 → R

∣∣ k · C−|·| ∈ L∞(Γ0, dλ)
}

(3.11)

with the norm
‖k‖KC := ‖C−|·|k(·)‖L∞(Γ0,dλ).

It is clear that k ∈ KC implies,
∣∣k(η)

∣∣ ≤ ‖k‖KC C |η| for λ-a.a. η ∈ Γ0. (3.12)

In the following we study the initial value problem (3.8) using the fol-
lowing scheme. We solve this equation in space KC . The well-posedness of
the initial value problem in this case is equivalent with an existence of the
strongly continuous semigroup (C0-semigroup in the sequel) in the space KC
with a generator L̂∗. However, the space KC is isometrically isomorphic to the
space L∞(Γ0, C

|·|dλ) whereas, by the H. Lotz theorem [40], [1], in a L∞ space
any C0-semigroup is uniformly continuous, that is it has a bounded generator.
Typically, for the operator L, any operator L̂∗n,m, cf. (3.10), might be bounded
as an operator between two spaces of bounded symmetric functions of n and
m variables whereas the whole operator L̂∗ is unbounded in KC .

To avoid this difficulties we use a trick which goes back to R. Phillips [45].
The main idea is to consider the semigroup in L∞ space not itself but as a dual
semigroup T ∗(t) to a C0-semigroup T (t) with a generator A in the pre-dual
L1 space. In this case T ∗(t) appears strongly continuous semigroup not on the
whole L∞ but on the closure of the domain of A∗ only.

In our case this leads to the following scheme. We consider the pre-dual
Banach space to KC , namely, for C > 0,

LC := L1
(
Γ0, C

|·|dλ
)
. (3.13)

The norm in LC is given by

‖G‖C : =

∫

Γ0

∣∣G(η)
∣∣C |η| dλ(η)

=
∞∑

n=0

Cn

n!

∫

(Rd)n

∣∣G(n)(x1, . . . , xn)
∣∣ dx1 . . . dxn.
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Consider the initial value problem, cf. (3.7), (3.8),

d

dt
Gt = L̂Gt, t > 0, Gt

∣∣
t=0

= G0 ∈ LC . (3.14)

As long as (3.14) is well-posed in LC there exists a C0-semigroup T̂ (t) in LC .
Then using Philips’ result we see that the restriction of the dual semigroup

T̂ ∗(t) onto Dom(L̂∗) will be C0-semigroup with generator which is a part of

L̂∗ (see Section 4 below for details). This provides a solution to (3.8) which

continuously depends on an initial data from Dom(L̂∗). And after we would
like to find a more useful universal subspace of KC which is not depend on the
operator L̂∗. The realization of this scheme for a birth-and-death operator L
is presented in Section 4 below. As a result, we obtain the classical solution
to (3.8) for t > 0 in a class of sub-Poissonian functions which satisfy the
Ruelle-type bound (3.12). Of course, after this we need to verify existence and
uniqueness of measures whose correlation functions are solutions to (3.8). This
usually can be done using proper approximation schemes, see e.g. Section 5.

4 Birth-and-death evolutions in the continuum

4.1 Microscopic description

One of the most important classes of Markov evolution in the continuum is
given by the birth-and-death Markov processes in the space Γ of all configurati-
ons in Rd. These are processes in which an infinite number of individuals exist
at each instant, and the rates at which new individuals appear and some old
ones disappear depend on the current configuration of existing individuals [31].
The corresponding Markov generators have a natural heuristic representation
in terms of birth and death intensities. The birth intensity b(x, γ) ≥ 0 cha-
racterizes the appearance of a new point at x ∈ Rd in the presence of a given
configuration γ ∈ Γ. The death intensity d(x, γ) ≥ 0 characterizes the probabi-
lity of the event that the point x of the configuration γ disappears, depending
on the location of the remaining points of the configuration γ \ {x} (in the
sequel γ \ x). Heuristically, the corresponding Markov generator is described
by the following expression,

(LF )(γ) :=
∑

x∈γ
d(x, γ \ x) [F (γ \ x)− F (γ)]

+

∫

Rd
b(x, γ) [F (γ ∪ x)− F (γ)] dx, (4.1)

for proper functions F : Γ→ R.

4.2 Expressions for “L and “L∗. Examples of rates b and d

We always suppose that rates d, b : Rd × Γ → [0; +∞] from (4.1) satisfy
the following assumptions

d(x, η), b(x, η) > 0, η ∈ Γ0 \ {∅}, x ∈ Rd \ η,
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d(x, η), b(x, η) <∞, η ∈ Γ0, x ∈ Rd \ η,∫

M

(
d(x, η) + b(x, η)

)
dλ(η) <∞, M ∈ B(Γ0) bounded, a.a. x ∈ Rd,

∫

Λ

(
d(x, η) + b(x, η)

)
dx <∞, η ∈ Γ0, Λ ∈ Bb(Rd).

We start with the expression for L̂ = K−1LK,

Proposition 4.1 ([20, Proposition 5]). For any G ∈ Bbs(Γ0) the following
formula holds

(L̂G)(η) =−
∑

ξ⊂η
G(ξ)

∑

x∈ξ

(
K−1d(x, · ∪ ξ \ x)

)
(η \ ξ)

+
∑

ξ⊂η

∫

Rd
G(ξ ∪ x)

(
K−1b(x, · ∪ ξ)

)
(η \ ξ) dx, η ∈ Γ0.

(4.2)

Using this, one can derive the explicit form of L̂∗.

Proposition 4.2 ([20, Corollary 9]). For any k ∈ Bbs(Γ0) the following for-
mula holds

(L̂∗k)(η) =−
∑

x∈η

∫

Γ0

k(ζ ∪ η)
(
K−1d(x, · ∪ η \ x)

)
(ζ) dλ(ζ)

+
∑

x∈η

∫

Γ0

k(ζ ∪ (η \ x))
(
K−1b(x, · ∪ η \ x)

)
(ζ) dλ(ζ),

where L̂∗k is defined by (3.9).

4.3 Semigroup evolutions in the space of quasi-observables

We proceed now to the construction of a semigroup in the space LC ,
C > 0, see (3.13), which has a generator, given by L̂, with a proper domain.
To define such domain, let us set

D (η) :=
∑

x∈η
d (x, η \ x) ≥ 0, η ∈ Γ0; (4.3)

D := {G ∈ LC | D (·)G ∈ LC} . (4.4)

Note that Bbs(Γ0) ⊂ D and Bbs(Γ0) is a dense set in LC . Therefore, D is also

a dense set in LC . We will show now that (L̂,D) given by (4.2), (4.4) generates
C0-semigroup on LC if only ‘the full energy of death’, given by (4.3), is big
enough.

Theorem 4.3 ([18, Theorem 3.2]). Suppose that there exists a1 ≥ 1, a2 > 0
such that for all ξ ∈ Γ0 and a.a. x ∈ Rd

∑

x∈ξ

∫

Γ0

∣∣K−1d (x, · ∪ ξ \ x)
∣∣ (η)C |η| dλ (η) ≤ a1D(ξ), (4.5)
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∑

x∈ξ

∫

Γ0

∣∣K−1b (x, · ∪ ξ \ x)
∣∣ (η)C |η| dλ (η) ≤ a2D(ξ) (4.6)

and, moreover,

a1 +
a2

C
<

3

2
. (4.7)

Then (L̂,D) is the generator of a holomorphic semigroup T̂ (t) on LC .

4.4 Evolutions in the space of correlation functions

In this Subsection we will use the semigroup T̂ (t) acting oh the space
of quasi-observables for a construction of a solution to the evolution equation
(3.8) on the space of correlation functions.

We denote dλC := C |·|dλ; and the dual space (LC)′ =
(
L1(Γ0, dλC)

)′
=

L∞(Γ0, dλC). As was mentioned before the space (LC)′ is isometrically isomor-
phic to the Banach space KC considered in (3.11)–(3.12). The isomorphism is
given by the isometry RC

(LC)′ 3 k 7−→ RCk := k · C |·| ∈ KC . (4.8)

Recall, one may consider the duality between the Banach spaces LC and
KC given by (3.6) with

|〈〈G, k〉〉| ≤ ‖G‖C · ‖k‖KC .

Let
(
L̂′,Dom(L̂′)

)
be an operator in (LC)′ which is dual to the closed

operator
(
L̂,D

)
. We consider also its image on KC under the isometry RC .

Namely, let L̂∗ = RCL̂
′RC−1 with the domain Dom(L̂∗) = RCDom(L̂′). Si-

milarly, one can consider the adjoint semigroup T̂ ′(t) in (LC)′ and its image

T̂ ∗(t) in KC .

The space LC is not reflexive, hence, T̂ ∗(t) is not C0-semigroup in whole
KC . The last semigroup will be weak*-continuous, weak*-differentiable at 0
and L̂∗ will be weak*-generator of T̂ ∗(t). Therefore, one has an evolution in
the space of correlation functions. In fact, we have a solution to the evolution
equation (3.8), in a weak*-sense. This subsection is devoted to the study of

a classical solution to this equation. The restriction T̂�(t) of the semigroup

T̂ ∗(t) onto its invariant Banach subspace Dom(L̂∗) (here and below all closures
are in the norm of the space KC) is a strongly continuous semigroup. Moreover,

its generator L̂� will be a part of L̂∗, namely,

Dom(L̂�) =
{
k ∈ Dom(L̂∗)

∣∣∣ L̂∗k ∈ Dom(L̂∗)
}

(4.9)

and L̂�k = L̂∗k for any k ∈ Dom(L̂�).

One can consider the restriction T̂�α(t) of the semigroup T̂�(t) onto KαC .

It will be strongly continuous semigroup with the generator L̂�α which is a re-
striction of L̂� onto KαC . Namely, cf. 4.9,

Dom(L̂�α) =
{
k ∈ KαC

∣∣∣ L̂∗k ∈ KαC
}
,
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and L̂�αk = L̂�k = L̂∗k for any k ∈ KαC . In the other words, L̂�α is a part
of L̂∗.

And now we may proceed to the main statement of this Subsection.

Theorem 4.4 ([19, Theorem 3.16]). Let (4.5), (4.6) hold together with the
following assumptions

d (x, ξ) ≤ A(1 + |ξ|)Nν|ξ|, (4.10)

1 ≤ ν < C

a2

Å
3

2
− a1

ã
. (4.11)

and let α be chosen in the following way

a2

C
(3

2
− a1

) < α <
1

ν
.

Then for any k0 ∈ KαC there exists a unique classical solution to (3.8) in the

space KαC , and this solution is given by kt = T̂�α(t)k0. Moreover, k0 ∈ KαC
implies kt ∈ KαC for t > 0.

Example 4.1. (BDLP model) This example describes a generalization of the
model of plant ecology (see [14] and references therein). Let L be given by
(4.1) with

d(x, γ \ x) = m(x) + κ−(x)
∑

y∈γ\x
a−(x− y), x ∈ γ, γ ∈ Γ,

b(x, γ) = κ+(x)
∑

y∈γ
a+(x− y), x ∈ Rd \ γ, γ ∈ Γ,

where 0 < m ∈ L∞(Rd), 0 ≤ κ± ∈ L∞(Rd), 0 ≤ a± ∈ L1(Rd, dx)∩L∞(Rd, dx),∫
Rd a

±(x) dx = 1. Let us suppose, cf. [14], that there exists δ > 0 such that

(4 + δ)Cκ−(x) ≤ m(x), x ∈ Rd, (4.12)

(4 + δ)κ+(x) ≤ m(x), x ∈ Rd, (4.13)

4κ+(x)a+(x) ≤ Cκ−(x)a−(x). x ∈ Rd, (4.14)

Then

d(x, ξ) + Cκ−(x) ≤ d(x, ξ) +
m(x)

4 + δ
≤
(

1 +
1

4 + δ

)
d(x, ξ),

b(x, ξ) + Cκ+(x) ≤ C

4
κ−(x)

∑

y∈ξ
a−(x− y) +

Cm(x)

4 + δ
<
C

4
d(x, ξ),

Hence, (4.5), (4.6) hold with a1 = 1 +
1

4 + δ
, a2 =

C

4
, that fulfills (4.7). Next,

under conditions (4.12), (4.14), we have

d(x, ξ) ≤ ‖m‖L∞(Rd) + ‖κ−‖L∞(Rd)‖a−‖L∞(Rd)|ξ|, ξ ∈ Γ0,

and hence (4.10) holds with ν = 1, which makes (4.11) obvious.

Remark 4.5. It was shown in [14] that, for the case of constant m,κ±, the
condition like (4.12) is essential. Namely, if m > 0 is arbitrary small the

operator L̂ will not even be accretive in LC .
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5 Vlasov-type scalings

For the reader convenience, we start from the idea of the Vlasov-type
scaling. The general scheme for the birth-and-death dynamics as well as for
the conservative ones may be found in [15]. The realizations of this approach
for the Glauber dynamics (Example 1 with s = 0) and for the BDLP dynamics
(Example 2) were considered in [16, 17], correspondingly. The idea of the
Vlasov-type scaling consists in the following.

We would like to construct some scaling Lε, ε > 0, of the generator L,
such that the following scheme holds. Suppose that we have a semigroup Ûε(t)
with the generator L̂ε in some LCε , ε > 0. Consider the dual semigroup Û∗ε (t).
Let us choose an initial function of the corresponding Cauchy problem with

a singularity in ε. Namely, ε|η|k(ε)
0 (η) ∼ r0(η), ε→ 0, η ∈ Γ0 for some function

r0, which is independent of ε. The scaling L 7→ Lε should be chosen in such
a way that first of all the corresponding semigroup Û∗ε (t) preserves the order
of the singularity:

ε|η|(Û∗ε (t)k
(ε)
0 )(η) ∼ rt(η), ε→ 0, η ∈ Γ0,

and, secondly, the dynamics r0 7→ rt preserves the Lebesgue–Poisson exponents.
There exists explicit (in general, nonlinear) differential equation for ρt:

d

dt
ρt(x) = υ(ρt)(x) (5.1)

which will be called the Vlasov-type equation.
Now we explain an informal way to realize such a scheme. Let us consider

for any ε > 0 the following mapping (cf. (4.8)) defined for functions on Γ0

(Rεr)(η) := ε|η|r(η).

This mapping is “self-dual” with respect to the duality (3.6), moreover, R−1
ε =

Rε−1 . Having Rεk
(ε)
0 ∼ r0, ε→ 0, we need rt ∼ RεÛ∗ε (t)k

(ε)
0 ∼ RεÛ∗ε (t)Rε−1r0,

ε → 0. Therefore, we have to show that for any t ≥ 0 the operator family
RεÛ

∗
ε (t)Rε−1 , ε > 0 has limiting (in a proper sense) operator U(t) and

U(t)eλ(ρ0) = eλ(ρt). (5.2)

But, heuristically, Û∗ε (t) = exp {tL̂∗ε} and RεÛ
∗
ε (t)Rε−1 = exp {tRεL̂∗εRε−1}.

Let us consider the “renormalized” operator

L̂∗ε, ren := RεL̂
∗
εRε−1 . (5.3)

In fact, we need that there exists an operator L̂∗V such that exp {tRεL̂∗εRε−1} →
exp {tL̂∗V } =: U(t) satisfying (5.2). Therefore, an heuristic way to produce
scaling L 7→ Lε is to demand that

lim
ε→0

Å
d

dt
eλ(ρt, η)− L̂∗ε, reneλ(ρt, η)

ã
= 0, η ∈ Γ0

provided ρt satisfies (5.1). The point-wise limit of L̂∗ε, ren will be natural can-

didate for L̂∗V .
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Note that (5.3) implies informally that L̂ε, ren = Rε−1L̂εRε. We propose
below the scheme to give rigorous meaning to the idea introduced above. We
consider, for a proper scaling Lε, the “renormalized” operator L̂ε, ren and prove

that it is a generator of a strongly continuous contraction semigroup Ûε, ren(t)

in LC . Next, we show that the formal limit L̂V of L̂ε, ren is a generator of

a strongly continuous contraction semigroup ÛV (t) in LC . Finally, we prove
that Ûε, ren(t) → ÛV (t) strongly in LC . This implies weak*-convergence of

the dual semigroups Û∗ε, ren(t) to Û∗V (t). We explain also in which sense Û∗V (t)
satisfies the properties above.

Let us consider for any ε ∈ (0; 1] the following scaling of (4.1)

(LεF )(γ) : =
∑

x∈γ
dε(x, γ \ x) [F (γ \ x)− F (γ)]

+ ε−1

∫

Rd
bε(x, γ) [F (γ ∪ x)− F (γ)] dx,

and define the renormalized operator L̂ε,ren := Rε−1K−1LεKRε. Using the
same arguments as in the proof of Proposition 4.1, we get

(L̂ε,renG)(η) =−
∑

ξ⊂η
G(ξ)ε−|η\ξ|

∑

x∈ξ

(
K−1

0 dε(x, · ∪ ξ \ x)
)
(η \ ξ)

+
∑

ξ⊂η

∫

Rd
G(ξ ∪ x)ε−|η\ξ|

(
K−1

0 bε(x, · ∪ ξ)
)
(η \ ξ) dx.

For ε ∈ (0; 1], Dε(η) :=
∑

x∈η
dε(x, η \ x);

Suppose that there exists a1 ≥ 1, a2 > 0, such that for all ξ ∈ Γ0, for a.a.
x ∈ Rd, and for any ε ∈ (0; 1]

∑

x∈ξ

∫

Γ0

∣∣K−1
0 dε (x, · ∪ ξ \ x)

∣∣ (η) ε−|η|C |η| dλ (η) ≤ a1Dε (ξ) , (5.4)

∑

x∈ξ

∫

Γ0

∣∣K−1
0 bε (x, · ∪ ξ \ x)

∣∣ (η) ε−|η|C |η| dλ (η) ≤ a2Dε (ξ) , (5.5)

a1 +
a2

C
<

3

2
. (5.6)

For all η, ξ ∈ Γ0 and a.a. x ∈ Rd the following limits exist and coincide:

lim
ε→0

ε−|η|
(
K−1

0 dε (x, · ∪ ξ)
)

(η) = lim
ε→0

ε−|η|
(
K−1

0 dε (x, ·)
)

(η) =: DV
x (η); (5.7)

lim
ε→0

ε−|η|
(
K−1

0 bε (x, · ∪ ξ)
)

(η) = lim
ε→0

ε−|η|
(
K−1

0 bε (x, ·)
)

(η) =: BVx (η). (5.8)

We would like to emphasize, that above limits should not depend on ξ. The
collection of examples for such dε, bε can be found in [15].

Now we are able to state result about convergence in LC .
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Theorem 5.1 ([18, Theorem 4.4]). Let conditions (5.4), (5.5), and (5.6) are
satisfied. Suppose that convergences (5.7), (5.8) take place for all η ∈ Γ0 as
well as in the sense of LC . Assume also that there exists σ > 0 such that either

dε(x, ξ) ≤ σDV
x (∅) or dε(x, ξ) ≥ σDV

x (∅)

is satisfied for all ξ ∈ Γ0 and for a.a. x ∈ Rd. Then Ûε(t)
s−→ ÛV (t) in LC

uniformly on finite time intervals.

Example 5.1 (BDLP model, revisited). Let

dε(x, γ \ x) = m+ εκ−
∑

y∈γ\x
a−(x− y),

bε(x, γ) = εκ+
∑

y∈γ
a+(x− y).

Comparing with the previous notations we have changed κ± onto εκ±. Clearly,
conditions (4.12), (4.14) implies the same inequalities for εκ±. Note also that
dε is decreasing in ε → 0. Therefore, to apply all results of this section to
BDLP-model we should prove the convergence (5.7), (5.8) in LC . Note, that

ε−|η|K−1
0 dε (x, · ∪ ξ) (η) = dε(x, ξ)0

|η| + 11Γ(1)(η)
∑

y∈η
a−(x− y)

→ m0|η| + 11Γ(1)(η)
∑

y∈η
a−(x− y) =: DV

x (η)

and, analogously,

ε−|η|K−1
0 bε (x, · ∪ ξ) (η) = bε(x, ξ)0

|η| + 11Γ(1)(η)
∑

y∈η
a+(x− y)

→ 11Γ(1)(η)
∑

y∈η
a+(x− y) =: BVx (η).

The convergence in LC is obvious now. The kinetic (Vlasov) equation has the
following form

d

dt
ρt(x) = κ+(a+ ∗ ρt)(x)− κ−ρt(x)(a− ∗ ρt)(x)−mρt(x). (5.9)

We study the obtained equation in the following section.

Remark 5.2. By duality (3.6), Theorem 5.1 yields weak*-convergence of the
semigroups Û�αε (t) to Û�αV (t) in KαC . To prove such convergence in the strong
sense we need additional analysis of their generators. The problem concerns
the fact that we have explicit expression for the generator L̂�αV = L̂∗V only

on the core
{
k ∈ KαC

∣∣ L̂∗V k ∈ KαC
}

. However, we are able to show such
convergence for the Glauber dynamics described in Example 1 for s = 0 using
modified technique (see [16]).
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6 Kinetic equation of a spatial ecology model

6.1 Introduction

In this section we study the mesoscopic equation of the BDLP model (5.9)
from different perspectives. Namely we will deal with the following nonlinear
nonlocal evolution equation, for x ∈ Rd,




du

dt
(x, t) = κ+(a+ ∗ u)(x, t)−mu(x, t)− κ−u(x, t)(a− ∗ u)(x, t), t > 0,

u(x, 0) = u0(x),
(6.1)

which we will study in a class of bounded in x nonnegative functions.
The solution u = u(x, t) to (6.1) describes approximately a density (at the

moment of time t and at the position x of the space Rd) for a particle system
evolving in the continuum. In course of the evolution, particles might reproduce
themselves, die, and compete (say, for resources). Namely, a particle located
at a point y ∈ Rd may produce a ‘child’ at a point x ∈ Rd with the intensity
κ+ and according to the dispersion kernel a+(x − y). Next, any particle may
die with the constant intensity m. And additionally, a particle located at x
may die according to the competition with the rest of particles; the intensity
of the death because of a competitive particle located at y is equal to κ− and
the distribution of the competition is described by a−(x− y).

This model was originally proposed in mathematical ecology, see [9]. Ri-
gorous mathematical constructions were done in [14, 23]. In [14], the mathe-
matical approach was realized using the theory of Markov statistical dynamics
on the so-called configuration spaces expressed in terms of evolution of time-
dependent correlation functions of the system, see e.g. [20, 32, 34].

Here m > 0, κ± > 0 are constants, and functions 0 ≤ a± ∈ L1(Rd) are
probability densities:

∫

Rd
a+(y) dy =

∫

Rd
a−(y) dy = 1.

Here and below, for a function u = u(y, t), which is (essentially) bounded in
y ∈ Rd, and a function (a kernel) a ∈ L1(Rd), we denote

(a ∗ u)(x, t) :=

∫

Rd
a(x− y)u(y, t) dy.

We assume that u0 is a bounded function on Rd. For technical reasons, we
will consider two Banach spaces of bounded real-valued functions on Rd: the
space Cub(Rd) of bounded uniformly continuous functions on Rd with sup-norm
and the space L∞(Rd) of essentially bounded (with respect to the Lebesgue
measure) functions on Rd with esssup-norm. Let also Cb(Rd) and C0(Rd)
denote the spaces of continuous functions on Rd which are bounded and have
compact supports, correspondingly.

Let E be either Cub(Rd) or L∞(Rd). Consider the equation (6.1) in E;
in particular, u must be continuously differentiable in t, for t > 0, in the sense
of the norm in E. Moreover, we consider u as an element from the space
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Cb(I → E) of continuous bounded functions on I (including 0) with values in
E and with the following norm

‖u‖Cb(I→E) = sup
t∈I
‖u(·, t)‖E .

Such a solution is said to be a classical solution to (6.1); in particular, u will
continuously (in the sense of the norm in E) depend on the initial condition
u0.

We will also use the space Cb(I → E) with I = [T1, T2], T1 > 0. For
simplicity of notations, we denote

XT1,T2
:= Cb

(
[T1, T2]→ E

)
, T2 > T1 ≥ 0,

and the corresponding norm will be denoted by ‖ · ‖T1,T2
. We set also XT :=

X0,T , ‖ · ‖T := ‖ · ‖0,T , and

X∞ := Cb
(
R+ → E

)

with the corresponding norm ‖·‖∞. The upper index ‘+’ will denote the cone
of nonnegative functions in the corresponding space, namely,

X+
] := {u ∈ X] | u ≥ 0},

where ] is one of the subscripts above.
We will also omit the subscript for the norm ‖ · ‖E in E, if it is clear

whether we are working with sup- or esssup-norm.

6.2 Basic properties

The following theorem yields existence and uniqueness of a solution

Theorem 6.1. Let u0 ∈ E and u0(x) ≥ 0, x ∈ Rd. Then, for any T > 0,
there exists a unique nonnegative solution u to the equation (6.1) in E, such
that u ∈ XT .

Proof. The proof is based on the fixed point argument applied to the map
u = Φτv, where, for a fixed 0 ≤ v ∈ XT , the function u solves the following
equation





∂u

∂t
(x, t) = −mu(x, t)− κ−u(x, t)(a− ∗ v)(x, t) + κ+(a+ ∗ v)(x, t), t ∈ (τ, T ],

u(x, τ) = uτ (x).

One can show that, for τ = 0, Φτ will be a contraction mapping on a time
interval [0, T0]. Hence a fixed point u = Φu exists on [0, T0]. There exists
T1 > T0 such that, for τ = T0, Φτ is a contraction mapping on [T0, T1] and
the fixed point u may be extended to [0, T1]. Iterating this scheme, we obtain
a sequence {Tn}n∈N, such that Tn → ∞ and u = Φu on each [0, Tn]. Hence
u = Φu on [0,∞). It is left to note that u is a fixed point of Φ if and only if it
satisfies (6.1).

For the details see [21, Theorem 2.2].



22 O. Kutovyi, P. Tkachov

Below, | · | = | · |Rd denotes the Euclidean norm in Rd, Br(x) is a closed
ball in Rd with the center at x ∈ Rd and the radius r > 0; and br is a volume
of this ball.

The following theorem is an extension of Theorem 6.1 for E = Cub(Rd),
in which case the global boundedness of the solutions holds in both space and
time under additional weak assumptions.

Theorem 6.2. Suppose that there exists r0 > 0 such that

α := inf
|x|≤r0

a−(x) > 0,

and, for some ε,A > 0, one have a+(x) ≤ A

1 + |x|d+ε
, for all x ∈ Rd. Then,

the solution u ≥ 0 to (6.1), with 0 ≤ u0 ∈ Cub(Rd), belongs to Cub(Rd × R+).

Proof. The idea of the proof goes back to [30, Theorem 1.3]. We consider

v(x, t) := (11Br(0) ∗ u)(x, t) =

∫

Br(x)

u(y, t) dy.

It is possible to prove by contradiction that under conditions of the theorem
v is globally bounded, which implies that u is bounded on Rd × R+. For the
details see [21, Theorem 2.8].

The main difficulty in studying non-local monostable evolution equations
is the lack of techniques for the class of equations. In particular, variational
methods may be hardly applied here because of the type of the non-linear
(’reaction’) term, which is not a potential operator. Nevertheless, under re-
strictions on the kernels a+, a−, a version of the comparison principle may be
proven. This result will be needed in the rest of the article. Let T > 0 be fixed.
Define the sets X 1

T of functions from XT , which are continuously differentiable
on (0, T ] in the sense of the norm in E. Here and below we consider the left
derivative at t = T only. For any u from X 1

T one can define the following
function

Fu :=
du

dt
− κ+a+ ∗ u+mu+ κ−u(a− ∗ u), t ∈ (0, T ], x ∈ Rd. (6.2)

Theorem 6.3. Let there exist c > 0, such that

κ+a+(x) ≥ cκ−a−(x), a.a. x ∈ Rd.

Let T ∈ (0,∞) be fixed and functions u1, u2 ∈ X 1
T be such that, for any (x, t) ∈

Rd × (0, T ],

(Fu1)(x, t) ≤ (Fu2)(x, t), (6.3)

u1(x, t) ≥ 0, 0 ≤ u2(x, t) ≤ c, u1(x, 0) ≤ u2(x, 0).

Then u1(x, t) ≤ u2(x, t), for all (x, t) ∈ Rd × [0, T ]. In particular, u1 ≤ c.
Proof. We consider

v(x, t) := eKt(u2(x, t)− u1(x, t)), x ∈ Rd, t ∈ [0, T ].
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By the fixed point method applied to the integral equation that is satisfied by
v we can show that v ≥ 0, provided K > 0 is sufficiently large. Hence u2 ≥ u1.
Also see [21, Theorem 3.1].

For E = Cub(Rd) one can prove a refined version of Theorem 6.3 for non-
differentiable in time functions. For any T ∈ (0,∞], define the set DT of all
functions u : Rd × R+ → R, such that, for all t ∈ [0, T ), u(·, t) ∈ Cub(Rd),
and, for all x ∈ Rd, the function f(x, t) is absolutely continuous in t on [0, T ).
Then, for any u ∈ DT , one can define the function (6.2), for all x ∈ Rd and a.a.
t ∈ [0, T ).

Proposition 6.4 ([21, Proposition 3.3]). The statement of Theorem 6.3 re-
mains true, if we assume that u1, u2 ∈ DT and, for any x ∈ Rd, the inequality
(6.3) holds for a.a. t ∈ (0, T ) only.

We introduce a notation for the non-zero constant solution

θ :=
κ+ −m

κ−
∈ R. (6.4)

It is easy to show using Duhamel’s principle, that if κ+ < m, then the solutions
to (6.1) converges to 0 exponentially fast and uniformly in space, as time tends
to infinity. The case κ+ = m was partially considered by Terra and Wolanski
(see [48, 49]) and we omit it in the present article. Hence we make the following
assumption in the rest of the article,

κ+ > m. (A1)

It yields in particular that the constant solution θ is greater than zero. We
will study solutions with initial conditions, that are non-negative and bounded
by θ.

Definition 6.5. For θ > 0, given by (6.4), consider the following sets

Uθ := {f ∈ Cub(Rd) | 0 ≤ f(x) ≤ θ, x ∈ Rd},
Lθ := {f ∈ L∞(Rd) | 0 ≤ f(x) ≤ θ, for a.a. x ∈ Rd},
Eθ := {f ∈ E | 0 ≤ f(x) ≤ θ, x ∈ Rd}.

Hence Eθ is either Uθ or Lθ.

By virtue of Theorem 6.3, we assume,

κ+a+(x) ≥ (κ+ −m)a−(x), a.a. x ∈ Rd. (A2)

Let us mention an important consequence of Theorem 6.3.

Proposition 6.6 ( [21, Proposition 3.4]). Suppose that (A1) and (A2) hold.
Let 0 ≤ u0 ∈ Eθ be an initial condition to (6.1) and u ∈ XT be the corresponding
solutions on any [0, T ], T > 0. Then u ∈ X∞, with ‖u‖∞ ≤ θ.

Let v0 ∈ Eθ be another initial condition to (6.1) such that u0(x) ≤ v0(x),
x ∈ Rd; and v ∈ X∞ be the corresponding solution. Then

u(x, t) ≤ v(x, t), x ∈ Rd, t ≥ 0.
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Let us show that if u0 6≡ 0, then the solutions to (6.1) are strictly positive;
this is quite common feature of linear parabolic equations, however, in general,
it may fail for nonlinear ones. It is required that

there exists ρ, δ > 0 such that a+(x) ≥ ρ, for a.a. x ∈ Bδ(0). (A3)

Proposition 6.7 ( [21, Proposition 3.8]). Let (A1), (A2), (A3) hold. Let
u0 ∈ Uθ, u0 6≡ 0, u0 6≡ θ, be the initial condition to (6.1), and u ∈ X∞ be the
corresponding solution. Then

u(x, t) > inf
y∈Rd
s>0

u(y, s) ≥ 0, x ∈ Rd, t > 0.

As a matter of fact, under (A4), a much stronger statement than unat-
tainability of θ does hold. To show this we assume that

there exists ρ, δ > 0, such that

Jθ(x) = κ+a+(x)− (κ+ −m)a−(x) ≥ ρ, for a.a. x ∈ Bδ(0).
(A4)

Theorem 6.8 ( [21, Theorem 3.9]). Let (A1), (A2), (A4) hold. Let u1, u2 ∈
X∞ be two solutions to (6.1), such that u1(x, 0) ≤ u2(x, 0), x ∈ Rd, are from
Uθ. Then either u1(x, t) = u2(x, t), x ∈ Rd, t ≥ 0 or u1(x, t) < u2(x, t),
x ∈ Rd, t > 0.

By choosing u2 ≡ θ in Theorem 6.8, we immediately get the following

Corollary 6.9 ( [21, Corollary 3.10]). Let (A1), (A2), (A4) hold. Let u0 ∈ Uθ,
u0 6≡ θ, be the initial condition to (6.1), and u ∈ X∞ be the corresponding
solution. Then u(x, t) < θ, x ∈ Rd, t > 0.

6.3 Traveling waves

For simplicity, we consider one-dimensional space (d = 1) in the following.
For many-dimensional analogues of the statements, see [21, 22, 24–26].

Traveling waves were studied intensively for the original Fisher–KPP
equation, see e.g. [4, 13, 36]; for locally nonlinear equation with nonlocal dif-
fusion, see e.g. [10, 47, 51]; and for nonlocal nonlinear equation with local
diffusion, see e.g. [2, 6, 30, 43].

Through this section we will mainly work in L∞-setting. Recall that we
will always assume that (A1) and (A2) hold, and θ > 0 is given by (6.4).

Let us give a brief overview for the results of this Section. The existence
and properties of the traveling wave solutions will be considered under the so-
called Mollison condition (A5), cf. e.g. [41, 42]. Namely, in Theorem 6.12 we
will prove that, for any ξ ∈ Sd−1, there exists c∗(ξ) ∈ R, such that, for any
c ≥ c∗(ξ), there exists a traveling wave with the speed c in the direction ξ, and,
for any c < c∗(ξ), such a traveling wave does not exist. Moreover, we will find
an expression for c∗(ξ), see (6.7). We will prove that the profile of a traveling
wave with a non-zero speed is smooth, whereas the zero-speed traveling wave
(provided it exists, i.e. if c∗(ξ) ≤ 0) has a continuous profile (Proposition 6.13,
Corollary 6.14). Next, we will demonstrate the uniqueness (up to shifts) of a
traveling wave wave profile with a given speed c ≥ c∗(ξ) (Theorem 6.18).
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Definition 6.10. LetMθ(R) denote the set of all decreasing and right-continuous
functions f : R→ [0, θ].

Definition 6.11. Let X̃ 1
∞ := X̃∞∩C1((0,∞)→ L∞(Rd)). A function u ∈ X̃ 1

∞
is said to be a traveling wave solution to the equation (6.1) with a speed c ∈ R
and in a direction ξ ∈ Sd−1 if and only if (iff, in the sequel) there exists a
function ψ ∈Mθ(R), such that for all t ≥ 0, a.a. x ∈ Rd,

u(x, t) = ψ(x · ξ − ct), ψ(−∞) = θ, ψ(+∞) = 0. (6.5)

Here and below the function ψ is said to be the profile for the traveling wave,
whereas c is its speed.

For a given ξ ∈ Sd−1, consider the following assumption on a+:

There exists µ = µ(ξ) > 0 such that aξ(µ) :=

∫

Rd

a+(x)eµξ·x dx <∞. (A5)

Theorem 6.12. Let (A1) and (A2) hold and ξ ∈ Sd−1 be fixed. Suppose also
that (A5) holds. Then there exists c∗(ξ) ∈ R such that

1. for any c ≥ c∗(ξ), there exists a traveling wave solution (in direction ξ),
in the sense of Definition 6.11, with a profile ψ ∈Mθ(R) and the speed c,

2. for any c < c∗(ξ), such a traveling wave does not exist.

Proof. Since the semi-flow generated by (6.1) is commutative with the trans-
lation in Rd, there is no loss of generality in considering the one-dimensional
space (d = 1). Then one can show there exists µ > 0 such that

ϕ(s) := θmin{e−µs, 1}, s ∈ R,

is a super-solution to (6.1). Now one can apply [51, Theorem 5]. Also see [21,
Theorem 4.9].

Next statements describe the properties of a traveling wave solution.

Proposition 6.13 ([21, Proposition 4.11]). Let ψ ∈Mθ(R) and c ∈ R be such
that there exists a solution u ∈ X̃ 1

∞ to the equation (6.1) such that (6.5) holds,
for some ξ ∈ Sd−1. Then ψ ∈ C1(R→ [0, θ]), for c 6= 0, and ψ ∈ C(R→ [0, θ]),
otherwise.

Corollary 6.14 ([21, Corollary 4.12, Proposition 4.13]). In conditions and
notations of Proposition 6.13, ψ is a strictly decaying function, for any speed
c, and for any speed c 6= 0, the profile ψ ∈ C∞b (R).

We assume that the first moment of a+ in direction ξ ∈ Sd−1 exists,
namely, ∫

Rd
|x · ξ| a+(x) dx <∞. (A6)

The following assumption is a weaker form of (A3).

There exist r = r(ξ) ≥ 0, ρ = ρ(ξ) > 0, δ = δ(ξ) > 0, such that

a+(x) ≥ ρ, for a.a. x ∈ Bδ(rξ).
(A7)
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We set,

ǎ±(s) :=





∫

Rd−1

a±(τ1η1 + . . .+ τd−1ηd−1 + sξ) dτ1 . . . dτd−1, d ≥ 2,

a±(sξ), d = 1.

There exists a critical situation: when the abscissa of the traveling wave
coincides with the abscissa of the kernel a+. In this case, properties of the
traveling waves may be different from the ‘generic’ case. To distinguish this
cases and simplify the further statements, we introduce the following two classes
of functions.

Definition 6.15. Let m > 0, κ± > 0, 0 ≤ a− ∈ L1(Rd) be fixed, and
(A1) holds. For an arbitrary ξ ∈ Sd−1, we denote by Vξ the the class of all
kernels 0 ≤ a+ ∈ L1(Rd) such that (A2), (A5)–(A7) and one of the following
assumptions does hold:

1. λ0 := sup{λ ∈ R : aξ(λ) <∞} =∞;

2. λ0 <∞ and aξ(λ0) =∞;

3. λ0 <∞, aξ(λ0) <∞ and tξ(λ0) ∈ [−∞,m), where tξ(λ) is given by

tξ(λ) := κ+

∫

R
(1− λs)ǎ+(s)eλs ds ∈ [−∞,κ+), λ ∈ [0, λ).

Correspondingly, we denote by Wξ the class of all kernels such that λ0 < ∞,
aξ(λ0) <∞, and tξ(λ0) ∈ [m,κ+) instead of (1)− (3).

For a+ ∈ Vξ ∪Wξ, denote the interval Iξ ⊂ (0,∞) by

Iξ :=





(0,∞), if λ0 =∞,
(
0, λ0

)
, if λ0 <∞ and (Lǎ+)

(
λ0

)
=∞

(
0, λ0

]
, if λ0 <∞ and (Lǎ+)

(
λ0

)
<∞.

Consider the following complex-valued function

Gξ(z) :=
κ+(Lǎ+)(z)−m

z
, Re z > 0, (6.6)

Proposition 6.16. Let ξ ∈ Sd−1 be fixed and a+ ∈ Vξ ∪Wξ. Then there exists
a unique λ∗ = λ∗(ξ) ∈ Iξ such that

inf
λ>0

Gξ(λ) = min
λ∈Iξ

Gξ(λ) = Gξ(λ∗) > κ+mξ.

Moreover, Gξ is strictly decreasing on (0, λ∗] and Gξ is strictly increasing on
Iξ \ (0, λ∗] (the latter interval may be empty).

The following theorem provides expressions of for the minimal speed of
traveling waves.
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Theorem 6.17. Let ξ ∈ Sd−1 be fixed and a+ ∈ Vξ ∪ Wξ. Let c∗(ξ) be the
minimal traveling wave speed according to Theorem 6.12, and let, for any c ≥
c∗(ξ), the function ψ = ψc ∈ Mθ(R) be a traveling wave profile corresponding
to the speed c. Let λ∗ ∈ Iξ be the same as in Proposition 6.16.

1. The following relations hold

c∗(ξ) = min
λ>0

κ+aξ(λ)−m
λ

=
κ+aξ(λ∗)−m

λ∗
> κ+mξ. (6.7)

2. For a+ ∈ Vξ, there exists another representation for the minimal speed,

c∗(ξ) = κ+

∫

R
x · ξ a+(x)eλ∗x·ξ dx = κ+

∫

R
sǎ+(s)eλ∗s ds > κ+mξ.

Proof. First, we apply the Laplace transform to (6.1) with the traveling wave
solution u(x, t) = ψ(x · ξ − ct). Then, analysis of the minimal speed c∗(ξ) will
be reduced to the analysis of the function Gξ defined by (6.6). In particular,
(6.7) follows from Proposition 6.16. For the details see [21, Theorem 4.23].

Now we will formulate the uniqueness (up to shifts) of a profile ψ for a
traveling wave with the given speed c ≥ c∗(ξ), c 6= 0.

Theorem 6.18. Let ξ ∈ Sd−1 be fixed and a+ ∈ Vξ ∪ Wξ. Suppose, additio-
nally, that (A4) holds. Let c∗(ξ) be the minimal traveling wave speed according
to Theorem 6.12. For the case a+ ∈ Wξ with m = tξ(λ0), we will assume,
additionally, that

∫
R s

2ǎ+(s)eλ0s ds < ∞. Then, for any c ≥ c∗, such that
c 6= 0, there exists a unique, up to a shift, traveling wave profile ψ for (6.1).

Proof. We will follow the sliding technique from [10]. Let ψ1, ψ2 ∈ C1(R)∩M
are traveling wave profiles with a speed c ≥ c∗, c 6= 0. On can prove that, for
any τ > 0, there exists T = T (τ) > 0, such that

ψ1(s− τ) > ψ2(s), s ≥ T.

Then there exists ν > 0, such that,

ψ1(s− ν) ≥ ψ2(s), s ∈ R.

Similarly, there exists ν̃ > 0, such that,

ψ2(s− ν̃) ≥ ψ1(s), s ∈ R.

We can shift ψ1 and ψ2 such that ν = ν̃ = 0. As a result ψ1 = ψ2. See [21,
Theorem 4.33] for the detailed proof.

6.4 Propagation with a constant speed

We will study here the behavior of u(tx, t), where u solves (6.1), for big
t ≥ 0. The results of Section 6.3 together with the comparison principle imply
that if an initial condition u0(x) to (6.1) has a minorant/majorant which has
a form ψ(x · ξ), ξ ∈ Sd−1, where ψ ∈ Mθ(R) is a traveling wave profile in
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the direction ξ with a speed c ≥ c∗(ξ), then for the corresponding solution u
to (6.1), the function u(tx, t) will have the minorant/majorant ψ(t(x · ξ − c)),
correspondingly. In particular, if the initial condition is “below” of any trave-
ling wave in a given direction, then one can estimate the corresponding value
of u(tx, t) (Theorem 6.19). Considering such a behavior in different directions,
one can obtain a (bounded) set, out of which the solution exponentially decays
to 0 (Theorem 6.20). Inside of this set the solution will uniformly converge to
θ (Theorem 6.21).

Here and below, for any measurable A ⊂ R, we define tA := {tx | x ∈
A} ⊂ R.

Eλ,ξ(Rd) := {f ∈ L∞(Rd)
∣∣‖f‖λ,ξ := sup

x∈Rd
|f(x)|eλx·ξ <∞}.

We are going to explain now how a solution u(x, t) to (6.1) behaves outside of
the sets

Υt,ξ =
{
x ∈ Rd | x · ξ ≤ tc∗(ξ)

}
, ξ ∈ Sd−1.

Theorem 6.19. Let ξ ∈ Sd−1 and a+ ∈ Vξ ∪ Wξ; i.e. all conditions of De-
finition 6.15 hold. Let λ∗ = λ∗(ξ) ∈ Iξ be the same as in Proposition 6.16.
Suppose that u0 ∈ Eλ∗,ξ(Rd) ∩ Eθ and let u ∈ X∞ be the corresponding
solution to (6.1). Let Oξ ⊂ R be an open set, such that Υ1,ξ ⊂ Oξ and
δ := dist (Υ1,ξ,Rd \Oξ) > 0. Then the following estimate holds

sup
x/∈tOξ

u(x, t) ≤ ‖u0‖λ∗,ξe−λ∗δt, t > 0.

Proof. is based on the proof of Theorem 6.1. We consider the map Φ(v) in the
weighted L∞-space Eλ,ξ(Rd). We can show there exists λ∗ such that

0 ≤ u(x, t) ≤ ‖u0‖λ∗,ξ exp
{
p∗t− λ∗x · ξ

}
, a.a. x ∈ Rd,

where p∗ = κ+
∫
Rd a

+(x)eλ∗x·ξ dx−m.
Also see [21, Theorem 5.4].

We are going to consider now the global long-time behavior along both
directions ξ ∈ Sd−1 simultaneously. Define,

ΥT =
⋂

ξ∈Sd−1

ΥT,ξ =
⋂

ξ∈Sd−1

TΥ1,ξ = TΥ1, T > 0.

We are ready now to state a result about the long-time behavior at infinity
in space.

a+ ∈ L∞(Rd). (A8)

There exists µd > 0, such that

∫

Rd
a+(x)eµd|x| dx <∞. (A9)

Clearly, (A9) implies ∫

Rd
|x|a+(x) dx <∞. (6.8)
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Theorem 6.20. Let the conditions (A1), (A2), (A3), (A8), (A9) hold. Let
u0 ∈ Eθ be such that

|||u0||| := max
ξ∈Sd−1

‖u0‖λ∗(ξ),ξ <∞,

and let u ∈ X∞ be the corresponding solution to (6.1). Then, for any open set
O ⊃ Υ1, there exists ν = ν(O) > 0, such that

sup
x/∈tO

u(x, t) ≤ |||u0|||e−νt, t > 0.

Proof. The proof follows from Theorem 6.19. See [21, Theorem 5.9] for details.

Our second main result about the long-time behavior states that the so-
lution u ∈ X∞ uniformly converges to θ inside the set tΥ1 = Υt.

For a closed set A ⊂ Rd, we denote by int(A) the interior of A.

Theorem 6.21. Let the conditions (A1), (A2), (A4), (A8), (A9) hold. Let
u0 ∈ Uθ, u0 6≡ 0, and u ∈ X∞ be the corresponding solution to (6.1). Then, for
any compact set C ⊂ int(Υ1),

lim
t→∞

min
x∈tC

u(x, t) = θ. (6.9)

Proof. The result of the theorem is a special case of the general result for
dynamical systems on the space of bounded continuous functions by H. Wein-
berger [50]. See [21, Theorem 5.10] for the detailed proof.

All result above about traveling waves and long-time behavior of the so-
lutions were obtained under exponential integrability assumptions, cf. (A5) or
(A9). In [27], it was proved, in the case of the local competition (e.g. a− = δ0),
on R with local nonlinear term, that the case with a+ which does not satisfy
such conditions leads to ‘accelerating’ solutions, i.e. in this case the equality
like (6.9) holds for arbitrary big compact C ⊂ R. The detailed analysis of the
propagation for the slow decaying a+ is done in the following section.

We will formulate an analog of the first statement in [27, Theorem 1].

Theorem 6.22 ( [21, Theorem 5.21]). Let the conditions (A1), (A2), (A4),
(A8), and (6.8) hold. Suppose also (cf. (A9)), that for any λ > 0 and for any
ξ ∈ Sd−1, aξ(λ) = ∞. Let u0 ∈ Eθ be such that there exist x0 ∈ R, η > 0,
r > 0, with u0 ≥ η, for a.a. x ∈ Br(x0). Let u ∈ X∞ be the corresponding
solution to (6.1). Then, for any compact set K ⊂ Rd,

lim
t→∞

inf
x∈tK

u(x, t) = θ.

6.5 Accelerating propagation

The main result of this subsection is Theorem 6.25, where we demonstrate
the accelerated propagation of solutions to (6.1) in the case when either of the
dispersion kernel or the initial condition has regularly heavy tails at ∞, per-
haps different. We show that, in such case, the propagation is fully determined
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by either the kernel or the initial condition. Our approach in this subsection is
based, in particular, on the extension of the theory of sub-exponential distri-
butions, which we introduced early in [25].

To formulate our main result, we start with the following definition.

Definition 6.23. A function b : R→ R+ is said to be

– (right-side) long-tailed, if there exists ρ = ρb ≥ 0, such that b(s) > 0 for all
s ≥ ρ; and, for any τ ≥ 0,

lim
s→∞

b(s+ τ)

b(s)
= 1;

– (right-side) tail-decreasing, if there exists ρ = ρb ≥ 0, such that b = b(s) is
strictly decreasing on [ρ,∞) to 0. In particular, b(s) > 0, s ≥ ρ;

– (right-side) tail-log-convex, if there exists ρ = ρb > 0, such that b(s) > 0,
s ≥ ρ, and the function log b is convex (and hence continuous) on (ρ,∞).

Definition 6.24. Let S̃reg,d be the set of all bounded functions b : R → R+

such that

1. b is tail-decreasing and tail-log-convex with the same ρ = ρb > 1, such
that b(ρ) ≤ 1 (without loss of generality); and

∫ ρ

−∞
b(s) ds+

∫ ∞

ρ

b(s)sd−1 ds <∞

2. there exist δ = δb ∈ (0, 1) and an increasing function h = hb : (0,∞) →
(0,∞), with h(s) <

s

2
and lim

s→∞
h(s) =∞, such that

lim
s→∞

b(s± h(s))

b(s)
= 1,

lim
s→∞

b
(
h(s)

)
s1+δ = 0.

3. if d > 1, then we assume additionally that

– either, for some µ,M > 0,

b(s) =
M

(1 + s)d+µ
, s ∈ R+,

– or, for all ν ≥ 1,
lim
s→∞

b(s)sν = 0.

Any function which is asymptotically proportional at ∞ to either of

(log s)νs−(d+δ), sν exp
(
−D(log s)q

)
, sν exp

(
−sα

)
, sν exp

(
− s

(log s)γ

)
,

belongs to the class S̃reg,d, provided that D, δ > 0, q, γ > 1, α ∈ (0, 1), ν ∈ R.
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We will choose an appropriate function c : Rd → (0,∞) and set

Λ(t, c) :=
{
x ∈ Rd

∣∣ c(x) ≥ e−βt
}
,

where β := κ+ −m > 0. Two model examples for us will be

c(x) = b(|x|) and c(x) =

∫

∆(x)

b(|y|) dy, x ∈ Rd,

where ∆(x) :=
{
y ∈ Rd : yj ≥ xj , 1 ≤ j ≤ d

}
.

We are aimed to show that, for a small enough ε > 0,

lim
t→∞

ess inf
x∈Λ−ε (t,c)

u(x, t) = θ, (6.10a)

lim
t→∞

ess sup
x/∈Λ+

ε (t,c)

u(x, t) = 0. (6.10b)

We formulate now our main result.

Theorem 6.25. Let b, q : R+ → R+ be bounded functions such that, for some
M,µ, r, δ > 0,

b(s) + q(s) ≤ M

(1 + s)d+µ
for a.a. s ≥ r,

and q(s) ≥ δ for a.a. s ∈ [0, ρ]. Let (A1)–(A4), (6.8) hold. Suppose that
a+(x) = b(|x|), x ∈ Rd. Let either of the following conditions holds

sup
s∈R+

q(s)

b(s)
<∞, (6.11)

sup
s∈R+

b(s)

q(s)
<∞. (6.12)

1. Let q : R→ [0, θ] and

u0(x) = q(|x|), x ∈ Rd.

Then

(a) if b ∈ S̃reg,d and (6.11) holds, then (6.10) holds with c = a+;

(b) if q ∈ S̃reg,d and (6.12) holds, then (6.10) holds with c = u0.

2. Let

∫ ∞

0

q(s)sd−1ds ∈ (0, θ] and

u0(x) =

∫

∆(x)

q(|y|)dy, x ∈ Rd.

Then

(a) if b ∈ S̃reg,d and (6.11) holds, then (6.10) holds with

c(x) :=

∫

∆(x)

a+(y)dy, x ∈ Rd;

(b) if q ∈ S̃reg,d and (6.12) holds, then (6.10) holds with c = u0.

Proof. See [22, Theorem 1.5].

Note that in [22] the case when (6.8) does not hold was also covered.
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